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Abstract—The performance of Monte-Carlo Simulation(MCS)
is highly related to the number of simulation. This paper
introduces a hypothesis testing technique and incorporated into
a Particle Swarm Optimization(PSO) based Monte-Carlo Simu-
lation(MCS) algorithm to solve the complex network reliability
problem. The function of hypothesis testing technique is to
reduce the dispensable simulation in network system reliability
estimation. The proposed technique contains three components:
hypothesis testing, network reliability calculation and PSO algo-
rithm for finding solutions. The function of hypothesis testing is to
abandon unpromising solutions; we use monte-carlo simulation to
obtain network reliability; since the network reliability problem
is NP-hard, PSO algorithm is applied. Since the execution time
can be better decreased with the decrease of Confidence level
of hypothesis testing in a range, but the solution becomes worse
when the confidence level exceed a critical value, the experiment
are carried out on different confidence levels for finding the
critical value. The experimental results show that the proposed
method can reduce the computational cost without any loss of its
performance under a certain confidence level.

Keywords—Monte-Carlo simulation, network reliability, net-
work reliability optimization, particle swarm optimization, hypoth-
esis testing.

I. INTRODUCTION

In this paper, a hypothesis testing method, an effective
methodology in statistics, is employed and incorporated into a
Particle Swarm Optimization(PSO) based Monte-Carlo Simu-
lation(MCS) algorithm to solve the complex network reliability
problem[1]. These algorithm can avoid unnecessary calcula-
tion, save processing time and improve query efficiency.

Reliability optimization problem has attracted significant
attention in recent years due to the importance of reliability
in various kinds of systems[2], [3], [4], [5], [6]. The network
reliability optimization problem is to find a balance between
cost and reliability.

Complex network reliability problem is different from
ordinary network reliability problem, it can be complex and
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irregular. Monte-Carlo methods can be used to solve any
problem having a probabilistic interpretation. They have been
used to solve many network reliability problems[1], [7], [8],
[9], [10], [11].

The network reliability problem involves more than one
constraint and objective and has been proven to be NP-
hard. Due to the problem complexity, traditional deterministic
algorithms are unable to solve practical large-scale instances
in acceptable time.

Evolutionary computation (EC) and swarm intelligence (SI)
techniques have gained increasing attention in the past two
decades. The advantages of corresponding algorithms are obvi-
ous: 1) conceptual simplicity; 2)high efficiency ; 3) flexibility;
4)robustness; 5) having potential to use domain knowledge and
to hybridize with other techniques, etc. Particle swarm opti-
mization (PSO) is among the most popular population-based
search algorithms in the evolutionary computation community.
It is conceptually simple and has shown to be very effective
in solving optimization problems[12], [13].

Up to now, various methods have introduced hypothesis
testing technique for improving its performance. Wang et
al.[14] using hypothesis testing to achieve better results by
reducing repeated searches for those solutions with similar
performance. The work of Liang et al.[15] shows that hy-
pothesis testing may have better reliability and lower energy
consumption than point estimation under certain condition.

Other statistics techniques have been used in the area of
Evolutionary Computation(EC) before our work[16]. In this
paper, we use hypothesis testing for reducing the calculation
of unpromising particles. As a result, the number of function
evaluations can be reduced. There are some other works before
us also focus on reducing the number of function evaluations.
For example, Kim et al. [17] choose K-means algorithm
for dividing the whole population into several clusters, and
reducing the number of function evaluations by evaluating only
one in each clusters; Jin et al. [18] not only introduce cluster
algorithm but also ANN techniques for doing so; minimax
optimization is another way to achieve the goal[19].

The advantages of our work are summarized as follows:
1) using hypothesis testing technique to abandon unpromising
solutions; 2) the addition of heuristic method can make sure the
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existence of gbest while gives a directional guidance for the
other particles and keep the components reliabilities as small
as possible; 3) the combination of Monte-Carlo simulation and
Particle swarm optimization puts forward a new solution in
dealing with solving the complex network reliability problem.

The organisation of the remaining contents is as follows.
In Section II, it is a brief introduction of the proposed prob-
lem and canonical MCS-PSO algorithm. The basic statistics
concept of binomial distribution and hypothesis testing is
described in Section III. Section IV presents the algorithm in
detail. Computational simulation and the setting of parameters
are given in Section V, and some conclusions follow in Section
VI.

II. MCS-PSO

A. Reliability Optimization Problem

The purpose of this work is to solving Reliability Opti-
mization Problem. Given n components and its corresponding
reliability ri, and each component’s cost is decided by ri and
its cost function. We assume that the function of cost and
reliability are known in advance. The problem is to find an
optimal allocation of reliability in the network in order to
minimize the cost under the constraint. The problem can be
formulated as

minimize C(r) (1)

subject to
R(r) ≥ Rc (2)

r = (r1, r2, . . . , rn) ≥ r
c = (rc1, r

c
2, . . . , r

c
n). (3)

The object of this problem is to minimize the cost while
the constraint of reliability must satisfied at the same time. The
problem involves more than one constraint and objective and
has been proven to be NP-hard.

B. Monte-Carlo Simulation for Network Reliability

Monte-Carlo methods rely on repeated random sampling to
obtain numerical results. They are often used in physical and
mathematical problems and are most useful when it is difficult
or impossible to use other mathematical methods.

Monte-Carlo methods can be used to solve any problem
having a probabilistic interpretation. They have been used to
solve many network reliability problems[1], [7], [8], [9], [10],
[11].

Since the reliability function in our problem cannot be
easily obtained by using other mathematical methods, MCS al-
gorithm is applied here to get the approximation. The pseudo-
code of MCS algorithm can be described as follows.

1: procedure PROBABILITY DEPTH-FIRST SEARCH(a)
2: label node a as reached
3: if a is the target node then
4: return
5: end if
6: for i← 1 to point number do
7: if the edge between node a and node i has not been

considered, and the reliability of the edge> 0 then
8: Generate a random number from uniform(0, 1),

say k

9: if k <the reliability between node a and node
i then

10: Procedure PROBABILITY DEPTH-FIRST
SEARCH(i)

11: end if
12: end if
13: end for
14: end procedure

15: procedure IS CONNECTED(R)
16: Label every node as not reached
17: Procedure PROBABILITY DEPTH-FIRST SEARCH(

s) ⊲ s denote the source node
18: if target node t has been visited then
19: Return true
20: end if
21: Return false
22: end procedure

23: procedure MCS(R, M )
24: success = 0, k = 0
25: while k < M do
26: if IS CONNECTED(R)==true then
27: success=success+1
28: end if
29: k=k+1
30: end while
31: Return success/M ⊲ return the estimator of the

network
32: end procedure

In the implementation of PROBABILITY DEPTH-FIRST
SEARCH, the input is the index of current node, say a, it is
easier to let a try to run through all nodes and label down each
node reached or not.

The input of function IS CONNECTED, R represent an
array, each dimension of which is the reliability of every edge.
The effect of this function is to decide the network is connected
or not by above function.

Next function is MCS, the inputs are R as above and
simulation times M . By M times Monte-Carlo Simulation,
the system reliability of network can be estimate.

Some statistical characteristics involved in MCS algorithm
are summarized as follows.

property 1: The expectation of the estimated reliability
value obtained from MCS is an unbiased estimator for the
exact reliability R.[20]

property 2: If the margin of error, denoted by ε, is the
maximum likely difference (with probability (1−α)) between
the observed sample proportion p̂ and the true value of the
population proportion p. The margin of error ε can be found
as shown in

ε = Zα/2

√

p̂(1− p̂)

M
(4)

where p̂(1− p̂) will always be less than or equal to 0.25. The
total number of replications of the simulation must be taken
to be at least

M ≥
Z2
α/2

4ε2
(5)



Fig. 1. The illustration network.

The proposed algorithm can be illustrated using the illus-
tration network shown in Fig.1. We assume that each node is
perfectly reliable.

Step 0 Let k= 0, success= 0.
Step 1 Go to function IS CONNECTED(R).
Step 2 Label every node as not reached.
Step 3 Go to function PROBABILITY DEPTH-FIRST

SEARCH(s).
Step 4 Label the source node s as reached.
Step 5 Choose node 1, generate a random number from

uniform(0, 1), say r∗ = 0.32, and R(s1) =
0.91 > r∗ = 0.32.

Step 6 Go to function IS CONNECTED(1).
Step 7 Choose node 2, generate a random number from

uniform(0, 1), say r∗ = 0.92, and R(12) =
0.90 < r∗ = 0.92.

Step 8 Then choose another node t, generate a random
number from uniform(0, 1), say r∗ = 0.43, and
R(1t) = 0.88 > r∗ = 0.43.

Step 9 Return to function IS CONNECTED(R).
Step 10 Function IS CONNECTED(R) return true.
Step 11 success = success +1.
Step 12 Next replication.

C. Introduction To PSO

Particle Swarm Optimization (PSO) algorithm is one of the
most promising population-based search algorithm for solving
optimization problems. PSO was introduced by Kennedy and
Eberhart in 1995 for solving optimization problems[21]. In
PSO algorithm, each particle keeps track of a position which
is the best solution it has achieved so far as pbest and globally
optimal solution is stored as gbest.

To find the global optimum of the optimization problem,
the particles learn from the personal best and global best po-
sitions. Specifically, the learning mechanisms in the canonical
PSO can be summarized as follows:

Vi(t+ 1) =ωVi(t) + c1R1(t)(pbesti(t)−Xi(t)) (6)

+c2R2(t)(gbest(t)−Xi(t))

Xi(t+ 1)= Xi(t) + Vi(t+ 1) (7)

where t is the generation number, Vi(t) and Xi(t) represent
the velocity and position of the i-th particle, respectively; ω
is termed inertia weight, c1 and c2 are the acceleration coef-
ficients, R1(t) and R2(t) are two vectors randomly generated

within [0, 1]n, with n being the dimension of the search space;
pbesti(t) and gbest(t) denote the personal best of the i-th
particle and the global best of the swarm, respectively.

III. HYPOTHESIS TESTING

A. Binomial Distribution

A Bernoulli experiment is a random experiment, the out-
come of which can be classified in but one of two mutually
exclusive and exhaustive ways. In this paper, each trial of
the network only have two possible answers: success or
failure. A sequence of Bernoulli trials occurs when a Bernoulli
experiment is performed several independent times so that the
probability of success, denoted by p, remains the same from
trial to trial. That is, in such sequence, we let p denote the
probability of success on each trial.

If the random variable X follows the binomial distribution
with n trials and the probability of success p, we write X ∼
B(n, p). The probability of getting exactly k successes in n
trials is given by the probability mass function:

f(k;n, p) = Pr(X = k) =

(

n

k

)

pk(1− p)n−k (8)

The cumulative distribution function can be expressed as:

F (k;n, p) = Pr(X ≤ k) =

⌊k⌋
∑

i=0

(

n

i

)

pi(1− p)n−i (9)

B. The Central Limit Theorem

Theorem 1 (The Central Limit Theorem): Let X1, X2,
. . . , Xn denote the observations of a random sample from a
distribution that has mean µ and positive variance σ2. Then
the random variable

Y =
(
∑n

i=1 Xi − nµ)√
nσ

=

√
n(X̄n − µ)

σ
(10)

has a limiting distribution that is normal with mean zero and
variance 1.

The proof can be found in many textbooks on probability
theory and mathematical statistics [22][23][24].

According to The Central Limit Theorem, we know that X̄
and

∑n
i=1 Xi have approximate normal distributions, provided

that n is large enough. Let X1, X2, . . . , Xn denote a random
sample from a distribution that is B(1, p). If Yn = X1 +
X2 + · · · + Xn, it is known that Yn is B(n, p). Calculation
of probabilities concerning Yn used to employ formulate (8)
and (9) under normal circumstances, but now can be greatly
simplified by making use of the fact that

(Yn − np)
√

np(1− p)
=

√
n(X̄n − p)
√

p(1− p)
=

√
n(X̄n − µ)

σ
(11)

has a limiting distribution that is normal with mean zero and
variance 1.



C. Hypothesis Testing

In our problem, a network reliability is evaluated upon
several times Monte-Carlo Simulation, and compared against
a certain reliability constraint to determine whether hypothesis
H0 or hypothesis H1 is to be chosen.

Hypothesis H0 corresponds to the case where the network
reliability is not smaller than reliability constraint, and hypoth-
esis H1 corresponds to the network reliability is smaller than
reliability constraint. The Monte-Carlo Simulation terminates
on the timing if hypothesis H1 is chosen, and this particle will
never be chosen as gbest in PSO; otherwise, the simulation
continues to receive corresponding network system reliability.

We test H0 : p ≥ Rc against the one-sided alternative H1 :
p < Rc, where p is probability of success which calculated by
n trials, Rc is reliability constraint in our problem. In dealing
with above test, at significance level α = 0.05, reject H0 if

Z =
p−Rc

√

Rc(1−Rc)
n

< −c (12)

where c is the 95th percentile of the normal distribution with
mean zero and variance 1.

IV. DESCRIPTION OF PROPOSED ALGORITHM

This paper aims at improving the canonical MCS-PSO
algorithm by reducing the computational cost of Monte-Carlo
Simulation. Before the introduction of the main flow of the
new algorithm, we import several methods to overcome the
drawbacks of this algorithm.

A. Some improvement

1) Find A Feasible Initial Solution: Yeh[1] proposed a
heuristic method to find an initial solution at the beginning of
algorithm. In this paper, in consideration of it is possible that
every particle’s hypothesis testing may be rejected in the first
generation of canonical PSO, the addition of heuristic method
can make sure the existence of gbest. The initial solution also
gives a directional guidance for the other particles while keep
the components reliabilities as small as possible. The following
will explain the detail of the heuristic method.

1: procedure HEURISTIC

2: Assign the lower bound of the component reliability
to the first particle.

3: Apply MCS to decide the corresponding system relia-
bility R∗(r).

4: while R∗(r) < Rc do
5: for i← 1 to dimension number do
6: Let the value of dimension i be 0.25 × (1 −

ri) + ri.
7: Apply MCS to get R∗

i (r).
8: Adjust dimension to its original reliability.
9: end for

10: if ∀i, R∗
i (r) < Rc then

11: Assign the dimension with maximal R∗
i (r)

value to j.
12: else
13: Find the minimum cost C(r), assign its index

to j.
14: end if

15: Let the value of dimension j be 0.25×(1−rj)+rj ,
and apply MCS to update R∗(r).

16: end while
17: end procedure

In the implementation of HEURISTIC function, lower
bound is the minimum value of each component can be
accepted. Assign the lower bound of the each component’s
reliability to the first particle, and evaluate the reliability of
the particle. If it is not big enough, then increase the value
of the most resultful component slightly until the reliability of
the particle meets our expect.

2) Penalty Function: The addition of penalty function
allows the search in the infeasible space, and tends to yield
optimum solution more rapidly and produce better final so-
lutions. By penalizing the infeasible solutions, the population
can converge at the feasible optimum solution after several
generations. Ci denote the total system cost of particle i. If
the estimate value of reliability of particle i is smaller than
Rc, a penalized cost will calculated by

Ci(r)×
(

Rc

R∗(r)

)λ

when R∗(r) < Rc (13)

where λ is an amplification parameter[25]. The penalty func-
tion is decided by both the cost function Ci(r) and the ratio
of Rc in to R∗(r).

B. The Main Flow of The Proposed Algorithm

The explanations of the proposed MCS-PSO method are
as follows.

Step 0 Let Interation Number= 0.
Step 1 Using heuristic method to obtain the first particle

and the other particles are initialized randomly.
Step 2 Apply hypothesis test to each particle.

1) If the particle does not pass the hypothesis
test, then it will not be chosen as gbest
and the cost of this particle will assign as
infinite. Go back to Step 2 for the next
particle.

2) Else if null hypothesis H0 was not been
reject, then apply MCS to find corre-
sponding R∗(r). The total cost is calcu-
lated by specific corresponding compo-
nent reliability. If R∗(r) < Rc, the cost
will amplify by penalty function (13).

Step 3 Update the pbest, gbest, velocity, and position
of each particle based on function (6) and (7).
Interation Number=Interation Number+1.

Step 4 If the maximum Iteration Number is reached,
then stop; else go to Step 2.

V. EXPERIMENTAL RESULTS AND SUMMARY

A. Experimental setting

In our experiment, networks are taken from the resource
constrained project scheduling problem (RCPSP)[26]. As test
instances we have employed the standard set j30 for solving
the complex network reliability problem, shown in Fig.2. The
instance have 48 components.



Fig. 2. The j30 network.

The corresponding numerical parameters and data are
presented in Table I for comparing the performance between
standard MCS-PSO and proposed HTMCS-PSO. We use 80
particles, and each particle with 48 dimensions. The reliability
is in the interval [0, 1], so the maximum position is set to 1,
while the minimum position is no less than lower bound 0.6.
The maximum velocity is determined by the distance between
maximum position and minimum position. Cognitive factor
and the social factor are both set to 0.8. Inertia weight ω
started with a value 0.9 and linearly decreased to 0.4 when the
iteration number reached 100[27]. We apply hypothesis testing
method with 30 replications of Monte-Carlo Simulations to
decide if one particle is promising solution. The promising
particle will finish 1000 replications to get R∗(r). If the
simulation result R∗(r) does not satisfy the lower bound of
the constraint Rc, the penalty function (13) with λ = 10 will
be applied. Otherwise, the cost will be determined by specific
corresponding component reliability only. We assume that the
function of cost and reliability are known in advance. Table II
has listed the cost function of each component.

B. Experiment result analysis

Table III shows the results of the proposed HTMCS-
PSO with different confidence level. Different confidence level
means different stringency in hypothesis testing. When confi-
dence level is small, solutions are more likely to be abandoned.

TABLE I. THE SETTING OF HTMCS-PSO

Number of particle 80

Number of dimension 48

Max position 1

Min position 0.6

Max velocity 0.4

Min velocity -0.4

Iteration 100

Cognitive factor 0.8

Social factor 0.8

Inertia weight ω 0.9→0.4

Heuristic simulation 5000

Simulation 1000

Hypothesis testing simulation 30

λ 10

TABLE II. THE COST FUNCTION OF EACH COMPONENT

Component i αi βi C(ri) = αi − βi × ln(1 − ri)

i%9 = 1 120 14.7 120 − 14.7 × ln(1 − ri)

i%9 = 2 120 14.7 120 − 14.7 × ln(1 − ri)

i%9 = 3 90 8.75 90 − 8.75 × ln(1 − ri)

i%9 = 4 100 9.9 100 − 9.9 × ln(1 − ri)

i%9 = 5 65 5.64 65 − 5, 64 × ln(1 − ri)

i%9 = 6 100 9.9 100 − 9.9 × ln(1 − ri)

i%9 = 7 90 8.75 90 − 8.75 × ln(1 − ri)

i%9 = 8 160 12 160 − 12 × ln(1 − ri)

i%9 = 0 160 12 160 − 12 × ln(1 − ri)

This will result in less computational cost, but may missing the
best solution as well. When confidence level is large(close to
1), the hypothesis testing is harder to be rejected and the best
solution has less opportunity to be discarded. When confidence
level is equal to 1, the proposed algorithm is exactly same as
standard MCS-PSO.

We are interested in the effect of the setting of confidence
level on the final solution. To prove that the proposed HTMCS-
PSO efficiently reduces computational cost without any loss of
the performance under a certain confidence level, we repeated
each test 30 times in the testing experiments which can be
regarded as large sample test.

In the experiment, we performed two different hypothesis
testing to analyse the performance of HTMCS-PSO method:

1) Performance test: The first hypothesis testing to de-
termine whether the solutions using the HTMCS-PSO will
performance worse than the standard MCS-PSO.

Let µht be an average solution of HTMCS-PSO with a
special confidence level, as in Table III, and µ be an average
solution of standard MCS-PSO. The test is then

α=0.05

H0 : µht ≥ µ

H1 : µht < µ.

We use a t-test to test these two populations. From Table III,
we find that when Confidence Level is equal to 0.8, P-value
was calculated less than 0.05, then reject H0, which means



TABLE III. SOLUTIONS FOR THE PROPOSED HTMCS-PSO WITH DIFFERENT CONFIDENCE LEVEL

Confidence Level

Replication 0.8 0.9 0.95 0.99 MCS-PSO

cost FEs cost FEs cost FEs cost FEs cost FEs

1 5982.33 5394 5982.2 7007 5980.59 6792 5974.87 7512 5974.87 8000

2 5974.17 5496 5998.46 6896 5978.4 6980 5965.04 7569 5979.22 8000

3 5992.95 5674 6004.57 6828 5970.13 6843 5977.09 7579 5982.44 8000

4 5977.19 5672 5987.79 6901 5967.55 7028 5964.41 7511 5960.31 8000

5 5977.21 5580 5971.89 6900 5963.88 6993 5987.36 7517 5965.83 8000

6 5972.31 5660 5979.43 6932 5978.11 6853 5990 7485 5981.11 8000

7 5984.48 5674 5982.86 6860 5985.12 6925 5980.26 7593 5965.14 8000

8 5981.49 5717 5983.74 6931 5962.14 6932 5971.67 7523 5970.94 8000

9 5970.54 5298 5972.44 6887 5978.75 6889 5975.93 7585 5970.02 8000

10 5985.89 5533 5979.52 6988 5963 6923 5988.23 7607 5968.05 8000

11 5986.69 5659 5964.32 6878 5988.86 6961 5977.38 7635 5979.76 8000

12 5983.81 5580 5985.32 6967 5981.65 6781 5986.7 7525 5980.06 8000

13 5973.95 5683 5988.32 6917 5974.46 6792 5978.57 7589 5972.85 8000

14 5988.7 5676 5983.5 6974 5967.16 6870 5986.88 7527 5990.25 8000

15 5965.51 5538 5965.62 7025 5966.92 6995 5988.22 7592 5986.97 8000

16 5995.66 5681 5970.94 6935 5963.4 6968 5965.03 7524 5977.29 8000

17 5984.94 5718 5993.4 7017 5970.87 6994 5993.22 7447 5985.9 8000

18 5994.73 5680 5994.95 6889 5976.01 6915 5966.29 7576 5982.83 8000

19 5989.81 5691 5969.21 6849 5998.06 6885 5963.46 7540 5994.5 8000

20 5975.41 5608 5999.5 7041 6000.48 6856 5961.37 7614 5970.26 8000

21 5980.21 5725 5962.59 6947 5998.9 6987 5975.92 7586 5974.17 8000

22 5982.72 5571 5971.09 6863 5986.79 6965 5988.18 7580 5978.91 8000

23 6009.33 5415 5987.41 6708 5967.82 6866 5957.43 7537 6013.71 8000

24 5977.83 5713 5976.84 6933 5970.08 6767 5976.97 7604 5983.66 8000

25 5999.26 5592 5976.86 6795 5976.69 6945 5976.52 7580 5994.06 8000

26 5977.48 5561 5970.45 6901 5978.61 6939 5966.94 7563 5972.26 8000

27 5994.16 5554 5987.81 6880 5968.52 6922 5978.22 7503 5975.96 8000

28 5992.28 5492 5963.04 6815 5981.95 6880 5977.54 7587 5981.73 8000

29 5991.53 5676 5976.34 6894 5982.27 6963 5966.41 7586 5973.55 8000

30 5986.81 5497 5982.61 6916 5981.97 6932 5974.97 7555 5989.04 8000

Best 5965.51 5298 5962.59 6708 5962.14 6767 5957.43 7447 5960.31 8000

Average 5984.312667 5600.266667 5980.434 6909.133333 5976.971333 6911.366667 5976.036 7557.7 5979.188333 8000

Variance 90.90339264 11503.37471 124.53508 5172.395402 112.2486326 4908.86092 93.73694207 1856.010345 113.5659385 0

P-value 0.02726337 3.14749E-41 0.330009782 2.39927E-36 0.882313723 1.19614E-36 0.78882453 1.84276E-31 1 1

a lot of promising particles have been abandoned and it is
less likely to get good results. What’s more, when Confidence
Level ≥ 0.9, P-value tends to be larger than 0.05, then cannot
reject H0, it also corresponds to our assumption that the proper
choose of confidence level will not affect the efficiency in
finding solutions but can significantly reduce the calculation
times.

2) Efficiency test: The next hypothesis testing is aiming at
judge if the proposed algorithm has significantly reduced the
Fitness Evaluation times(FEs) or not.

Let µFEs be an average FEs of HTMCS-PSO with a
special confidence level, as in Table III, and µFEs=8000 be
an average FEs of standard MCS-PSO. The test is then

α=0.05

H0 : µFEs≥µFEs=8000

H1 : µFEs<µFEs=8000.

We use a t-test to test these two populations. As can be
seen in Table III, p-values of all hypothesis testing are far
more less than 0.05, which means the effect of the proposed
algorithm is remarkable. Even in the situation that confidence
level is set to be as big as 0.99, FEs has been decreased by
6.9%.

In summary of above experiment, from Table III, we
find that the results with proper confidence level have almost
same performance as original MCS-PSO, while have reduced
computational cost by about 5 to 10 percent. But when
confidence level equal to 0.8 or so, solutions are easily fall
into rejection region, which means promising solutions are also
more likely to be rejected. Confidence level is an important
parameter in the proposed algorithm, the proper choose of it
can significantly reduce calculation, but an improper one can
also make solution worse. There is no clear division of proper
and improper one, experiments should be apply to pick an
useful one.



Fig. 3. The tendency of FEs with different confidence levels.

C. The relation between FEs and confidence levels

We are also interested in the relation between FEs and
confidence levels. We pick 21 different confidence levels, with
each confidence level we repeated 30 times experiment to
inspect the tendency of FEs.

Fig. 3. shows the tendency of FEs with different confidence
level. When confidence level is equal to 1, the value of
FEs must be 8000, which consist of 80 particles times 100
generations. When confidence level is equal to 0.8, the mean
of FEs is almost equal to 5600 which is far more less that the
original FEs 8000. FEs increase with confidence level, which
also meets our common knowledge and experience.

VI. CONCLUSION

We have proposed an efficient HTMCS-PSO with less
fitness evaluation by hypothesis testing. It evaluate particles
by a small amount of Monte-Carlo Simulation, and abandon
unpromising solutions for saving processing time and im-
prove query efficiency. This hybrid MCS-PSO with hypothesis
testing can efficiently reduces the evaluation times without
any loss of the performance under a certain confidence level.
Results from several experiments show that the algorithm has
almost same performance to original MCS-PSO that evaluates
far more times than the proposed HTMCS-PSO.

Such a hypothesis testing technique is very useful for
problems that require high cost to evaluate individuals. We
hope that the proposed hypothesis testing technique could also
be extended to solve various kinds of problems.
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