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STABLE AND RELIABLE COMPUTATION OF
EIGENVECTORS OF LARGE PROFILE MATRICES

Martin Ruess?

ABSTRACT

Independent eigenvector computation for a given set of eigenvalues of typical engineering
eigenvalue problems still is a big challenge for established subspace solution methods. The
inverse vector iteration as the standard solution method often is not capable of reliably com-
puting the eigenvectors of a cluster of bad separated eigenval ues.

The following contribution presents a stable and reliable solution method for independent
and selective eigenvector computation of large symmetric profile matrices. The method
is an extension of the well-known and well-understood QR-method for full matrices thus
having all its good numerical properties. The effects of finite arithmetic precision of
computer representations of eigenvalue/eigenvector solution methods are analysed and it is
shown that the numerical behavior of the new method is superior to subspace sol ution methods.
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INTRODUCTION

The governing equation of the eigenvector computation for a given eigenvalue \; is the homo-
geneous form (1) of the special eigenvalue problem. The non-trivial solution of (1) yields the
desired eigenvector x;.

For small matrices (V' < 50) of the real symmetric case the QR-method is known as the
most efficient and most elegant numerical solution technique for the complete determination
of eigenvalues and eigenvectors. Its numerical properties are superior compared to the very
popular subspace iteration schemesthat are still the method of choice for very large eigenvalue
problems (N < 500). These methods essentially suffer from numerical instabilities that |ead
to the loss of linear independence of the calculated eigenvectors. Much effort has to be done
to overcome these numerical difficulties and to provide correct, accurate and orthogonal base
vectors of the approximated subspace.
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The basic numerical drawbacks of subspace methods are shown in this contribution. A new
and more stable solution approach based on the QR-method and therefore exploiting its good
numerical propertiesis presented. The analysis of several examplesillustrates the high quality
of the computational results of the new method.

SOLUTION STRATEGY

The properties of the stable QR-method are exploited. The method is applied to large
symmetric matrices with convex profile structure. It is the preservation of the profile structure
during the computation process that alows an efficient use of this method. The positive
convergence properties of the QR-method for eigenvalues A = 0 is used for an independent
eigenvector computation of any set of given eigenvalue approximations. Cluster of bad
seperated eigenvalues of size m are approximated in subspaces of that size thus avoiding any
numerically expensive orthogonalisation process for the approximate vectors and ensuring
convergence to the desired subspace. For a large number of eigenvector computations the
numerical effort is significantly reduced with alocal interation scheme.

QR-DECOMPOSITION OF PROFILE MATRICES

The |eft profile of amatrix C indicates for each row £ the index of the first nonzero entry and
is denoted with p;. The index of the last nonzero entry per row is called right profile and is
stored in a profile vector pr. The profile of amatrix is said to be convex if (2) istrue:

m>i = prlm] > prli] A prlm] > pgli )

The convex profile structure of C may substantially be preserved in the QR-decomposition
(see Fig. 1). The reduction of C to triangular form is carried out by premultiplying plane
rotation matrices P, from left (3). Each matrix P, eliminates a coefficient c;x(k < i) by
the choice of the rotation angle ¢,,. The sequence of the elimination process is carried out
columnwise, starting with coefficient ¢y, thus ensuring the preservation of the convex profile.
The elimination of ¢;;, only affects rows: and k. The complete reduction of column & requires
atemporary extension of the right profile pg[i] to pr[pr[k]]. This circumstance troubles little
since it affects only a very small number of coefficients and only for a limited part of the
calculation. After the reduction of column £ the additional coefficients no longer affect the
decomposition process and therefore are set free. More detailled information can be found in
Matrix Iteration For Large Symmetric Eigenvalue Problems (Ruess 2002).

R = P!

nn—1"-

LPLPLPY  PLPI A, = Q'A (3)

CONVERGENCE PROPERTIES OF THE QR-METHOD

Convergence Behavior in Exact Arithmetics

In exact arithmetics the shifted matrix C is semidefinite thus having a ¢-fold eigenvalue A = 0.
Hence the ¢ eigenstates (0, x;) are determined with a single QR-decomposition :
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The semidefinite matrix C is singular and so is the QR-decomposition of C(= QR). The
orthonormal matrix Q isnonsingular sinceit isof full column rank. Thus the triangular matrix
R must be the singular factor of the decomposition product. Zero entries r; that occur on the
diagonal of R(: P;x ... P2 C) during the decomposition process are automatically swaped
down to row &k with (k > ) by the choice of the rotation angle ¢, for the elimination of
coefficient ¢;;.. Thelast ¢ rows of the triangular matrix R therefore are zero (Fig. 1).

Since the last ¢ rows of R equal zero the product of the recombination (RQ = Q7C Q)
contains ¢ rows and colums equal zero. The last ¢ columns of Q contain the eigenvectors
X1, ..., X%, of the ¢-fold eigenvalue A9,

Multiplying the rotation matrices P ;;, from left against I, in reverse order extracts the desired
eigenvectorsfrom Q inalocally limited cal culation process.

Xq - P21 e PPR[HJ P32 ‘e sz ‘e Pn,nfl Iq (4)

[ egenstate
stored non-zero coefficients

stored zero coefficients

k Pr[PRIF]]

e

| 0.0
o” o?
R 0" o7 ...(RQ)

Figure1: ¢ eigenstates (0, x;) after asingletransformation Q’CQ = R Q

Convergence Behavior in Finite Precision Arithmetics

In finite precision arithmetics we are faced with roundoff errors that may dramatically influence
the theoretically straightforward solution process for the eigenvector computation. Though
the QR-decomposition process is known as numerically backward stable that is the method
computes the exact eigenvalues and eigenvectors of a perturbed matrix C, the strategy for
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selective and independent eigenvector computation may fail without further numerical effort
in afew cases where eigenvalues are very close.

C = C+E with [[Els < me||C||2 5
X,
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Figure 2: Computation of ¢ eigenvectors x; of ag-fold eigenvalue )\Eq)

Two effects of finite precision arithmetic mainly influence the eigenvector computation :

1. From (5) follows that instead of an exact eigenvalue A we have to deal with an eigen-

value approximation . of a perturbed Matrix C as shift for the desired eigenvector. The
maximum error for 1 is of order (6) (see Parlett 1997).

=A< me|[Cll; (6)

The error in p, particularly affects the computation if eigenvalues in the neigborhood of
1 form a bad separated cluster. Typically the pairing-up problem of eigenvalues may
lead to wrong eigenvector approximations and miss the desired one. The cesorrponding
eigenvector approximation for ;. is denoted with x.

Pairing-up Problem:  Figure 3illustrates atypical distribution of the exact eigenval-
ues \; and their numerical approximation y;. The eigenvalue approximations y.5 and 15
clearly may not be identified as approximations for A3 and A5, since they are closer to
neighboring eigenvalues than to their assigned exact values. Successive computing of
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Figure 3: Pairing-up (approximation . / exact value \)

the eigenvector approximations X3 and x; for these insufficient paired up valuesresult in
identical eigenvector approximationsfor jus, 1z and iy, s, respectively.

2. The QR-decomposition of C comes with an error matrix M that is caused by the deter-
mination of the rotation parameters cos(¢;.) and sin(og) (cos(dix)? + sin(Pu)? # 1)
and the operations of the reduction process.

Example 1: The pairing-up problem and further consequences of finite precision arithmetic
areillustrated with a numerical example. The four largest eigenval ue approximations of a ma-
trix of order 567 are given from aseparate el genvalue computation (see Tab.1). The eigenvalues
form a cluster with a bad seperation of the values and embeds an eigenvalue of multiplicity 2,
(As65 = As66)- Theapproximation 1564 Seemsto be another multiple of Asq5. A Sturm sequence
check identified this value as a close but different eigenvalue.

Table 1. Four largest eigenvalues of A 547

Eigenvalueindex | Approximation | [A — | < ||r|3/6
As64 74250.477760425110 2.300e-11
As65 74250.477760425500 8.290e-10
A566 74250.477760425540 1.768e-09
As67 74250.477760435570 1.500e-10
r = AX —uX; : restnorm @)
0 = |A—pu|l— |2 p = x Ax,/x'x, : Rayleighquotient (8)

Multiplicity 2 of eigenvalue A5 can not be determined by inspection since roundoff introduces
an error of order O(1.e — 10). Without knowledge about multiplicity of eigenvalues the start
matrix I, cannot be initialized correctly with ess; and esqq, respectively thus avoiding the
correct determination of the desired eigenvectors.

A stepwise calculation strategy for this cluster with a subsequent application of the approx-
imate values jisq4, - - - , 1567 Produces the same eigenvector approximation for puse5 and pises
since for each QR-decompostion convergence is reached only in the last row of matrix R. thus
providing the necessary rotation information for just one eigenvector as shownin Fig.4. More-
over the orthogonality of the four eigenvector approximationsis far beyond the required value
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(9). Figure 4 shows a submatrix with the columns 564 to 567 of the last four rows of the
decomposition factor R using 1564 as spectral shift in matrix C.

x{ x;] < O(em) (i # ) (9)
[564] [565] [566] [567]
—305.2875822916 —1182.7046563114  6757.7101084395  —2612.7342116394
0.0000000000 —4877.6601864348 17622.4093530023 —20289.3353582083
0.0000000000 0.0000000000  8097.8561548511 8097.8561548511
0.0000000000 0.0000000000 0.0000000000 —0.0000000014

Figure4: Submatrix R; = Q7 (A — pse51)

The application of any other value of table 1 as spectral shift gives the same picture after
the first QR-decomposition. We clearly need an additional QR-decomposition for the reliable
determination of the missing eigenvectorsfor this cluster.

[564]
—0.81507759316372
0.00000000000000
0.00000000000000
0.00000000000000

565
2.34736594819012
0.00000000667527
0.00000000000000
0.00000000000000

566]
—4.70951765401011
—0.00000000601069
—0.00000000006852

0.00000000000000

567
—0.00000000009086
0.00000000002844
0.00000000000080
0.00000000000476

Figure5: Submatrix R,

Figure 5 shows the same matrix clip after a second QR-decomposition. Three of the eigenval-
ues show a sufficient convergence for areliable and accurate set of corresponding e genvector
approximations. The resulting subspace clearly has the good and required orthogonality prop-
ertiesthat are known from the origina QR-method for dense and fully occupied matrices since
its base vectors are determined in the same step with the same rotation informations from the
two decompositions.

Submatrix R, even shows a tendency for convergence to the forth eigenvalue \s4;. The off-
diagona elementsin row 564 are relatively small compared to the rows < 564. A third QR-
decomposition would bring sufficient convergence for \5¢; and improve the results for the
eigenvectors X544 t0 X566 but isnot carried out for efficiency reason. Instead a new e genvector
computation is started with the shifted matrix C = (A — A567 I). The seperation of 1567 from
1564 that was used as spectral shift for the first eigenvector calculation of this cluster is smaller
than (600 ¢ ||C||,) and therefore sufficient to avoid convergence to the subspace S* determined
in the foregoing step.



Table 2 shows the euclidian restnorm of the eigenvalue problem for the approximated eigen-
states (1, ) and the difference between the eigenval ue approximation ;. and the Rayleigh qou-
tient p. The spectral norm of the standard criterion ||r|| < || me A |2 for testing the quality of
the solution is usually replaced by the more generous and simpler Frobenius norm || A || ¢.

Table 2: computational results for the four largest eigenvalues of matrix A g7

Eigenvalue | Restnorm ||r|ly | [p— pf
564 1.34e-10 2.90e-10
As65 2.97e-10 5.82e-09
566 8.99e-09 5.53e-09
As67 1.04e-08 1.04e-08

The restnormsin table 2 are much better than 4.2e — 07(= 1. ¢ ||A|| ). Thevaluesin the third
column validate the accuracy level of this solution. The orthogonality level for all eigenvector
approximations is better than 1.e — 15 that is nearly the machine precision e. The determined
subspace S* is completely orthogonal to any other subspace of RY. The method treats the
complete set of clustered eigenvalues in the same eigenvector calculation therefore avoiding
the pairing-up problem or loss of orthogonality even when the eigenval ue approximations have
little accuracy.

A drawback of the method is a somewhat numerically costly decomposition of about (662 V)
multiplications (b : mean bandwidth) and additional storage requirements of order (b.V) for
each additiona QR-decomposition (see (10)). Thus the efficiency of the method seems to
be the bottleneck for large matrices. But the comparison to other standard solution methods
shows a different picture and will be discussed in the last chapter. Before, the next section
shows how efficiency may significantly be improved.

Improvement of Efficiency With a Local Iteration Schemes

In general eigenvalue clusters are not aways astight as shown in example 1. But sometimeswe
only have approximations of low accuracy to a multiple eigenvalue or eigenvalues of a cluster.
As shown in the last section thisresults in atriangular matrix R that is significantly perturbed
by atriangular matrix E thus not providing the desired zero entriesin the last row or the last p
rows, respectively.

Even so the situation may be much better than in example 1, since further conververgence e.g.
for ap-fold eigenvalue is clearly observable. The submatrix in Fig. 6 is taken from the same
example problem but shows a different elgenvector calculation.

Figure 6 illustratesthe situation after afirst QR-decomposition for an eigenvalue of multiplicity
2. Convergence has settled in the last two rows. The applied eigenval ue approximation i509 =
tso1 = 23881.581266 . .. is properly seperated from the remaining eigenvalue set. The two
values 1500 and 50, are identical in 11 decimal places and their error is bounded by the error
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[564] 565 566 [567]

0242.9794501483 2011.4617871989 —27175.1950832849  —7122.9497996383
0.0000000000 3621.8952269670  —7683.2000272067 —29900.8188398782
0.0000000000 0.0000000000 —0.0001430867 —0.0001400880
0.0000000000 0.0000000000 0.0000000000 —0.0000290795

Figure 6: Submatrix R; = Q7 (A — ps001)

estimate 7.e—11. Without further numerical effort the error for the eigenvector approximatesis
expected to be large. For thiscommon situation an essential improvement of the computational
result is achieved by alocal iteration. Since the lower part of the decomposed matrix already
seemsto be rich of information about the desired eigenval ues/eigenvectorsfurther computation
islimited to this part, accepting anegligible error.

For thelocal iteration asubmatrix C(4*9) of moderate size (¢ < 0.25b) isextracted from the di-
agonal of theiterated matrix C,(= R; Q) (seeFig. 7). Theeigenstates (n, vi), (k=1,...,q)
of C are completely determined with a stable Jacobi algorithm in a separate calculation. The
eigenmatrix V(@*9) is used for the definition of an orthonormal transformation matrix U as
shownin Fig. 7. A similarity transformation of C; with U yields the missing data for a sta-
ble and accurate computation of the corresponding eigenvectors X509 and X5;. Instead of the
product (10), the much cheaper and acceptable accurate product (11) is computed.

Xy = QQul (10)
X, = QUI, (11)

Figure 7 shows the accepted error of the similarity transformation in the red shaded part. Zero
elements in this part are replaced with numbers # 0 of very small magnitude. The accepted
error is of the order of the applied error border for the off-diagonal elements of the eigenvector
computation. The additional computational effort is negligibly small compared to a second
QR-decomposition (< 2% of QR).

Table 3 shows the restnorm error of the eigenstates (11500, X500) and (ps01, X501) determined
with equation (4) (one QR-step) in the first column, equation (10) and equation (11) in the
second and third column, respectively. The local iteration clearly improved the restnorm error.
Orthogonality between the vectors is maintained.

The numerical results for the small test matrix of dimension 567 may also be transferred to
large eigenvalue problems. Figure 8 shows the relative restnorm error for an oscillation prob-
lem of an unsupported square plate with 11163 degrees of freedom. The smallest 1000 eigen-
states were determined. About a forth of the eigenvalues have multiplicity 2. The 67 critical
eigenvectors that required additional effort with local iteration or a second QR-decomposition

8



Table 3: Restnorm error

[r]lr = (Q1 C) | Irflr = (Q2Q: C) | [Ir[lr — (Q:UC)

(,u500, },\(500) 2.002e — 04 2.443e — 09 3.121e — 07
(,u501, 5(501) 2.910e — 05 2.453e — 09 2.706e — 07
C, U
1
1
J
1 le— p —
q [
L
Caxa Vv
1
1
-
1
u” C,

Figure 7: Similarity transformation U7 C,; U

are marked in the diagramm with blue and orange dots. The remaining eigenstates are rep-
resented by their mean value, marked with a green line. The additional effort for a second
QR-decomposition reflects arelative high accuracy.

CONCLUSIONS- QR vs. Inverselteration

The presented method isvery reliable and accurate since it keeps the good numerical properties
of the original QR-method for dense matrices. Compared to the standard solution method for
independent eigenvector computation, the inverse vector iteration, the QR-method has in the
genera case a higher numerical effort.

Dhillon (1998) systematically describes the drawbacks of inverseiteration that also completely
occurred in the linear algebra package that was used as analysis platform for this contribution.
The pairing-up problem may result in a small error but a completely wrong eigenvector ap-
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Figure 8: A posteriori error for K163

proximation. For more than one eigenval ue approximation in the neighborhood of the applied
spectral shift the system of equations that is solved as part of the iteration is highly sensitive
for small perturbations and has therefore be artificially perturbed which may lead to loss of
accuracy.

The QR-method does not depend on awell-seperated shift parameter and even may profit from
multiple or clustered eigenvalues, since their eigenvectors may be computed in many cases
with a single decompositon, maintaining orthogonality at machine precision level.

Orthogonality between the eigenvector approximatesis often lost with inverse iteration when a
larger number of elgenvectorsis calculated. Especially in the case of bad seperated eigenvalue
clusters areorthogonalization procedure for the complete cal culated subspaceis obligatory and
must be frequently repeated. Thusthe complete set of vectors are kept in the main storage. Un-
fortunately reorthogonalisation does not necessarily bring the expected success, since strongly
parallel vectors may lead to desastrous cancellation of significant directions in the iterated
vector and finally completely fails. The result isarandom vector, despite a small restnorm.

None of the calculations with the QR-method used any numerically expensive orthogonali-
sation process. Hence the reorthogonalisation problem of inverse iteration and the lack of a
reliable computation strategy are the criteria that make the QR-method superior to subspace
methods even with a higher calculation effort.
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