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ABSTRACT

Independent eigenvector computation for a given set of eigenvalues of typical engineering
eigenvalue problems still is a big challenge for established subspace solution methods. The
inverse vector iteration as the standard solution method often is not capable of reliably com-
puting the eigenvectors of a cluster of bad separated eigenvalues.

The following contribution presents a stable and reliable solution method for independent
and selective eigenvector computation of large symmetric profile matrices. The method
is an extension of the well-known and well-understood QR-method for full matrices thus
having all its good numerical properties. The effects of finite arithmetic precision of
computer representations of eigenvalue/eigenvector solution methods are analysed and it is
shown that the numerical behavior of the new method is superior to subspace solution methods.
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INTRODUCTION

The governing equation of the eigenvector computation for a given eigenvalue λi is the homo-
geneous form (1) of the special eigenvalue problem. The non-trivial solution of (1) yields the
desired eigenvector xi.

Cxi = 0 with C := A − λi I (1)

For small matrices (N < 50) of the real symmetric case the QR-method is known as the
most efficient and most elegant numerical solution technique for the complete determination
of eigenvalues and eigenvectors. Its numerical properties are superior compared to the very
popular subspace iteration schemes that are still the method of choice for very large eigenvalue
problems (N < 500). These methods essentially suffer from numerical instabilities that lead
to the loss of linear independence of the calculated eigenvectors. Much effort has to be done
to overcome these numerical difficulties and to provide correct, accurate and orthogonal base
vectors of the approximated subspace.
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The basic numerical drawbacks of subspace methods are shown in this contribution. A new
and more stable solution approach based on the QR-method and therefore exploiting its good
numerical properties is presented. The analysis of several examples illustrates the high quality
of the computational results of the new method.

SOLUTION STRATEGY

The properties of the stable QR-method are exploited. The method is applied to large
symmetric matrices with convex profile structure. It is the preservation of the profile structure
during the computation process that allows an efficient use of this method. The positive
convergence properties of the QR-method for eigenvalues λ = 0 is used for an independent
eigenvector computation of any set of given eigenvalue approximations. Cluster of bad
seperated eigenvalues of size m are approximated in subspaces of that size thus avoiding any
numerically expensive orthogonalisation process for the approximate vectors and ensuring
convergence to the desired subspace. For a large number of eigenvector computations the
numerical effort is significantly reduced with a local interation scheme.

QR-DECOMPOSITION OF PROFILE MATRICES

The left profile of a matrix C indicates for each row k the index of the first nonzero entry and
is denoted with pL. The index of the last nonzero entry per row is called right profile and is
stored in a profile vector pR. The profile of a matrix is said to be convex if (2) is true :

m ≥ i ⇒ pL[m] ≥ pL[i] ∧ pR[m] ≥ pR[i] (2)

The convex profile structure of C may substantially be preserved in the QR-decomposition
(see Fig. 1). The reduction of C to triangular form is carried out by premultiplying plane
rotation matrices Pik from left (3). Each matrix Pik eliminates a coefficient cik(k < i) by
the choice of the rotation angle φik. The sequence of the elimination process is carried out
columnwise, starting with coefficient c21, thus ensuring the preservation of the convex profile.
The elimination of cik only affects rows i and k. The complete reduction of column k requires
a temporary extension of the right profile pR[i] to pR[pR[k]]. This circumstance troubles little
since it affects only a very small number of coefficients and only for a limited part of the
calculation. After the reduction of column k the additional coefficients no longer affect the
decomposition process and therefore are set free. More detailled information can be found in
Matrix Iteration For Large Symmetric Eigenvalue Problems (Ruess 2002).

R = PT
n,n−1 . . .PT

ik . . .PT
32 PT

n1 . . .PT
31 PT

21 As = QTA (3)

CONVERGENCE PROPERTIES OF THE QR-METHOD

Convergence Behavior in Exact Arithmetics

In exact arithmetics the shifted matrix C is semidefinite thus having a q-fold eigenvalue λ = 0.
Hence the q eigenstates (0,xi) are determined with a single QR-decomposition :
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The semidefinite matrix C is singular and so is the QR-decomposition of C(= QR). The
orthonormal matrix Q is nonsingular since it is of full column rank. Thus the triangular matrix
R must be the singular factor of the decomposition product. Zero entries rii that occur on the
diagonal of R̂(= Pik . . .P21 C) during the decomposition process are automatically swaped
down to row k with (k > i) by the choice of the rotation angle φik for the elimination of
coefficient cik. The last q rows of the triangular matrix R therefore are zero (Fig. 1).

Since the last q rows of R equal zero the product of the recombination (RQ = QTCQ)
contains q rows and colums equal zero. The last q columns of Q contain the eigenvectors
x1, . . . ,xq of the q-fold eigenvalue λ(q).

Multiplying the rotation matrices Pik from left against Iq in reverse order extracts the desired
eigenvectors from Q in a locally limited calculation process.

Xq = P21 . . . PpR[1],1 P32 . . . Pik . . . Pn,n−1 Iq (4)
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Figure 1: q eigenstates (0,xi) after a single transformation QTCQ = RQ

Convergence Behavior in Finite Precision Arithmetics

In finite precision arithmetics we are faced with roundoff errors that may dramatically influence
the theoretically straightforward solution process for the eigenvector computation. Though
the QR-decomposition process is known as numerically backward stable that is the method
computes the exact eigenvalues and eigenvectors of a perturbed matrix Č, the strategy for
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selective and independent eigenvector computation may fail without further numerical effort
in a few cases where eigenvalues are very close.

Č = C + E with ‖E‖2 ≤ m ε ‖C‖2 (5)
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Figure 2: Computation of q eigenvectors xi of a q-fold eigenvalue λ
(q)
i

Two effects of finite precision arithmetic mainly influence the eigenvector computation :

1. From (5) follows that instead of an exact eigenvalue λ we have to deal with an eigen-
value approximation µ of a perturbed Matrix Č as shift for the desired eigenvector. The
maximum error for µ is of order (6) (see Parlett 1997).

|µ − λ| ≤ m ε ‖C‖2 (6)

The error in µ particularly affects the computation if eigenvalues in the neigborhood of
µ form a bad separated cluster. Typically the pairing-up problem of eigenvalues may
lead to wrong eigenvector approximations and miss the desired one. The cesorrponding
eigenvector approximation for µ is denoted with x̂.

Pairing-up Problem : Figure 3 illustrates a typical distribution of the exact eigenval-
ues λi and their numerical approximation µi. The eigenvalue approximations µ3 and µ5

clearly may not be identified as approximations for λ3 and λ5, since they are closer to
neighboring eigenvalues than to their assigned exact values. Successive computing of
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µ1 µ2 µ3 µ4 µ5µ6 µ7 µ8 µ9

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Figure 3: Pairing-up (approximation µ / exact value λ)

the eigenvector approximations x̂3 and x̂5 for these insufficient paired up values result in
identical eigenvector approximations for µ2, µ3 and µ4, µ5, respectively.

2. The QR-decomposition of C comes with an error matrix M that is caused by the deter-
mination of the rotation parameters cos(φik) and sin(φik) (cos(φik)

2 + sin(φik)
2 �= 1)

and the operations of the reduction process.

Example 1 : The pairing-up problem and further consequences of finite precision arithmetic
are illustrated with a numerical example. The four largest eigenvalue approximations of a ma-
trix of order 567 are given from a separate eigenvalue computation (see Tab.1). The eigenvalues
form a cluster with a bad seperation of the values and embeds an eigenvalue of multiplicity 2,
(λ565 = λ566). The approximation µ564 seems to be another multiple of λ565. A Sturm sequence
check identified this value as a close but different eigenvalue.

Table 1: Four largest eigenvalues of A567

Eigenvalue index Approximation µ |λ − µ| ≤ ‖r‖2
2/δ

λ564 74250.477760425110 2.300e-11
λ565 74250.477760425500 8.290e-10
λ566 74250.477760425540 1.768e-09
λ567 74250.477760435570 1.500e-10

r := A x̂i − µi x̂i : restnorm (7)

δ = |λ − µ| − ‖r‖2 ρ := xT
i Axi /xT

i xi : Rayleigh quotient (8)

Multiplicity 2 of eigenvalue λ565 can not be determined by inspection since roundoff introduces
an error of order O(1.e − 10). Without knowledge about multiplicity of eigenvalues the start
matrix Iq cannot be initialized correctly with e565 and e566, respectively thus avoiding the
correct determination of the desired eigenvectors.

A stepwise calculation strategy for this cluster with a subsequent application of the approx-
imate values µ564, . . . , µ567 produces the same eigenvector approximation for µ565 and µ566

since for each QR-decompostion convergence is reached only in the last row of matrix R thus
providing the necessary rotation information for just one eigenvector as shown in Fig.4. More-
over the orthogonality of the four eigenvector approximations is far beyond the required value
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(9). Figure 4 shows a submatrix with the columns 564 to 567 of the last four rows of the
decomposition factor R using µ564 as spectral shift in matrix C.

|xT
i xj | ≤ O(ε m) (i �= j) (9)

[564] [565] [566] [567]

−305.2875822916 −1182.7046563114 6757.7101084395 −2612.7342116394

0.0000000000 −4877.6601864348 17622.4093530023 −20289.3353582083

0.0000000000 0.0000000000 8097.8561548511 8097.8561548511

0.0000000000 0.0000000000 0.0000000000 −0.0000000014

Figure 4: Submatrix R1 = QT (A − µ565I)

The application of any other value of table 1 as spectral shift gives the same picture after
the first QR-decomposition. We clearly need an additional QR-decomposition for the reliable
determination of the missing eigenvectors for this cluster.

[564] [565] [566] [567]

−0.81507759316372 2.34736594819012 −4.70951765401011 −0.00000000009086

0.00000000000000 0.00000000667527 −0.00000000601069 0.00000000002844

0.00000000000000 0.00000000000000 −0.00000000006852 0.00000000000080

0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000476

Figure 5: Submatrix R2

Figure 5 shows the same matrix clip after a second QR-decomposition. Three of the eigenval-
ues show a sufficient convergence for a reliable and accurate set of corresponding eigenvector
approximations. The resulting subspace clearly has the good and required orthogonality prop-
erties that are known from the original QR-method for dense and fully occupied matrices since
its base vectors are determined in the same step with the same rotation informations from the
two decompositions.

Submatrix R2 even shows a tendency for convergence to the forth eigenvalue λ567. The off-
diagonal elements in row 564 are relatively small compared to the rows < 564. A third QR-
decomposition would bring sufficient convergence for λ567 and improve the results for the
eigenvectors x̂564 to x̂566 but is not carried out for efficiency reason. Instead a new eigenvector
computation is started with the shifted matrix C = (A − λ567 I). The seperation of µ567 from
µ564 that was used as spectral shift for the first eigenvector calculation of this cluster is smaller
than (600 ε ‖C‖2) and therefore sufficient to avoid convergence to the subspace S3 determined
in the foregoing step.
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Table 2 shows the euclidian restnorm of the eigenvalue problem for the approximated eigen-
states (µ, x̂) and the difference between the eigenvalue approximation µ and the Rayleigh qou-
tient ρ. The spectral norm of the standard criterion ‖r‖2 ≤ ‖mεA‖2 for testing the quality of
the solution is usually replaced by the more generous and simpler Frobenius norm ‖A‖F .

Table 2: computational results for the four largest eigenvalues of matrix A567

Eigenvalue Restnorm ‖r‖2 |ρ − µ|
λ564 1.34e-10 2.90e-10
λ565 2.97e-10 5.82e-09
λ566 8.99e-09 5.53e-09
λ567 1.04e-08 1.04e-08

The restnorms in table 2 are much better than 4.2e − 07(= 1. ε ‖A‖F ). The values in the third
column validate the accuracy level of this solution. The orthogonality level for all eigenvector
approximations is better than 1.e − 15 that is nearly the machine precision ε. The determined
subspace S4 is completely orthogonal to any other subspace of R

N . The method treats the
complete set of clustered eigenvalues in the same eigenvector calculation therefore avoiding
the pairing-up problem or loss of orthogonality even when the eigenvalue approximations have
little accuracy.

A drawback of the method is a somewhat numerically costly decomposition of about (6b2 N)
multiplications (b : mean bandwidth) and additional storage requirements of order (bN) for
each additional QR-decomposition (see (10)). Thus the efficiency of the method seems to
be the bottleneck for large matrices. But the comparison to other standard solution methods
shows a different picture and will be discussed in the last chapter. Before, the next section
shows how efficiency may significantly be improved.

Improvement of Efficiency With a Local Iteration Schemes

In general eigenvalue clusters are not always as tight as shown in example 1. But sometimes we
only have approximations of low accuracy to a multiple eigenvalue or eigenvalues of a cluster.
As shown in the last section this results in a triangular matrix R that is significantly perturbed
by a triangular matrix E thus not providing the desired zero entries in the last row or the last p
rows, respectively.

Even so the situation may be much better than in example 1, since further conververgence e.g.
for a p-fold eigenvalue is clearly observable. The submatrix in Fig. 6 is taken from the same
example problem but shows a different eigenvector calculation.

Figure 6 illustrates the situation after a first QR-decomposition for an eigenvalue of multiplicity
2. Convergence has settled in the last two rows. The applied eigenvalue approximation µ500 =
µ501 = 23881.581266 . . . is properly seperated from the remaining eigenvalue set. The two
values µ500 and µ501 are identical in 11 decimal places and their error is bounded by the error
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[564] [565] [566] [567]

5242.9794501483 2011.4617871989 −27175.1950832849 −7122.9497996383

0.0000000000 3621.8952269670 −7683.2000272067 −29900.8188398782

0.0000000000 0.0000000000 −0.0001430867 −0.0001400880

0.0000000000 0.0000000000 0.0000000000 −0.0000290795

Figure 6: Submatrix R1 = QT (A − µ500I)

estimate 7.e−11. Without further numerical effort the error for the eigenvector approximates is
expected to be large. For this common situation an essential improvement of the computational
result is achieved by a local iteration. Since the lower part of the decomposed matrix already
seems to be rich of information about the desired eigenvalues/eigenvectors further computation
is limited to this part, accepting a negligible error.

For the local iteration a submatrix Ċ(q×q) of moderate size (q < 0.25b) is extracted from the di-
agonal of the iterated matrix C1(= R1 Q) (see Fig. 7). The eigenstates (ηk,vk), (k = 1, . . . , q)
of Ċ are completely determined with a stable Jacobi algorithm in a separate calculation. The
eigenmatrix V(q×q) is used for the definition of an orthonormal transformation matrix U as
shown in Fig. 7. A similarity transformation of C1 with U yields the missing data for a sta-
ble and accurate computation of the corresponding eigenvectors x̂500 and x̂501. Instead of the
product (10), the much cheaper and acceptable accurate product (11) is computed.

Xq = Q2 Q1 Iq (10)

Xq = Q1 U Iq (11)

Figure 7 shows the accepted error of the similarity transformation in the red shaded part. Zero
elements in this part are replaced with numbers �= 0 of very small magnitude. The accepted
error is of the order of the applied error border for the off-diagonal elements of the eigenvector
computation. The additional computational effort is negligibly small compared to a second
QR-decomposition (< 2% of QR).

Table 3 shows the restnorm error of the eigenstates (µ500, x̂500) and (µ501, x̂501) determined
with equation (4) (one QR-step) in the first column, equation (10) and equation (11) in the
second and third column, respectively. The local iteration clearly improved the restnorm error.
Orthogonality between the vectors is maintained.

The numerical results for the small test matrix of dimension 567 may also be transferred to
large eigenvalue problems. Figure 8 shows the relative restnorm error for an oscillation prob-
lem of an unsupported square plate with 11163 degrees of freedom. The smallest 1000 eigen-
states were determined. About a forth of the eigenvalues have multiplicity 2. The 67 critical
eigenvectors that required additional effort with local iteration or a second QR-decomposition
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Table 3: Restnorm error

‖r‖F − (Q1 C) ‖r‖F − (Q2 Q1 C) ‖r‖F − (Q2 UC)

(µ500, x̂500) 2.002e − 04 2.443e − 09 3.121e − 07
(µ501, x̂501) 2.910e − 05 2.453e − 09 2.706e − 07
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Figure 7: Similarity transformation UTC1 U

are marked in the diagramm with blue and orange dots. The remaining eigenstates are rep-
resented by their mean value, marked with a green line. The additional effort for a second
QR-decomposition reflects a relative high accuracy.

CONCLUSIONS - QR vs. Inverse Iteration

The presented method is very reliable and accurate since it keeps the good numerical properties
of the original QR-method for dense matrices. Compared to the standard solution method for
independent eigenvector computation, the inverse vector iteration, the QR-method has in the
general case a higher numerical effort.

Dhillon (1998) systematically describes the drawbacks of inverse iteration that also completely
occurred in the linear algebra package that was used as analysis platform for this contribution.
The pairing-up problem may result in a small error but a completely wrong eigenvector ap-
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Figure 8: A posteriori error for K11163

proximation. For more than one eigenvalue approximation in the neighborhood of the applied
spectral shift the system of equations that is solved as part of the iteration is highly sensitive
for small perturbations and has therefore be artificially perturbed which may lead to loss of
accuracy.

The QR-method does not depend on a well-seperated shift parameter and even may profit from
multiple or clustered eigenvalues, since their eigenvectors may be computed in many cases
with a single decompositon, maintaining orthogonality at machine precision level.

Orthogonality between the eigenvector approximates is often lost with inverse iteration when a
larger number of eigenvectors is calculated. Especially in the case of bad seperated eigenvalue
clusters a reorthogonalization procedure for the complete calculated subspace is obligatory and
must be frequently repeated. Thus the complete set of vectors are kept in the main storage. Un-
fortunately reorthogonalisation does not necessarily bring the expected success, since strongly
parallel vectors may lead to desastrous cancellation of significant directions in the iterated
vector and finally completely fails. The result is a random vector, despite a small restnorm.

None of the calculations with the QR-method used any numerically expensive orthogonali-
sation process. Hence the reorthogonalisation problem of inverse iteration and the lack of a
reliable computation strategy are the criteria that make the QR-method superior to subspace
methods even with a higher calculation effort.
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