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Abstract— In this paper, we propose a two-stage robust
perimeter flow control policy to prevent congestion in single-
region transport networks. We describe the single-region traffic
dynamics by utilising the so-called Macroscopic or Network
Fundamental Diagram (MFD or NFD), a nonlinear relation be-
tween network-wide mean flow and accumulation of vehicles. By
using MFD relaxation conditions and structuring uncertainties,
we reformulate the nonlinear flow dynamics to set of uncertain
Linear Parametrically Varying (LPV) ones.

In controller design stage one, we apply the concept of a two
degree of freedom, induced L2 norm minimising LPV controller.
Within the generalised performance output, we include tracking
performance to follow a pre-defined critical accumulation in
uncertain model environment. Output feedback LPV controller
ensures generalised disturbance attenuation conditions with
appropriate gated input flow at the perimeter.

Second, an optimal quadratic control allocation algorithm is
employed to distribute the ordered flow to entrance link green
stages (flow equivalent green time) in a number of candidate
junctions at the perimeter of the network. The constrained
allocation techniques complement the robust controller enabling
real-time applicability of the proposed methodology.

Finally, the proposed robust control scheme is tested and
compared with a reference tracking bang-bang controller in
macroscopic simulation. Results indicate the viability of the
proposed LPV controller and its rapid and accurate tracking
behaviour under highly uncertain parameters of the MFD.

I. INTRODUCTION

In recent years, a promising approach to address specific
classes of nonlinear control problems has been developed,
i.e. the Linear Parameter Varying (LPV) systems in state-
space, see e.g. [1], [2]. In LPV techniques, controller design
is triggered by a real-time available scheduling parameter
vector. Linearity represents the casual structure of the dy-
namic problem within the state space and control input
variables. Although LPV description preserves the linear
structure, coefficient matrices are changing, scheduled by the
parameter vector. In a particular case when the parameter
vector coincides (partially or entirely) with the state vector
the system is called quasi-Linear Parameter Varying (qLPV)
system. The LPV framework has been already successfully
applied to various problems; including freeway traffic flow
for local throughput maximisation [3], [4]. In this work, the
robust LPV controller framework is adopted to the problem
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of optimal perimeter flow control for single-region networks
described by macroscopic traffic flow models.

A macroscopic model of urban traffic was proposed in [5],
further developed in e.g. [6], [7] and fitted to experimental
data in [8], [9], [10] and others. This model is the so-called
Macroscopic Fundamental Diagram (MFD) of urban road
networks; it presumes (under certain regularity conditions)
that traffic flows dynamics could be treated macroscopically
as a single-region dynamic system with vehicle accumulation
n as a state variable. The main feature of an MFD is that for
a critical accumulation n̂ flow capacity is reached, although
recent works with experimental data (see e.g. [10]) have
shown that capacity may be observed over a range of vehicle
accumulation-values. This property gave rise to perimeter
flow control to improve mobility in single-region homoge-
neous [11], [12], [13] or multi-region heterogeneous cities
[14], [15], [16]. Perimeter flow control “meters” the input
flow to the system and hold vehicles outside a controlled
area if necessary, so as to maximise the throughput.

Recent works have identified that the shape of an MFD is
affected by different factors, including the spatial distribution
of congestion [17], traffic-responsive signal control [18],
[19], [10], traffic (mode) composition [20], loop-detector
placement [21], non-recurrent day-to-day traffic patterns
[10], etc. Moreover, flow capacity in urban networks may be
observed over a range of vehicle accumulation-values, and
thus the critical accumulation cannot accurately be specified
[10]. Recently developed feedback perimeter flow control
strategies rely mostly on nominal pre-specified set points n̂
and/or prone to the accuracy of a linearised nominal [11],
[12], [15] or linearised uncertain dynamics [13].

In this line, the paper addresses the problem of ro-
bust perimeter control with well-posed uncertainty traffic
flow description. Rather than using the nonlinear modelling
framework, herewith an affine and quasi parametrisation
of the flow dynamics scheduled in vehicle accumulation
is introduced. Within the LPV framework, we structure
mismatches in order to capture MFD parametric, input model
and reference uncertainties. By complementing the uncertain
traffic flow dynamics with additional dynamic weights, we
include all plausible disturbance/uncertainty related infor-
mation. This augmented system forms a basis for robust
LPV controller design, for induced L2 norm minimising
dynamic controller synthesis. Hard physical input constraints
connected to green stages are included as a separate design
condition with constrained controller allocation problem.

The rest of the paper is organised as follows. Section II
presents the parameter-dependent modelling of the MFD.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296179312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Section III, we briefly introduce the goal of robust LPV
controller design and optimal allocation of the ordered flow
to the perimeter. In Section IV, a case study for the San
Francisco network illustrates the robustness of the proposed
scheme. Conclusions and further research directions are
drawn in Section V.

II. PARAMETER-DEPENDENT TRAFFIC FLOW MODEL FOR
SINGLE-REGION PERIMETER CONTROL

Consider a single-region homogeneous network with n(t)
be the accumulation of vehicles at time t ≥ 0. Let Qc(n(t))
(veh/h) be the total regional circulating flow as it can
be estimated by Edie’s generalised definition of flow, i.e.,
weighted average of link flows with link lengths. If we
assume that the average trip length L in the network is
constant and the average link length is given by l, then
the output (throughput) of the network can be expressed as
Q(n(t)) = (l/L)Qc(n(t)) [11]. Output Q (called MFD or
exit function) is the estimated rate (flow) at which vehicles
complete trips per unit time either because they finish their
trip within the network or because they move outside the
network. This function describes steady-state behaviour of
single-region homogeneous networks if the input to output
dynamics are not instantaneous and any delays are compa-
rable with the average travel time across the region.

Assumption 1: If the network exhibits a consistent MFD
Qc then output Q describes the behaviour of the single-
region system when it evolves slowly with time.

In view of Assumption 1, the dynamics of the single-
region system are described by the following ordinary non-
linear differential equation

dn(t)

dt
= β(t)−Q (n(t)) + d(t), t ≥ 0 (1)

where β(t) is the input (controlled at the perimeter) flow to
the region, Q(n(t)) is the regional total outflow (the MFD),
and d(t) is the uncontrolled traffic demand (disturbances).

Assumption 2: Output Q(n(t)) is a nQ times differen-
tiable function of vehicle accumulation n over the bounded
range of accumulation, n ≤ n(t) ≤ n.
In view of Assumption 2, a polynomial in the vehicle
accumulation n form of Q is explicitly considered and
gives rise to parametrisation. More precisely, we assume the
existence of a nominal and centred (Q(0) = 0) fundamental
relationship given by

Q(n(t)) =

nQ∑
i=1

cin
i(t) (2)

where nQ is a pre-specified MFD parametrisation degree of
freedom and ci are coefficients. Such nominal relationships
can be estimated by Edie’s generalised definition of flow
under the assumption that demand is spatially homogeneous.

In most of the cases, to yield a nominal MFD analytical
form like (2), some approximation is involved. For instance,
Taylor’s theorem can be applied, introducing truncation er-
ror. Despite the findings of a nominal MFD, these curves
should not be a universal law, as discussed in Section I.

Capacity flow and critical accumulation of the MFD can
be affected by the spatiotemporal distribution of congestion
in the network, the applied traffic-responsive signal control,
traffic composition (e.g. cars vs. buses), non-recurrent day-
to-day traffic patterns, or the spatial placement of sensors.
Therefore, a nominal MFD curve can only be valid under
certain conditions. Instead of using a single MFD curve, we
hereby propose to use a set of uncertain but well-structured
relationship.

Proposition 1: The relative uncertainty structure of MFD
is given by a set of relationship as follows

Q̃(n, c, δ) =

 nQ∑
i=1

ci(1 + δi(t))︸ ︷︷ ︸
c̃i

ni−1(t)

 · n(t) (3)

where |δi| < 1, i = 1, . . . , nQ are real valued parametric un-
certainty coefficients and ci are the nominal MFD parameters
as in (2).
In (3), we define relative coefficient wise polynomial un-
certainties c̃i ≤ c̃i ≤ c̃i, i = 1, . . . , nQ with respect
to the nominal MFD parameters ci. Introducing the set of
models offered in Proposition 1 to (1), i.e. the structured
uncertain MFD form with scheduled in vehicle accumulation,
the single-region system dynamics can be written as

dn(t)

dt
= β(t)−

(
nQ∑
i=1

ci(1 + δi(t))n
i−1(t)

)
· n(t) + d(t)

= A(p(t))n(t) +B2β(t) +B1(p(t))d̃(t) (4)

where p(t) =
[
1 n(t) n2(t) · · · nnQ(t)

]T ∈ P is a
vector of scheduling parameters that are assumed measured
in real-time; d̃(t) =

[
d(t) dβ(t) δ1(t) · · · δnQ

(t)
]T

is a vector of disturbances and parameter uncertainty co-
efficients, where dβ(t) is input uncertainty for vehicles to
approach the network from the perimeter. Clearly B2 = 1,
A(p(t)) is a scalar depending on p(t), and B1(p(t)) is a row
vector consisting of columns triggered by p(t). Introducing
Q̃, the nonlinear flow model (1) is reformulated into a set of
uncertain and LPV, where the model description is scheduled
by a measurable state variable n(t). In the LPV model
(4), the polynomial MFD decomposition gives rise to the
existence of basis functions and hence to an affine in the
scheduling parameter form. In other words, the model (4)
is a linear state-space model with a scheduling dependency
in the coefficient matrices. As long as the polynomial MFD
model is exact, the LPV model transformation is exact in
view of the original nonlinear model (1).

Problem 1: Based on the previous LPV flow model, our
goal is to devise a two-step perimeter traffic flow control
scheme as follows:
• Scheduled by n(t), design a robust controller that atten-

uates unknown disturbances and tracks uncertain critical
vehicle accumulation n̂(t) by means of changes the gated
input flow β(t), i.e. robust throughput maximization.

• Develop a systematic approach for distributing the ob-
tained input flow β(t) to a number of signalised junctions



located at the perimeter of the network in an constrained
and optimal way.

III. ROBUST PERIMETER CONTROL DESIGN

A two degree of freedom reference tracking LPV control
policy depicted in Fig. 1 is employed to address Problem 1.

A. Robust LPV Control for Perimeter Traffic Flow Control

For robust controller design, we first augment the trans-
formed open loop LPV model (4) with additional dynamic
weightings [22] in order to include all a-priori performance
and disturbance scaling information (weight selection proce-
dure is described in Section IV-B). We classify the inputs
as controlled (gated) flow and uncontrolled disturbances,
and the outputs as performance and measured ones. The
continuous time state-space representation of the augmented
system is given byṅ(t)z(t)
y(t)

 =

A(p(t)) B1(p(t)) B2

C1(p(t)) D11(p(t)) D12(p(t))
1 D21(p(t)) 0

n(t)d(t)
β(t)

 (5)

where y(t) = n(t) + dn(t) is the measured state output
with noise dn(t) imposed by the sensors (loop-detectors).
Redefine d(t) =

[
d̃(t)T dn(t) r(t)

]T
where r(t) = n̂(t)

is the reference critical vehicle accumulation to track. The
following performance vector is defined with appropriate
dynamic weightings z(t) =

[
zTδ zr zTβ ze

]T
, where zδ

refers to uncertainties in MFD (3), zr denotes the uncertainty
in the reference signal (since n̂(t) is not exactly known),
the vector zβ comprises both input performance and input
multiplicative uncertainty, and ze describes tracking error
performance. Note that the state, control, performance and
output matrices (with appropriate dimensions) in (5) are
functions of the p(t).

Formally, we intend to minimise the induced norm be-
tween the generalised disturbance vector d and the qualitative
output z (2-norm signals) as,

||Tzd(p)||2 = sup
p∈P

sup
||d||2 6=0

||z||
||d|| ≤ γ (6)

where Tzd is the transfer function matrix from d to z and
γ > 0 denotes the disturbance attenuation level.

Remark 1: Although state feedback perimeter control is
proposed, this policy can be seen as dynamic output feedback
scheme due to the added weighting dynamics.
Thus the controller takes the compact form[

ẋc(t)
βc(t)

]
=

[
Ac(p(t)) Bc(p(t))
Cc(p(t)) Dc(p(t))

] [
xc(t)
ỹ(t)

]
(7)

where xc and βc are the controller’s state and the gated
flow input, with ỹ(t) =

[
r(t) y(t)

]T
. Ac, Bc, Cc, Dc

are the controller’s parameter dependent coefficient matrices
with appropriate dimensions. If feasibility conditions are met,
the LPV controller is quadratically (exponentially) stable
with γ > 0 disturbance rejection level. The controller’s
state-space matrices can be obtained as the solution of
Linear Matrix Inequalities (LMI).To derive the closed-loop

controller (7), grid based LPV techniques are applied over
a finite number of LMIs with the help of the LPVTools
[23]. Note, scheduling parameter rate information might be
included into the design phase ṗ ≤ ṗ(t) ≤ ṗ to result in
a less conservative γ, where ṗ and ṗ are the minimum and
maximum allowed bounds.

Remark 2: As in [22], a scheduling saturation parameter
is introduced to handle ordered input flow saturation.

Remark 3: Parameter rate bounds can be obtained from
the slope of the tangent line of free-flow speed and ”jam”
accumulation speed.

B. Optimal Flow Allocation to Green Time

In subsection III-A β(t) gated flow is computed by means
of handling uncertainties and disturbances in the perimeter
flow dynamics. Thus, we only weight/scale the gated input
flow without taking into account saturation flow and entrance
link green stage constraints imposed during the deployment
phase at the perimeter of the network.

At the deployment phase the ordered flow β is transformed
to entrance link green stages in a number of (pre-specified)
junctions at the perimeter of the network. On the other hand,
link green time is subject to minimum and maximum bounds
with given cycle times. Instead of directly incorporating these
physical constraints into the robust controller synthesis, a
two-step procedure is employed as described in Problem 1.
To this end, the ordered flow β(t) obtained from the robust
LPV controller (7) is distributed to equivalent entrance link
green stages at the perimeter with the help of a controller
allocation method [24] as follows. Consider a number nj
of candidate signalised junctions at the perimeter with (not
necessary constant, but identical) cycle times Tci and en-
trance link saturation flow rates si (for all lanes). Denote T
the green time vector with elements τi, which are subject to
minimum (usually non-zero to avoid long queues and delays
at the perimeter of the network) and maximum bounds. These
constraints may be brought to the general form AT ≤ B.
To yield optimal green times, the following minimisation
problem is solved

min
T

(
β(t)−

nj∑
i=1

ri
si
Tci

τi

)2

subject to (8)
AT ≤ B

where ri is a pre-specified constant scaling weight (e.g. to
prioritise junctions or entrance links). In fact the ordered flow
β(t) is `2 optimally allocated to a fixed set of green times
by using a zero-order hold with sampling Tci. The green
time split procedure might result error since expression (8)
is a weighted constrained least-squares problem with error
term ε(t) = β(t)− β̂(t), where β̂(t) is the (real) gated flow
implemented to the junctions. Finally, the optimisation (8)
ensures the best possible constrained green time allocation
that minimises the quadratic flow deviations with respect to
β(t).
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Fig. 1. Weighted system interconnection for controller design. P (p) depicts the block for the nominal uncertain flow model given in Proposition 1,
F(p), C(p) denote the controller blocks, while ∆ blocks are norm bounded uncertainties; W? is standing for known input/performance weights; and T?
are nominal transfer function information added.

Remark 4: In fact, input saturation constraints are sep-
arately handled by control allocation method in a ”static”
way. In subsection III-A the ordered flow β might violate
green stages related constraints, that is forced to satisfy in
the control allocation independently. This might result in
performance degradation by input flow mismatch, that is
only indirectly considered in this paper (input multiplicative
uncertainty at the plant control input)1.

IV. CASE STUDY AND RESULTS

A. Case Study Description

Fig. 2 depicts the shape of Qc in function of n(t) for a 2.5
square mile area of Downtown San Francisco, CA, including
100 junctions and 400 links. Fig. 2 confirms the existence
of an MFD like-shape for the area, which shape is seen to
depend on the accumulation of vehicles. It can be seen that as
the vehicle accumulation is increased from zero, the network
flow increases to a maximum (flow capacity) and then turns
down and decreases sharply to a low value possibly zero (in
case of gridlock). Flow capacity (around 30 · 104 veh/h) is
observed at a vehicle accumulation of 6000 veh. The shape of
the MFD (and its critical parameters) was reproduced under
different demand and OD scenarios (with Dynamic Traffic
Assignment activated to capture somewhat adaptive drivers)
in a microsimulation study with AIMSUN [15]. The shape
of Qc (or Q) can be captured by different functions, e.g.
quadratic or exponential. More precisely, the data of Fig. 2
can be approximated by the following 2nd order polynomial:

Qc(n) = −0.0066n2 + 87.408n (9)

where n ∈ [0, 12000]. To derive the output Q from Qc an
average trip length L = 1.75 km and average link length
l = 0.25 km were considered. The value of L is consistent
with the average trip length and the travel time across the test
area of San Francisco. The nominal vehicle accumulation for
(9) is found n̂ = 6612 veh.

1Robust LPV model predictive control or constrained robust LPV tech-
niques can be applied on the expense of significantly higher computational
burden. Furthermore, other than quadratic control allocation methods can
also be applied.

Fig. 2. Fundamental diagram Qc for Downtown San Francisco, CA [15].

B. Weight Selection Procedure and Controller Design

Fig. 1 depicts the system interconnection of a two-degree
of freedom reference tracking control scheme. Both dy-
namic and static weightings are proposed to complement
the nominal model information subject to disturbance char-
acterisation and performance requirements. In the sequel,
dynamic weights (in Laplace domain with the Laplacian s)
are denoted by W?, and ideal transfer function information
by T?.

We assume that n(t) can be estimated in real-time via loop
detector time-occupancy measurements accurately, dn(t) is
scaled by Wn = 0.01 veh. The input flow actuation is
penalised on the basis of the maximum allowable entrance
flow (based on nominal saturation flow of 1800 veh/h per
lane and maximum green times at 15 signalised junctions
located at the perimeter of the network) and hence set to
Wβ = 1/βmax, where βmax = 4 · 104.

The reference tracking controller is designed with ideal
closed loop tracking behaviour given by Tr = 1/(τrs + 1),
where the time constant τr is selected on the basis of average
travel time in loaded network for n ≤ n(t) ≤ n, which can
be determined from historical traffic data. For the underlying
case-study and network τr is set equal to 12 min.

Assuming that the reference vehicle accumulation r(t) =
n̂(t) is uncertain (due to inappropriate flow capacity estima-
tion in the uncongested and congested regimes of the MFD),



we introduce uncertainty in the reference signal generation
by considering a relative model mismatch with weight Wr. In
case of low frequency changing reference signal, we assume
that vehicle accumulation is relatively accurate while it
gradually increases for values above the cross-over frequency
of τr. To this end, we select ∼ 10% uncertainty in case that
r(t) operates in the low frequency (uncongested regime) and
over 100% in the high frequency (congested regime) as,

Wr = ωr ·
s+ 1

s/150 + 1
(10)

ωr can be used to scale uncertainty ∼ 0.1. Input multi-
plicative uncertainty is introduced to reflect imperfect control
actuation (e.g. delays, saturation flows mismatch, cycle time,
control allocation). Relative model uncertainty with Wβ is
added to the plant input having similar dynamic properties
as Wr, thus

Wβ = ωβ ·
1/1.5 + 1

s/150 + 1
(11)

where ωβ ∼ 0.1 is a scaling factor.
In the LPV model (4), MFD parameter mismatch is

introduced with coefficients δi, i = 1, . . . , nQ. It is well
known that when the network operating in the congested
regime, i.e. n > n̂, the MFD parameters vary significantly
(cf. the scattered area in the MFD of Fig. 2) unlike in
the uncongested regime where the MFD is well-defined. To
reflect this anisotropy of δ, we hereby define

Wδi(p) = ciδ ·
n/n

sτiδ + 1
(12)

where ciδ is the steady state relative uncertainty weight of ci
(e.g. 5-10%). The term n/n is normed by the lower polytope
bound and applied to mimic gradual parameter variation
increase. With n, we expresses the frozen parameter value in
P (scheduling dependent weight dynamics). Constant values
τiδ are introduced to bound the frequency variation of the
uncertainty. These changes of the parameters are usually
happens slowly hence we propose 0.5 − 1 h as numerical
values.

In a similar vein, input flow disturbance d̂(t) in (4) is
scaled in frequency domain by an appropriate τd in the range
of 30 min. Flow disturbances include uncontrolled inflows
dβ at the perimeter of the network. We assume that the
uncontrolled inflows at the perimeter encountering higher
travel times than the internal flows. Thus, a parameter d0
is used to normalise the input disturbance flow,

Wd =
d0

sτd + 1
. (13)

Finally, the tracking error weight is selected in a way,
that for steady-state conditions the effect of disturbance (in-
cluding the reference signal) is rejected in terms of induced
2-norm over the tracking error by a factor φ (≈ 30–50)

We = φ · s/100 + 1

s/0.1 + 1
(14)

After augmenting the nominal flow dynamics with the
aforementioned weights as in Fig. 1, feasible LPV controllers
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Fig. 3. Parameter uncertainty in MFD. The nominal (black) and uncertain
(grey) MFD points are depicted. Furthermore, the relative parameter uncer-
tainty in the MFD coefficients, ranging between ∼ 10–40% is plotted as
100·|δ|.

have been obtained by the use of the LPVTools [23]. First,
LPV controller was derived with a constant Lyapunov func-
tion resulting in a disturbance attenuation level γ = 36.8.
The performance level has been slightly decreased when
using parameter dependent Lyapunov function but closed-
loop simulation results have shown negligible performance
upgrade in time domain.

C. Simulation Environment and Results

A macroscopic simulation scenario is set up in MAT-
LAB/SIMULINK environment using the nonlinear equation
(1) to mimic the San Francisco case study in Section IV-
A. Fig. 3 (top plot) depicts a 4.5 h simulation under
both uncongested and congested traffic conditions, i.e. with
n(t) ∼ [3500, 7000]. LPV controller design framework with
separate control input allocation techniques (presented in the
previous Section) are used to track critical accumulation. In
the simulation, gated flow β(t) is implemented. The flow
β(t) ordered by (7) is distributed to 15 signalised junctions
located at the perimeter of the network, ranging in the
interval β̂ ∼ [1.45, 4] · 104.

Uncertainty is added to the continuous time flow equation,
by abrupting the nominal MFD parameters with relative vari-
ations in δ1, δ2 (nQ = 2). MFD parametric uncertainties are
scheduled by n(t), meaning that nominal MFD parameters
become more uncertain in congested traffic conditions. Fig.
3 (bottom plot) illustrates the parametric uncertainty values
and their effect over the MFD diagram. It can be seen that
parameters vary in the range 10− 40%, and the uncertainty
in parameter c1 (reflects the critical accumulation) has been
selected to be larger than c2 (cf. δ1 with δ2). This is
because, the maximum output (capacity flow) in the network
is a property of the infrastructure and it is less uncertain
than the critical accumulation. On the other hand, capacity
flow in urban networks may be observed over a range of
vehicle-numbers, and thus the critical accumulation cannot
accurately be specified [10]. It can be observed in Fig. 3 that
parameter mismatches are increasing with n(t). Finally note
that the difference between the nominal MFD Q(n) and the
uncertain one Q̃(n, c, δ) is not symmetric.

Fig. 4 (top plot) shows the optimal control input β(t)
(grey) calculated by the LPV controller (7). Real-time ap-
plication of (7) in SIMULINK has been effectuated by
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(dash line) resulting from (8) with Tc = 60 s compared to simple ban-bang
control strategy. The bang-bang control algorithm activates the minimum
and maximum boundary flow depending on the current measured accumu-
lation is below or above the reference accumulation. System performance
is plotted in terms of staircase reference accumulation tracking (black solid
line corresponds to robust and grey line to bang-bang control strategy).

means of the (real) gated flow β̂(t) resulting from the
solution of the optimisation problem (8). The minimum and
maximum allowable β(t) are highlighted with dotted grey
lines. For a fair comparison a reference tracking Bang-Bang
(BB) perimeter controller (dash grey line), i.e., with variable
critical n̂(t), is simulated and depicted in Fig. 4. The ordered
flow β(t) is continuously calculated in the background, while
β̂(t) is only updated every Tci = 60 s.

Fig. 4 (bottom plot) depicts the tracking performance of
the proposed LPV controller in a simulation scenario with
variable critical reference accumulation n̂(t). In this scenario,
critical accumulation is scheduled in the range [4000, 7000]
veh, while uncertainty in the MFD is introduced according
to Fig. 3. The simulated traffic conditions allow the MFD in
operating in the uncongested and congested regimes. Clearly,
the proposed LPV controller is seen to track smoothly,
quickly and quite accurately the actual critical accumulation
and reject the modelled uncertainty and disturbances. As can
be seen the BB controller is triggered (activated/deactivated)
several times during the simulation (top figure) and oscillates
between the extremes minimum and maximum. The bottom
figure confirms the oscillatory behaviour of the BB since
the flow βBB exhibits high-frequency variations over time
around n̂(t) (compared to the smooth operation of the LPV).

V. CONCLUSION

Robust perimeter flow control has been proposed in this
paper. A LPV model reformulation has been applied to
transform the MFD based nonlinear traffic flow dynam-
ics. Uncertainties have been structured in the LPV model
framework enabling robust ordered input flow control. Green
stages related saturation constraints have been considered in
a separate optimisation by means of quadratic and optimal
input flow allocation techniques. A macroscopic simulation
study has been utilised to demonstrate the applicability,
effectiveness and robustness of the proposed strategy.

Future research include application of a robust constrained
LPV methodology as indicated in Remark 4 with a superior

real-time computation requirement, and validation of the
proposed methodology in microscopic simulation.
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