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Sensitivity of spaceborne radar to near-surface soil moisture in 

grasslands across southern Ireland 

 

 

 
The amount of water stored in the soil is a key parameter for the energy and 

mass fluxes at the land surface and is of fundamental importance to many 

agricultural, meteorological, biological and biogeochemical processes. This 

study investigates the potential of retrieving surface soil moisture in 

grassland areas from a time series of 68 ENVISAT Advanced Synthetic 

Aperture Radar (ASAR) Wide Swath Mode (WSM) scenes, acquired 

between 2007 and 2009, using an empirical regression approach. WSM data 

enables larger areas to be observed with a higher temporal sampling 

capability, compared to Image Mode (IM) data, and provide an appropriate 

spatial resolution for regional applications. As expected, the radar 

backscatter signal was found to increase with increasing soil moisture. Inter-

seasonal analysis showed that the VV (Vertical transmit-Vertical receive) 

polarisation radar signal is more sensitive to surface soil moisture during the 

spring and autumn months, where average signal increases of about 4dB 

corresponding to relative soil moisture increases of ~40% were obtained. 

Results also display significant (p< 0.05) correlations between the HH 

(Horizontal transmit – Horizontal receive) polarisation signal and surface 

soil moisture, with r
2
 values ranging from 0.67 – 0.86 for some of the test 

sites. Overall, the results suggest that the use of an empirical linear 

relationship approach is a good approximation of the relationship between 

ASAR WSM backscatter coefficients and surface soil moisture over 

grassland areas. 

 

 

Keywords: Radar, soil moisture, grasslands, empirical regressions, in situ 

measurements 

 

 

1. Introduction 
 

Measurements of surface soil moisture are needed to improve the understanding of local 

and regional water cycles, ecosystem dynamics and, through its control on evaporation 

and plant transpiration, the many processes that link the water, energy and carbon cycles 

(Teuling and Troch 2005, Brocca et al. 2010). Furthermore, a thorough understanding 

of soil moisture behaviour would facilitate effective flood and drought forecasting, 

improved weather prediction and to a larger extent, global climate change research 

(Entekhabi et al. 1996).  

Soil moisture dynamics is dependent on both meteorological conditions and soil 

physical characteristics and, as a result, exhibits large spatial and temporal variations 

between different areas, seasons and years (Schulte et al. 2005). The spatial and 

temporal coverage attainable by spaceborne Synthetic Aperture Radars (SARs) makes 

them a promising approach for measuring short-term, seasonal and long-term variations 



 

 

in surface soil moisture (Baghdadi et al. 2008). In the past 30 years, several different 

approaches to derive soil moisture from spaceborne active microwave measurements 

have been investigated (Barrett et al. 2009). The most common techniques employed 

are empirical/semi-empirical (e.g. Dubois et al. (1995), Wickel et al. (2001), Oh et al. 

(2002), Zribi and Dechambre (2002)) and theoretical models (e.g. Fung et al. (1992), 

Altese et al. (1996), Song et al. (2009)) to determine the relationship between the radar 

signal and volumetric soil moisture. The main advantage of empirical backscatter 

models over theoretical models is that many natural surfaces do not fall into the validity 

ranges of the theoretical models and the number of input parameters required usually 

makes the model’s implementation extremely complex (Walker and Houser 2004). 

For multi-temporal soil moisture monitoring, the spatial coverage and temporal 

resolution of fine-scale SAR observations can be relatively low, usually due to either 

sensor limitations (e.g. satellite repeat cycle) or user conflicts in the case of multi-mode 

SAR sensors (e.g. ASAR, PALSAR, RADARSAT) (Van der Velde et al. 2008). The 

medium resolution ASAR Wide Swath mode (Desnos et al. 2000) on the other hand, 

has a wider swath (405 km) than higher resolution modes (e.g. Image mode) and 

provides shorter revisit intervals (3 - 5 days compared to 35 days for Image mode). The 

focus of this study was to investigate the influence of surface soil moisture on 

backscatter signatures from VV (Vertical transmit-Vertical receive) and HH (Horizontal 

transmit – Horizontal receive) polarisation medium resolution ASAR WSM data in 

seven grassland study sites in the south of Ireland. The study concentrated on grassland, 

as almost 80% of the agricultural area of Ireland (4.4 million hectares) is devoted to 

grass (Teagasc 2010). This represents approximately 50% of the total land area of 

Ireland (6.9 million hectares). 

 

 

2. Description of Study Sites 

 

 

The research was carried out in seven homogeneous grassland (permanent pasture) sites 

located in the south of Ireland namely, Ballinhassig, Carraig na bhFear, Clonakilty, 

Donoughmore, Kilworth, Pallaskenry and Solohead. All seven sites are typically low 

lying (ranging from a minimum altitude of 15m to a maximum 104m above sea level) 

and relatively flat (slope < 6º) with a loamy soil texture. Figure 1 shows the geographic 

location of each of the study sites (marked by yellow triangles) and three Met Éireann 

(Irish Meteorological Service) stations (red circles). The area has a temperate climate 

and generally high relative humidity, averaging ~90% throughout the year. Annual 

precipitation recorded at each of the study sites is given in table 1. Due to a suspected 

instrument fault, no value is included for Carraig na bhFear in 2009. Overall, 2009 was 

the wetter year in which November is notable for the high rainfall recorded across all 

stations. An increasing annual precipitation is observed, considering the long-term 

annual average rainfall (1961-1990) recorded for three nearby Met Éireann 

climatological stations (1207mm, 935mm and 926mm for Cork Airport, Roches Point, 

and Shannon Airport respectively).  

 

 

Figure 1. 

 



 

 

Table 1. 

 

3. Data and Methods 
 

3.1 Ground Measurements 

 

Campbell Scientific CS616 water content reflectometers (Campbell Scientific 2004), 

installed at a depth of 5cm below surface at each of the study sites under the framework 

of the Aeon project (http://aeon.ucc.ie/), were used for the continuous measurement of 

soil moisture content. Measurements were recorded at 30 minute intervals from a single 

point at each study site and are expressed in volumetric water content (m
3
/m

-3
). The 

CS616 sensor is a frequency domain reflectometer (FDR) that uses high frequency 

pulses travelling back and forth along a 30cm two-rod probe installed horizontally into 

the ground to estimate the permittivity of the soil. The sensors were calibrated using soil 

moisture measurements obtained through gravimetric sampling and have an accuracy of 

+/-2.5% and a probe-to-probe variability of +/-1.5%. Precipitation and soil temperature 

were also recorded at each of the test sites at 30 minute intervals. The surface soil 

moisture at the time of image acquisition (both VV and HH polarisations) displayed in 

figure 2, shows that, for both years, between November and April, levels approach near 

saturation and gradually decrease to a minimum in June. However, between June and 

November 2008 there was a steady increase in the surface soil moisture while it 

remained relatively uniform for the same period in 2009, with a sudden large increase in 

October 2009. The values vary between study sites but all display, more or less, the 

same general trend in increases and decreases. The large spikes in the Ballinhassig 

dataset around April 2009 may have been caused from a localised buildup of surface 

water.  

 

Figure 2. 

 

An analysis of the time-series plots of measured soil moisture reveals distinct soil 

moisture phases, similar to those observed by Illston et al. (2004). The November to 

March period generally has the highest soil moisture levels, as a result of inactive 

vegetation and minimal evapotranspiration. Soils dry between March and July as a 

result of increasing surface temperature, evapotranspiration and decreasing 

precipitation. Soil evaporation decreases from July to November due to decreased sun 

angles in addition to vegetation biomass decreases and precipitation increases, which 

results in increasing soil moisture levels. 

 

 

3.2 SAR data Acquisition and Processing 

 

ENVISAT was launched on the 1
st
 March 2002 by the European Space Agency (ESA) 

and operated successfully until the end of its mission on 8
th

 April 2012. The onboard 

Advanced Synthetic Aperture Radar (ASAR) instrument, operating at C-band (5.3 



 

 

GHz), was capable of operating in multiple modes (Stripmap- Image and Wave modes; 

and ScanSAR-Alternating polarisation, Wide Swath, and Global Monitoring modes) at 

various incidence angles in several polarisations. The satellite passes the descending 

node at ~11:00 am UTC and the ascending node at ~22:00 pm UTC. In this research, 

the emphasis is on the Wide Swath mode data. Sixty-eight ASAR WSM data 

acquisitions were acquired over the study sites between 11
th

 Nov 2007 and 4
th

 Dec 

2009. The SAR data were delivered as ASA_WSM_1P data products from the 

European Space Agency (ESA) and processed and calibrated using SARscape® 

software within an ENVI® environment. The dataset consists of 7 scenes in HH 

polarisation (3 ascending and 4 descending) and 61 scenes in VV polarisation (8 

ascending and 53 descending) (see Appendix 1). Both HH and VV datasets were 

analysed separately. 

Auxiliary orbit and calibration information for each image was used to generate the 

most accurate output backscattering coefficients (σ
0
). The most recent external 

calibration files (XCA) along with precise satellite orbital data (VOR) provided by the 

DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) instrument 

onboard ENVISAT were used. The WSM data were multi-looked by a factor of 3 in 

azimuth and 7 in range to produce 21-look images (quasi-square pixels of 150m x 

150m) and no further speckle filtering was carried out. Since WSM data use ScanSAR 

technology to cover a much larger swath-width, effects on the backscatter due to the 

varying incidence angle and distance from the sensor are present in the scene. Previous 

studies have found that low to medium incidence angles are best for soil moisture 

estimation (Srivastava et al. 2003, Baghdadi et al. 2006). To limit the influence of the 

large incidence angle (17º-42º) range and to ensure inter-comparability between the 

different data scenes, an angular normalisation to an incidence angle of 30º was applied 

based on a modified cosine model (Ulaby and Dobson, 1989). The images were 

subsequently geometrically and radiometrically calibrated. A 90m SRTM (Shuttle 

Radar Topography Mission) digital elevation model was used to geocode the images 

into the Irish National Grid projection using a Range-Doppler approach. Polygons of 

5x5 pixels centred on the study site location were used to calculate the mean 

backscattering coefficient at each study area for all acquisition dates. Finally, mean 

backscatter values were then converted to decibel (dB) units (σ
0
) for analysis with 

ground measurements.  

 

3.3 Methodology 

 

Vegetation cover attenuates the backscattered signal and therefore decreases the 

sensitivity of the radar backscatter to soil moisture (Ulaby et al. 1986). Some studies 

(e.g. Loew et al. (2006), Zribi et al. (2005), and Van Doninck et al. (2012)) have 

presented methodologies to correct backscatter measurements for these effects. 

However, it has been found in various studies that sparse or low vegetation cover has 

little influence on the backscattered signal and can generally be neglected. For example, 

Dobson et al. (1992) found that a grass cover (average height of 40cm) had little 

influence on ERS-1 (VV polarisation) backscattering coefficients, attenuating the signal 

by less than 0.2 dB. As all the study sites were cultivated with relatively short grass 

(average height < 30cm), the influence of the vegetation cover is not considered in this 

study. Similarly, for each of the test sites, the surface roughness was assumed to be 



 

 

constant throughout the study period, as in Wagner and Scipal (2000), Baup et al. 

(2007), and Van der Velde et al. (2008). Under these assumptions, the backscatter 

coefficient can be considered to be linearly related to the soil moisture (Ulaby et al. 

1982, Cognard et al. 1995, Quesney et al. 2000). Regression analysis was performed to 

investigate the relationship between in situ soil moisture measurements and backscatter 

coefficients in both VV and HH polarisations. All statistical analyses were performed 

using PASW/SPSS ® 17 software. 

 

 

4. Results and Discussion 
 

4.1 Backscatter Signature Analysis 

 

Soil moisture variations usually follow precipitation trends, however they are difficult to 

determine or predict due to the complex interactions between the different factors 

affecting the moisture content of a soil (e.g. topography, vegetation cover, soil type) 

(Hawley et al. 1983, Famiglietti et al. 1999, Daly and Porporato 2005, Tromp-van 

Meerveld and McDonnell 2006). Daily precipitation data from November 2007 to 

November 2009 show that in general the wettest months are December and January 

with the driest being May and June (figure 3). This is largely in agreement with the in 

situ soil moisture measurements shown in figure 2.  

Overall, no discernible association between precipitation and the multi-temporal 

backscatter signatures is evident from the data. On some acquisition dates, it appears 

that rainfall was associated with an increase in backscatter. However, on other dates, the 

amount of rainfall seemed to have little or no influence on the backscatter. Strong 

temporal variations in the observed backscatter across all sites are observed in figure 3, 

with many abrupt increases (spikes) occurring throughout the year. This behaviour 

stabilised to some degree from about April 2009 to October 2009. November 2009 is 

notable for the high rainfall recorded across all study sites (except Carraig na bhFear 

due to a suspected instrument fault) and the considerable increase in the backscatter 

during this period (figure 3).  

 

Figure 3. 

 

4.2 Regression Analysis  

 

A regression analysis was performed for each polarisation separately. In the VV 

polarisation dataset, the backscatter and soil moisture relationship was initially 

investigated for each study site using the two-year dataset as a whole, and was 

subsequently divided into investigating the inter-annual and inter-seasonal relationships. 

Due to the low number of acquisitions, a comparable analysis could not be performed 

for the HH dataset (acquisition dates ranging from 27
th

 June 2008 – 4
th

 December 

2009). Linear regression functions of the form σ
0
 = Bo+ B1.mv were computed, where σ

0
 

is the mean backscatter coefficient (dB), Bo is the intercept, B1 is the slope of the 

regression equation and mv is the volumetric soil moisture (%). The slope is used as an 

indicator of the sensitivity of σ
0
 to mv. The significance of the linear relationship 



 

 

between the soil moisture measurements and the backscattering coefficient was tested 

using Fisher`s F test for α =0.05 significance level. The P-value (two-tailed) calculated 

from the F test is shown for each analysis (in table 2 and in each plot of figure 4, figure 

5 and figure 6). 

The relationship between the σ
0
 measured in HH polarisation and volumetric soil 

moisture for each study site was calculated and is displayed in figure 4. The regression 

equation for each site is shown along with the 95% confidence limits of the regression 

line, denoted by dashed lines. The radar backscatter clearly increases with increasing 

soil moisture at the majority of sites. Significant positive correlations (p < 0.05) were 

observed for five out of the seven study sites, with Donoughmore and Ballinhassig 

displaying non-significant positive correlations. The slope of the relationship varies 

from one site to another, ranging from 0.06 (Donoughmore) to 0.13 (Kilworth). 

 

 

Figure 4. 

 

 

The relationship between the σ
0
 measured in VV polarisation and volumetric soil 

moisture for each study site is displayed in table 2. Generally weak to moderate 

significant positive relationships are observed for each site. To understand the inter-

annual and seasonal variability of soil moisture during the study period the yearly and 

seasonal soil moisture and backscatter relationships were calculated. The inter-annual 

variations in VV polarisation backscatter as a function of volumetric soil moisture for 

each test site are plotted in figure 5 for 2008 and figure 6 for 2009. Across all sites, the 

backscatter coefficient for 2008 varied from approximately -12 to -4dB for a variation 

in soil moisture from about 17 to 70%. In 2009, the σ
0
 variation is approximately -12 to 

-6dB for soil moisture ranging from 17 to 82%. The regression equations for 2008 

(figure 5) show low correlations and dispersions are high for all study sites. The highest 

significant correlations were observed for the Donoughmore (r
2
 = 0.47, p<0.001) and 

Solohead (r
2
 = 0.31, p=0.002) sites. The 2009 coefficients of determination are 

generally stronger, ranging from 0.26 to 0.68. The highest significant correlations were 

observed for the Clonakilty (r
2
 = 0.68, p < 0.001) and Kilworth (r

2
 = 0.53, p < 0.001) 

sites. The Donoughmore (r
2
 = 0.39, p = 0.001) and Solohead (r

2
 = 0.45, p < 0.001) sites 

displayed similar relationships to their respective 2008 datasets. The individual slopes 

(i.e. radar sensitivity to soil moisture) corresponding to the two sites are approximately 

the same for both years. 

 

Table 2. 

 

 

Figure 5. 

 

Figure 6. 

 



 

 

The coefficients of determination observed in this study were lower than those found in 

previous investigations using ERS-1/2 (Image mode, VV polarisation) SAR data (e.g. 

Cognard et al. (1995), Weimann et al. (1998), Moeremans and Dautrebande (2000), 

Quesney et al. (2000), Shoshany et al. (2000), Le Hegarat-Mascle et al. (2002), Haider 

et al. (2004)). Furthermore, the slopes of the regression equations derived in this study 

were much lower, though the intercept values are within the variation of those reported 

in previous studies (~-10 to -14). For example, Le Hegarat-Mascle et al. (2002) found a 

slope of 0.33-0.34 and Weimann et al. (1998) a slope of 0.55. However, Kong and 

Dorling (2008) found a similar coefficient of determination (r
2
 = 0.46) and slope 

(B1=0.12) for a grasslands site in the UK, as did Van der Velde et al. (2008) who 

derived a coefficient of determination of r
2
 = 0.43 and slope B1 = 0.16 for a grasslands 

site in Tibet, both using ASAR WSM VV datasets. The correlations and slopes of the 

regression lines using HH polarisation (figure 4) were generally higher than those 

observed for the VV polarisation dataset (figure 5 and 6). Although the HH polarisation 

dataset contains considerably fewer samples, this observation is consistent with Le 

Morvan et al. (2008) who found the sensitivity of soil moisture to radar backscatter at 

HH polarisation to be marginally higher than that from VV polarisation. 

The seasonal variations in backscatter as a function of soil moisture at each of the test 

sites for 2008 and 2009 were also investigated. The seasons are classed as per the 

meteorological season for the Northern hemisphere, i.e. winter begins on the 1
st
 

December, spring on 1
st
 March, summer on 1

st
 June, and autumn on 1

st
 September. 

Statistics related to the seasonal regression functions are given in table 3. The 

coefficients describing the relationships are different from one site to another and also 

from one year to the next. A large number of the regressions display poor correlations 

between the soil moisture and radar signal. Six seasonal datasets for 2008 display 

significant positive correlations (r
2
 ranging from 0.38 to 0.60) while thirteen datasets in 

2009 display significant positive correlations (r
2
 ranging from 0.39 to 0.99). The 

sensitivity of σ
0
 to mv also varies for each of these datasets, ranging from 0.05 to 

0.13dB/% for 2008 and 0.04 to 0.17dB/% for 2009.  

Given the large fluctuations in soil moisture throughout the year, it was hypothesised 

that a seasonal analysis could provide improved results, as opposed to analysing the 

observations for the year as a whole. For example, Hupet and Vanclooster (2002) found 

surface soil moisture variability to increase strongly during the vegetative growth period 

(due to evapotranspiration and water uptake by plants). Similarly, Illston et al. (2004) 

found lower soil moisture variability during the winter and spring than during summer 

and autumn for a dataset of 58 sites over a six year time-period in Oklahoma. 

Consequently, the winter (wetter) datasets would be considered to theoretically provide 

the best results. This was not observed to be the case in this study, as only one winter 

dataset displayed a significant positive correlation - Clonakilty in 2009. An analysis of 

temperature recordings for up to five hours before each winter-time image acquisition 

revealed no instances of the soil temperature dropping below 0°C (frozen soils) which 

might have provided a possible explanation for the observed low correlations.  

 

 

Table 3. 

 

 



 

 

The spring datasets comprised the majority of significant correlations (four in 2008 and 

four in 2009). The Solohead, Kilworth and Ballinhassig sites all displayed significant 

correlations during both 2008 and 2009. The autumn datasets displayed the highest 

coefficients of determination, with an r
2
 of 0.60 in 2008 (Donoughmore) and r

2
 ranging 

from 0.78 to 0.99 in 2009. The slopes of the autumn 2009 relationships are relatively 

consistent for the Pallaskenry, Kilworth and Clonakilty sites (ranging from 0.12 – 0.16) 

and for the Solohead, Carraig na bhFear and Ballinhassig sites (ranging from 0.04 – 

0.08). 

The spatial variability of the soil moisture is likely to be due to differences in radiation 

effects, gains due to precipitation, losses due to evapotranspiration, runoff and drainage, 

and heterogeneities in soil and vegetation characteristics (Brocca et al. 2007). The 

observed variation in backscatter as a function of soil moisture was likely to have been 

caused by several factors. In terms of image calibration, the influence of speckle can 

cause pixel values to vary randomly. In this study, the influence of speckle was 

considered to be low as an appropriate preprocessing was carried out with a suitable 

number of looks. Similarly, the low coefficients of determination observed between the 

backscatter and soil moisture time-series does not necessarily point to an alternative and 

dominating influence (e.g. surface roughness or vegetation), but might be due to the 

scaling problem (Pathe et al. 2009). The spatial scale at which the backscatter and soil 

moisture relationship is determined is of critical importance (Zribi et al. 2005). At larger 

scales, the sub-pixel heterogeneity (in terms of vegetation, surface roughness and 

moisture) can invariably lead to errors in the estimated soil moisture values. In this 

study, discrete soil moisture measurements were compared to backscatter values 

corresponding to an area of 375m x 375m. The increased scale increases soil moisture 

variability as the spatial heterogeneities in factors such as topography, vegetation and 

surface roughness also become larger.  

  

 

5. Conclusions 

 

The aim of this study was to assess the relationship between ASAR WSM backscatter 

and variations in surface soil moisture at several test sites located in the south of Ireland 

over a two year period. Empirical regressions were formulated using ASAR WSM data 

(acquired in HH and VV polarisation) and in situ measurements of soil moisture. The 

need for measurements of other surface parameters such as surface roughness and 

vegetation is removed using this approach. For dominantly vertical-oriented vegetation 

cover (e.g. grasslands), the use of HH polarisation is considered best for soil moisture 

estimation. The default mode for ASAR WSM acquisitions is VV polarisation so it was 

not possible to acquire a larger HH polarisation dataset for this study. Nonetheless, the 

HH polarisation images (seven in total) acquired during summer and winter months 

displayed strong significant correlations between σ
0
 and mv for five out of the seven test 

sites. Similarly, several of the test sites displayed significant correlations in VV 

polarisation for images acquired throughout 2008 and 2009 respectively. The seasonal 

analysis of the VV polarisation data showed that the radar signal is more sensitive to 

surface soil moisture during the spring and autumn months, with average backscatter 

increases of about 1dB per 10% increase in soil moisture. 



 

 

It must be noted that the derived regression equations are only valid for the given sensor 

wavelength (C-band) and are site-specific (low lying grassland) where a negligible 

influence of vegetation and surface roughness was assumed. While many studies have 

operated on the premise of negligible surface roughness change and vegetation 

contributions, further research in this area is required to understand the biases and 

temporal error introduced by neglecting these effects. The high seasonal and inter-

annual variability observed in this dataset highlights the importance of formulating 

algorithms that are successful from one year to the next. In order to determine a true 

model of the backscatter-soil moisture relationship for a particular area, and for a robust 

validation of the assumptions of the empirical approach, it would be necessary to have 

uniform, continuous and prolonged observations at a larger number of well-distributed 

monitoring stations. For example, the temporal stability concept, introduced by 

Vachaud et al. (1985) reduces the need for a large ground-based soil moisture 

measurement network by identifying a few single (well-distributed) in situ stations 

whose soil moisture measurements are representative of the mean soil moisture over an 

area (i.e. display similar absolute values and temporal trends) where various studies 

(e.g. Cosh et al. 2006, Wagner et al. 2008) have demonstrated that time invariant 

relationships can be used to predict soil moisture from backscatter measurements across 

different spatial scales. 

Although some of the reported correlations were low, there was still an evident positive 

relationship between the observed soil moisture values and the normalised radar 

backscatter. Considering the uncertainties involved, the reported regressions are 

encouraging and demonstrate the potential of simple empirical models for retrieving 

surface soil moisture from WSM data.  
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Appendix 1. 

A.1: ASAR WSM acquisition characteristics. Study sites: P = Pallaskenry, S = Solohead, K = Kilworth, 

D = Donoughmore, C = Clonakilty, B = Ballinhassig. ‘All’ indicates that every site was covered by the 

image swath coverage. 

# Date Time Polarisation Orbit Track Frame Study Site 

1 11
th

 Nov2007 10:42:24 VV 29793 180 2591 Not P 

2 20
th

 Nov2007 10:59:21 VV 29922 309 2560 All 

3 7
th

 Jan2008 10:50:47 VV 30609 495 2574 All 

4 20
th

 Jan2008 10:42:22 VV 30795 180 2590 Not P 

5 26
th

 Jan2008 10:53:39 VV 30881 266 2563 All 

6 29
th

 Jan2008 10:59:21 VV 30924 309 2560 All 

7 1
st
 Feb 2008 11:04:27 VV 30967 352 2550 Not K 

8 8
th

 Feb2008 10:45:05 VV 31067 452 2569 All 

9 17
th

 Mar2008 10:50:49 VV 31611 495 2566 All 

10 18
th

 Apr2008 10:45:11 VV 32069 452 2589 All 

11 21
st
 Apr2008 10:50:47 VV 32112 495 2565 All 

12 4
th

 May2008 10:42:15 VV 32298 180 2570 Not P 

13 7
th

 May2008 10:47:57 VV 32341 223 2567 All 

14 10
th

 May2008 10:53:39 VV 32384 266 2563 All 

15 23
rd

 May2008 10:45:06 VV 32570 452 2569 All 

16 26
th

 May2008 10:50:48 VV 32613 495 2565 All 

17 11
th

 Jun2008 10:47:58 VV 32842 223 2567 All 

18 27
th

 Jun2008 22:07:14 HH 33078 459 1000 All 

19 30
th

 Jun2008 10:50:49 VV 33114 495 2565 All 

20 13
th

 Jul2008 10:42:17 VV 33300 180 2570 Not P 

21 16
th

 Jul2008 10:47:59 VV 33343 223 2567 All 

22 7
th

 Aug2008 10:56:32 VV 33658 37 2562 All 

23 21
st
 Sep2008 22:04:59 VV 34309 187 1036 All 

24 24
th

 Sep2008 10:48:10 VV 34345 223 2580 All 

25 10
th

 Oct 2008 10:44:56 VV 34574 452 2569 All 

26 13
th

 Oct 2008 10:50:38 VV 34617 495 2565 All 

27 11
th

 Nov 2008 22:01:57 VV 35039 416 1038 
Not P, C, 

B, D 

28 17
th

 Nov 2008 10:50:38 VV 35118 495 2569 All 

29 3
rd

 Dec 2008 10:48:21 VV 35347 223 2590 Not P 

30 6
th

 Dec 2008 10:52:26 VV 35390 266 2563 All 

31 12
th

 Dec 2008 11:03:39 VV 35476 352 2551 Not K 

32 28
th

 Dec 2008 11:01:08 VV 35705 080 2558 All 

33 7
th

 Jan 2009 10:47:06 VV 35848 223 2567 All 

34 10
th

 Jan 2009 10:53:34 VV 35891 266 2572 All 

35 10
th

 Jan 2009 22:16:11 HH 35898 273 1028 All 

36 13
th

 Jan 2009 11:00:10 HH 35934 309 2560 All 

37 13
th

 Jan 2009 22:22:54 HH 35941 316 1025 Not C, B 

38 16
th

 Jan 2009 11:05:51 VV 35977 352 2556 Not K 

39 1
st
 Feb 2009 11:02:59 VV 36206 80 2558 All 

40 8
th

 Feb 2009 10:43:05 VV 36305 180 2570 Not P 



 

 

41 11
th

 Feb 2009 10:49:06 VV 36349 223 2589 All 

42 14
th

 Feb 2009 10:54:29 VV 35392 266 2563 All 

43 17
th

 Feb 2009 11:00:11 VV 36435 309 2560 All 

44 5
th

 Mar 2009 10:56:19 VV 36664 37 2562 All 

45 8
th

 Mar 2009 11:02:01 VV 36707 80 2558 All 

46 18
th

 Mar 2009 10:47:46 VV 36850 223 2567 All 

47 21
st
 Mar 2009 10:53:28 VV 36893 266 2563 All 

48 27
th

 Mar 2009 11:04:52 VV 36979 352 2556 Not K 

49 31
st
 Mar 2009 22:02:13 VV 37043 416 1058 

Not C, B, 

D, P 

50 6
th

 April 2009 10:50:37 VV 37122 495 2565 All 

51 12
th

 April 2009 11:01:58 VV 37208 80 2558 All 

52 25
th

 April 2009 10:54:31 VV 37394 266 2567 All 

53 5
th

 May 2009 22:01:57 VV 37544 416 1038 
Not C, B, 

D, P 

54 11
th

 May 2009 22:13:19 VV 37630 1 1028 All 

55 12
th

 June 2009 22:07:40 VV 38088 459 1033 All 

56 18
th

 June 2009 10:56:20 VV 38167 37 2562 All 

57 21
st
 June 2009 11:02:02 VV 38210 80 2558 All 

58 1
st
 July 2009 22:10:11 VV 38360 230 1007 Not P, S 

59 4
th

 July 2009 22:16:14 VV 38403 273 1029 All 

60 7
th

 July 2009 10:59:09 HH 38439 309 2559 All 

61 8
th

 Aug 2009 10:54:30 VV 38897 266 2563 All 

62 15
th

 Sept 2009 10:59:13 VV 39441 309 2566 All 

63 1
st
 Oct 2009 10:56:14 VV 39670 37 2561 All 

64 2
nd

 Nov 2009 10:50:33 VV 40128 495 2565 All 

65 15
th

 Nov 2009 10:42:21 VV 40314 180 2596 Not P, S 

66 18
th

 Nov 2009 10:47:41 VV 40357 223 2566 All 

67 4
th

 Dec 2009 10:44:48 HH 40586 452 2588 All 

68 4
th

 Dec 2009 22:07:33 HH 40593 459 1036 All 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Tables 

 

Table 1. Annual precipitation recorded at each study site. 

Site Coordinates Precipitation (mm)  

  2008 2009 

Pallaskenry Lat. 52°39´N, Long. -8°51´E 1147.9 1099.2 

Solohead Lat. 52°30´N, Long. -8°12´E 1405.0 1403.2 

Kilworth Lat. 52°10´N, Long. -8°14´E 772.3 1124.4 

Donoughmore Lat. 51°59´N, Long. -8°44´E 1578.6 1763.4 

Carraig na bhFear Lat. 51°58´N, Long. -8°27´E 824.4 - 

Ballinhassig Lat. 51°48´N, Long. -8°32´E 1019.6 1343.3 

Clonakilty Lat. 51°37´N, Long. -8°50´E 528.4 623.2 

 

 

 

 

Table 2. Backscatter and soil moisture regression statistics for the combined 2008 and 2009 

VV polarisation dataset. r
2
 is the coefficient of determination, B1 is the slope of the 

regression equation and n is the number of samples used to calculate the regressions. 

Site r
2
 Sig. n Bo B1 

Pallaskenry 0.19 0.002 50 -11.542 0.04 

Solohead 0.25 <0.001 59 -13.418 0.06 

Kilworth 0.21 <0.001 57 -11.791 0.06 

Donoughmore 0.40 <0.001 57 -13.982 0.11 

Carraig na bhFear 0.14 0.006 54 -11.563 0.04 

Ballinhassig 0.33 <0.001 58 -11.214 0.04 

Clonakilty 0.17 <0.001 58 -11.907 0.06 

 

 

 

 

 



 

 

Table 3. Inter-seasonal vv polarisation backscatter and soil moisture regression statistics. r
2
 is the 

coefficient of determination, B1 is the slope of the regression equation and n is the number of samples 

used to calculate the regressions. 

Site Season r
2
 B1 N 

  2008 2009 2008 2009 2008 2009 

Pallaskenry Winter 0.45* 0.08 -0.15 0.13 8 8 

 Spring 0.26 0.12 0.05 0.04 7 9 

 Summer 0.41 0.40 0.18 -0.12 4 5 

 Autumn 0.006 0.99*** -0.02 0.12 6 4 

Solohead Winter 0.07 0.19 0.19 -0.31 10 8 

 Spring 0.56** 0.61*** 0.09 0.15 8 11 

 Summer 0.003 0.74* -0.002 0.08 5 5 

 Autumn 0.006 0.81* -0.014 0.07 8 4 

Kilworth Winter 0.04 0.07 0.13 0.84 8 7 

 Spring 0.47* 0.78*** 0.10 0.16 8 10 

 Summer 0.002 0.04 -0.006 -0.02 5 6 

 Autumn 0.06 0.92* -0.06 0.15 8 5 

Donoughmore Winter 0.05 0.34 0.08 0.24 10 8 

 Spring 0.44* 0.33 0.12 0.12 8 9 

 Summer 0.12 0.16 0.03 0.05 5 6 

 Autumn 0.60** 0.42 0.13 0.09 7 4 

Carraig na bhFear Winter 0.009 0.81 -0.05 0.19 10 3 

 Spring 0.38 0.07 0.10 0.03 8 9 

 Summer 0.61 0.31 0.097 0.10 5 6 

 Autumn 0.04 0.78** -0.03 0.08 8 5 

Ballinhassig Winter 0.24 0.11 0.05 -0.07 10 8 

 Spring 0.38* 0.39* 0.05 0.04 8 9 

 Summer 0.01 0.55* -0.01 0.06 5 6 

 Autumn 0.004 0.85** 0.009 0.04 7 5 

Clonakilty Winter 0.07 0.49* 0.14 0.17 10 8 

 Spring 0.05 0.50** 0.045 0.08 8 9 

 Summer 0.50 0.28 -0.20 -0.02 5 6 

 Autumn 0.005 0.88** 0.017 0.16 7 5 

* Significant at the 0.1 level  

** Significant at the 0.05 level 

*** Significant at the 0.01 level 
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Figure 1. Field site locations in the south of Ireland (marked by yellow triangles) 

overlaid on ASAR WSM image subset. Red circles denote nearby Met Éireann 

climatological stations; from North, Shannon airport, Cork airport and Roches Point. 

 

Figure 2. Temporal evolution of measured soil moisture (%) at each of the seven study 

sites at time of SAR acquisition. Dashed lines represent the beginning of the seasons 

(i.e. winter begins on the 1
st
 December, spring on 1

st
 March, summer on 1

st
 June, and 

autumn on 1
st
 September). 

 

Figure 3. Daily precipitation values (mm) (left y-axis) from 08/11/2007 to 30/12/2009 

for each of the seven study sites along with the mean backscattering coefficient (dB) for 

each image acquisition (blue line, right y-axis). 

 

Figure 4. Sensitivity of the HH polarisation backscattering coefficients to surface soil 

moisture at each test site. Each point corresponds to the mean backscattering coefficient 

in dB for the different acquisition dates. The continuous line represents the regression 

line, calculated using the equation σ
0
= Bo+B1mv, where Bo is the intercept, B1 is the 

slope and mv is the volumetric soil moisture content. The dashed lines demarcate the 

95% confidence intervals. 

 

Figure 5. Sensitivity of the VV polarisation backscattering coefficients to surface soil 

moisture at each test site during 2008. Each point corresponds to the mean 

backscattering coefficient in dB for the different acquisition dates. The continuous line 

represents the regression equation σ
0
= Bo+B1mv, where σº is the backscattering 

coefficient, Bo is the intercept, B1 is the slope and mv is the volumetric soil moisture 

content. The dashed lines represent the 95% confidence intervals. 

 

Figure 6. Sensitivity of the VV polarisation backscattering coefficients to surface soil 

moisture at each test site during 2009. Each point corresponds to the mean 

backscattering coefficient in dB for the different acquisition dates. The continuous line 

represents the regression equation σ
0
= Bo+B1mv, where σº is the backscattering 

coefficient, Bo is the intercept, B1 is the slope and mv is the volumetric soil moisture 

content. The dashed lines represent the 95% confidence intervals. 
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Figure 3 (cont) 
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