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Abstract 14 

Concrete flood defences, erosion control structures, port and harbour facilities, 15 

and renewable energy infrastructure are increasingly being built in the world’s 16 

coastal regions. There is, however, strong evidence to suggest that these 17 

structures are poor surrogates for natural rocky shores, often supporting 18 

assemblages with lower species abundance and diversity. Ecological 19 

engineering opportunities to enhance structures for biodiversity conservation 20 

(and other management goals) are therefore being sought, but the majority of 21 

work so far has concentrated on structural design features at the centimetre–22 

meter scale.  23 
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We deployed concrete tiles with four easily-reproducible fine-scale (millimetre) 24 

textures (control, smoothed, grooved and exposed aggregate) in the intertidal 25 

zone to test opportunities for facilitating colonisation by a dominant ecosystem 26 

engineer (barnacles) relative to natural rock. Concrete texture had a significant 27 

effect on colonisation; smoothed tiles supported significantly fewer numbers of 28 

barnacles, and those with intermediate roughness (grooved concrete) 29 

significantly greater numbers, after one settlement season.  30 

The successful recruitment of early colonists is a critical stage in the 31 

development of more complex and diverse macrobenthic assemblages, 32 

especially those that provide physical habitat structure for other species. Our 33 

observations show that this can be facilitated relatively simply for barnacles on 34 

marine concrete by manipulating surface heterogeneity at a millimetre scale. 35 

Alongside other larger-scale manipulation (e.g. creating holes and pools), 36 

including fine-scale habitat heterogeneity in engineering designs can support 37 

international efforts to maximise the ecological value of marine urban 38 

infrastructure. 39 

Keywords 40 

Marine concrete; Ecological engineering; Ecosystem Engineers; Intertidal 41 
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1. Introduction 44 

Rapid population growth in most of the world’s coastal regions means that more 45 

and more ‘hard’ structures such as sea walls and breakwaters are being built to 46 

manage the risks of sea level rise and increased storminess (Firth et al. 2013a; 47 

Pethick 2001) and to support sustained socio-economic growth (Airoldi and 48 

Beck 2007). Structures built from rock and, in particular, concrete are also 49 

increasingly being deployed in the near-shore and subtidal zones as part of 50 

marine renewable energy schemes (Witt et al. 2012). While all of these 51 

structures provide novel habitats for marine life (Bulleri 2006) there is strong 52 

evidence to suggest that the conditions they provide and the assemblages they 53 

support differ to natural rocky shores. Coastal structures, for example, typically 54 

support fewer species with lower abundances, and consequently altered 55 

competitive interactions among and between species (e.g. Bulleri 2005; Bulleri 56 

and Chapman 2010; Bulleri et al. 2005; Jackson et al. 2008). As such, the 57 

transformation of coastal habitats via urbanisation is a conservation issue of 58 

global concern, particularly in the face of concurrent major drivers of change 59 

including pollution and climate change (Hawkins 2012; Hawkins et al. 2008; 60 

Thompson et al. 2002).  61 

This creates a substantial management problem, given that the economic and 62 

social justification for building hard structures is clear but is in conflict with 63 

broader public interest and policy requirements to conserve biodiversity at a 64 

national and international level (Naylor et al. 2012). In Europe, for example, the 65 

Water Framework Directive (WFD) requires that careful environmental appraisal 66 

is undertaken for all heavily modified water bodies (including ports, harbours 67 



4 
 

and defended coastlines, whether existing or new build) to identify measures for 68 

maximising ecological potential (Bolton et al. 2009). As an approach to 69 

engineering that explicitly considers ecological criteria in design, ‘ecological 70 

engineering’ (sometimes called ‘reconciliation ecology’) has significant potential 71 

to address this conflict of interests (Bergen et al. 2001; Lundholm and 72 

Richardson 2010).  73 

In the coastal zone, a growing amount of experimental work is being undertaken 74 

globally to test manipulation of engineering designs for ecological gain (see 75 

Chapman and Underwood 2011, Firth et al. 2013b, Firth et al. 2014, and Naylor 76 

et al. 2011 for some recent discussions). The potential economic benefits of 77 

facilitating the growth of commercially exploitable species (e.g. Martins et al. 78 

2010) and organisms that may afford some level of protection to engineering 79 

materials from marine weathering agents (e.g. Coombes et al. 2013) have also 80 

been highlighted. Much of this work is founded upon the known importance of 81 

physical habitat complexity for rocky shore species, and robust experimental 82 

evidence demonstrating the influence of various engineering design features on 83 

ecology, such as tidal position (e.g. Moschella et al. 2005) and the presence of 84 

water-retaining features (e.g. Browne and Chapman 2014; Firth et al. 2013c).  85 

Following pioneering work on the design and deployment of subtidal artificial 86 

reefs (see Baine 2001 for a review), to date most ecological enhancement trials 87 

in the intertidal zone have focused on increasing physical habitat complexity at 88 

the centimetre–meter scale. This can be achieved either post-construction (e.g. 89 

drilling holes in otherwise flat walls) or by retrofitting and (more rarely) 90 

designing-in habitat ‘units’ during the build to provide refuge during low tide (e.g. 91 
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artificial rock pools) (Browne and Chapman 2011; Chapman and Blockley 2009; 92 

Firth et al. 2014; Martins et al. 2010; Moschella et al. 2005). In comparison, very 93 

little has been done to test enhancement opportunities at finer scales 94 

(millimetres) simply by roughening the materials that structures are built from. 95 

This is surprising given substantial experimental evidence of the importance of 96 

fine-scale texture for the development of marine biofilms, the settlement of 97 

invertebrate larvae and spores, recruitment of juveniles, and the nature of 98 

community interactions on rocky substrata (e.g. Chabot and Bourget 1988; 99 

Decho 2000; Hutchinson et al. 2006; Menge 2000; Walters and Wethey 1996). 100 

On artificial structures, existing fine-scale topographic features have been 101 

shown to significantly influence the abundance of dominant organisms (e.g. 102 

Moschella et al. 2005), but attempts to manipulate texture at this scale remain 103 

noticeably absent.  104 

On natural rocky shores, fine-scale habitat heterogeneity (millimetres and less) 105 

is created by weathering, involving the wetting and drying of rocks, salt 106 

crystallisation, chemical breakdown, and biological weathering and erosion 107 

(Coombes 2014). Whilst the rate that these processes create roughness is 108 

largely dependent on rock type, one critical factor that artificial structures 109 

generally lack in comparison to natural shores is time. Engineering materials 110 

are subject to the same weathering processes as in situ rock (e.g. Coombes et 111 

al. 2011) but they are inevitably ‘newer’, less weathered, and less physically 112 

complex (at multiple spatial scales) than the rocks comprising rocky shores. 113 

Consequently, artificial structures are comparatively lacking in fine-scale 114 

complexity unless pre-weathered rock can be used or artificial texturing is 115 
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applied. The potential ecological significance of weathering processes in 116 

altering substratum properties and hygro-thermal behaviour is also recognised 117 

(Coombes and Naylor 2012). For example, weathering morphologies on 118 

limestone—which develop relatively quickly in the intertidal zone—can support 119 

rich species assemblages (Coombes 2014), as demonstrated on older historic 120 

structures (see Firth et al. 2013c and Moschella et al. 2005 in reference to 121 

Plymouth Breakwater). 122 

Concrete, which can be cast in situ or used as precast units (Allen 1998; CIRIA 123 

2010), typically lacks fine-scale topographic complexity when produced using 124 

standard moulding techniques (Fig. 1). Furthermore, a disproportionately small 125 

amount of experimental work has been done on the responses of intertidal 126 

species using, specifically, marine-grade concrete (e.g. Anderson and 127 

Underwood 1994; McGuinness 1989) and even less on concrete manipulation 128 

at a sub-centimetre scale (e.g. Borsje et al. 2011; Perkol-Finkel and Sella 129 

2014). This is a significant knowledge gap given that concrete is perhaps of 130 

greatest applied relevance in a context of coastal urbanisation, habitat 131 

homogenisation, and biodiversity conservation (Hawkins 2012). Certain 132 

concrete chemistries may also limit (via exclusion and/or delay) the 133 

development of epilithic communities, via pH effects and metal leaching for 134 

example (Terlizzi and Faimali 2010; Wilding and Sayer 2002). More broadly, the 135 

potential to generate novel ecosystem service flows using ecological 136 

engineering techniques in urban environments, including biodiversity 137 

maintenance, is underexplored in the marine realm (Gaston et al. 2013).  138 
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To address this gap we tested the hypothesis that the settlement and 139 

recruitment of a dominant early colonist (barnacles) on marine-grade concrete 140 

would vary between treatments with different fine-scale (millimetre) surface 141 

textures. We focus on barnacles as they have been described as ‘ecosystem 142 

engineers’ in the intertidal zone, having a facilitative role in the establishment 143 

and maintenance of other species’ populations through the provision of physical 144 

habitat structure (e.g. Harley 2006; Sueiro et al. 2011). For example, the 145 

presence of empty barnacle shells (called ‘tests’) and within-test habitat has 146 

significant impacts on community development, including the abundance and 147 

diversity of algae, sessile and motile invertebrates, and fishes (e.g. Barnes 148 

2000; Bros 1987; Farrell 1991; Harley and O’Riley 2011; Thompson et al. 149 

1996). We therefore aimed to determine whether fine-scale textural 150 

manipulation can be used to enhance concrete for barnacles and, as a 151 

consequence, offers opportunities to support greater species richness. 152 

 153 

2. Materials and Methods  154 

Small settlement tiles (5 cm x 5 cm x 3 cm) of marine-grade concrete (BS EN 155 

197-1) were cast specifically for purpose using a mix of Portland cement (350 156 

kg/m3), sand (640 kg/m3), and crushed granite aggregate (nominal maximum 157 

size = 40 mm, 1280 kg/m3). A free water cement ratio of 0.5 was used without 158 

admixtures (Allen 1998; CIRIA 2010). The tiles were cast in a steel mould 159 

coated with releasing fluid, vibrated, and cured for 7 days in a lime-water curing 160 

tank at 21°C. Compressive strength at 28 days was 48 MPa (BS EN 12390-2). 161 
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Before the tiles had fully cured, four different textural finishes were applied: (1) 162 

control (plain-cast with no additional treatment), (2) smoothed, (3) grooved and 163 

(4) exposed aggregate, as described in Table 1. Representative surface profiles 164 

of the treatments are shown in Fig. 2 for comparability. 165 

In early May 2010, experimental plots were established at Mean Tide Level 166 

(MTL) on two semi-horizontal rocky shores in South West England, UK, roughly 167 

20 km apart (Fig. 3). Shore 1 (Tregear Point, near Porthleven) is south-west 168 

facing and composed of Devonian age dark grey rocks of the Mylor Slate 169 

Formation. Shore 2 (Gala Rocks, near Zennor) is north-west facing and is 170 

composed of basaltic rocks with intrusions of granite and serpentines. Quadrat 171 

sampling showed that Chthamalid barnacles occupied the majority of space at 172 

MTL on both shores (85 ± 10 % at Tregear Point and 80 ± 20 % at Gala Rocks, 173 

two-sample t(28) = 1.35, p = 0.19). Distinction between the two dominant co-174 

occurring Chthamalid species on these shores (C. montagui Southward and C. 175 

stellatus Poli) was not made for the purposes of this study, having overlapping 176 

ranges in this area (Southward 2008). The cold-water, earlier-settling barnacle 177 

Semibalanus balanoides (Linnaeus) also occurs at Gala Rocks in relatively low 178 

numbers, but is largely absent at Tregear Point. Limpet densities indicated that 179 

grazing pressure was higher at Gala Rocks, but comparable to Tregear Point 180 

(26 ± 4 m-2 and 24 ± 3 m-2, respectively, two-sample t(28) = 1.83, p = 0.08).  181 

On each shore, 50 clearings were made by removing the existing cover of 182 

barnacles with a paint scraper and wire brush, maintaining a spacing of at least 183 

30 cm. A blowtorch was applied to the rock clearings to control for the possible 184 
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influence of biochemical cues (from biofilm and remains of conspecifics) on 185 

larval settlement (e.g. Thompson et al. 1998). This was done before the 186 

Chthamalus spp. settlement season, which begins in early-mid July in South 187 

West England (Southward 2008). On each shore, ten replicates of the four 188 

concrete treatments were randomly assigned to the clearings and fixed in place 189 

using marine epoxy. The remaining ten clearings were used to monitor 190 

colonisation of the natural rock, which had comparable surface roughness to the 191 

‘exposed aggregate’ concrete (Fig. 2e–f). 192 

2.1. Settlement and recruitment 193 

Once the first Chthamalid larvae (cyprids) were detected (in mid-July) both 194 

shores were visited periodically and digital photographs were taken of each 195 

treatment. Between mid-July and early November Tregear Point was visited 16 196 

times where settlement was heavy, and Gala Rocks was visited 4 times where 197 

settlement was considerably lighter. The number of barnacle cyprids 198 

(settlement) and metamorphosed juveniles (recruitment) were subsequently 199 

counted on each treatment by superimposing a grid over the photographs using 200 

ImageJ computer software. Counts were not made within 5 mm of the treatment 201 

edges to avoid possible edge effects, giving a sampling area of 16 cm2 in each 202 

case. For the clearings on the natural rock, small stainless-steel tags glued to 203 

the surface during installation were used as reference markers to ensure that 204 

counts were made within the same area on each visit. Final counts of 205 

established recruits were made in mid-November when settlement had finished. 206 

2.2. Species richness 207 
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The primary focus of this paper is the influence of fine-scale textural 208 

manipulation of concrete on barnacle colonisation. However, supplementary 209 

data were also collected to assess the potential significance of enhancing for 210 

barnacles for biodiversity more broadly. For this, subsequent observations of 211 

remaining tiles on both shores were made after three settlement seasons (in 212 

January 2013), when the number of adult barnacles and associated invertebrate 213 

species were recorded by functional group (e.g. Firth et al. 2014). 214 

2.3. Data analysis 215 

Cyprid counts were generally very low at Gala Rocks on the dates visited and 216 

as such a meaningful analysis of these data was not possible. However, a 217 

significant settlement event captured at Tregear Point on 13th August enabled 218 

us to test the hypothesis that cyprid settlement would differ between texture 219 

treatments on this shore. For this, a one-way Analysis of Variance (ANOVA) 220 

was performed using cyprid counts with ‘treatment’ as a fixed factor (five levels: 221 

control concrete, smoothed concrete, grooved concrete, exposed aggregate 222 

concrete and cleared rock).  223 

The hypothesis that barnacle recruitment would differ between treatments was 224 

tested across both shores by performing a two-way ANOVA on counts of 225 

recruits present at the end of the settlement season (November). For this test 226 

‘shore’ was a random factor with two levels (Tregear Point and Gala Rocks) and 227 

‘treatment’ was a fixed factor with five levels, as above. A Cochran’s test was 228 

used to check for data heterogeneity, which was corrected for using 229 

transformation where appropriate. Post-hoc pairwise comparisons were 230 



11 
 

performed using Student-Newman-Keuls (SNK) tests. All tests were performed 231 

using GMAV5 software (Underwood et al. 1997). 232 

 233 

3. Results 234 

3.1. Barnacle cyprid settlement 235 

An appreciable settlement of S. balanoides had occurred at Gala Rocks during 236 

the period between the tiles being deployed in May and the first Chthamalid 237 

cyprid counts on 25th July, but this was almost exclusively within the rock 238 

clearings. At Tregear Point the first Chthamalid cyprids were recorded on 17th 239 

July and, in comparison to Gala Rocks, settlement of S. balanoides was 240 

negligible across all treatments on this shore. 241 

Chthamalid cyprids were observed on each visit (on both shores) in July and 242 

August, on every treatment except four smoothed concrete tiles at Gala Rocks. 243 

An ANOVA performed using data for a heavy settlement event at Tregear Point 244 

(13th August) showed that textural treatment had a significant influence on 245 

cyprid settlement, F(4, 45) = 17.51, p < 0.001 (Table 2, Fig. 4). Here, 246 

significantly fewer cyprids settled on smoothed concrete and significantly more 247 

settled on grooved concrete compared to the other treatments, which were not 248 

different. 249 

3.2. Barnacle recruitment 250 

Metamorphosed recruits were always observed first in association with the 251 

particular textural features of each treatment. This included air holes in the 252 
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control concrete, the ridges of the grooved concrete, and the pits on the 253 

naturally weathered rock. At Tregear Point, recruitment to these three 254 

treatments was similar for the first three weeks of monitoring, after which a 255 

marked relative increase was observed on the grooved tiles (Fig. 5). Grooved 256 

concrete also had the highest numbers of recruits of all the treatments on each 257 

visit to Gala Rocks. On both shores, smoothed concrete tiles consistently had 258 

the lowest numbers of recruits on successive visits. 259 

By the end of August, differences in recruitment between treatments were 260 

pronounced, and these patterns persisted to the end of the settlement season 261 

(Fig. 6). An ANOVA performed using final counts made in November showed 262 

that the effect of ‘treatment’ was significant, but interaction between ‘treatment’ 263 

and ‘shore’ indicated that the magnitude of this effect varied between locations 264 

(Table 3). Smoothed concrete had fewer recruits than all other treatments at 265 

Tregear Point, followed by control concrete and exposed aggregate concrete. 266 

Clearings on the natural rock and the grooved concrete had significantly more 267 

recruits than the other treatments on this shore, but were themselves not 268 

different (Fig. 6). At Gala Rocks, lowest and highest numbers of barnacle 269 

recruits also occurred on smoothed and grooved concrete, respectively. Here, 270 

recruitment to the control concrete was comparable to clearings on the natural 271 

rock, both of which had fewer barnacles than the other treatments (Fig. 6). 272 

Overall, recruitment was significantly lower at Gala Rocks compared to Tregear 273 

Point, F(1,90) = 196.46, p < 0.001 (Table 3). 274 

3.3. Species richness 275 
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The vast majority of tiles were lost to waves between the last barnacle 276 

monitoring visit (November 2010) and when the sites were revisited in January 277 

2013 (after 32 months). However, counts of invertebrate species richness were 278 

made on all remaining tiles (n = 10). After this time adult barnacle abundance 279 

was strongly associated with invertebrate species richness, R2 = 0.90, p < 0.05 280 

(Fig. 7). The limitations of these data are recognised but nevertheless are 281 

discussed in support of the likely positive influences of barnacles on community 282 

diversity as previously reported in the literature (see Section 4).  283 

The highest number of species (seven in addition to barnacles) was recorded 284 

on a grooved tile that also had the highest barnacle abundance (95% cover). 285 

Comparatively, three tiles with the lowest number of barnacles (two smoothed 286 

and one plain-cast treatment) had ephemeral green algae (Chlorophyta) but no 287 

additional invertebrate species. Gastropoda (Patella sp.) were common to most 288 

of the remaining tiles and other organisms present included Insecta (Anurida 289 

maritima Guérin), Malacostraca (Bathyporeia elegans Watkin), and juvenile 290 

Bivalva (Mytilus edulis L.). Although macroalgae (Fucus vesiculosus L. and 291 

Ascophyllum nodosum L.) were present within all of the rock clearings after 32 292 

months—some being completely recolonised at Tregear Point—no macroalgae 293 

were present on any of the remaining concrete tiles after this time. 294 

 295 

4. Discussion 296 

The settlement and recruitment of Chthamalid barnacles varied significantly 297 

between concrete with different fine-scale surface textures, and between 298 
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concrete and naturally weathered rock. On two different shores, a significantly 299 

greater number of barnacles colonised concrete with a grooved texture and 300 

significantly fewer colonised smoothed concrete. At the end of the settlement 301 

season tiles with a plain-cast finish (the control treatment) had fewer recruits 302 

than all but the smoothed tiles, indicating that this standard surface finish is a 303 

poor surrogate for natural rocky substrata, at least with respect to barnacle 304 

recruitment.  305 

Observed differences were likely the result of a combination of settlement and 306 

post-settlement processes, which are mediated to varying degrees by 307 

substratum physical properties (Connell 1985). Biochemical cues from biofilm 308 

and the presence of conspecifics are particularly important for larval settlement 309 

(Le Tourneux and Bourget 1988; Pendergast et al. 2009), but this was 310 

controlled for here. Given that concrete tiles were made using the same mix, the 311 

influences of physical substratum properties on settlement and post-settlement 312 

survival, such as chemical composition, colour, hardness, and weatherability 313 

(e.g. Herbert and Hawkins 2006), are also likely to be minimal. Rather, 314 

substratum physical complexity is thought to have an overriding influence on the 315 

settlement and subsequent recruitment and survival of barnacles, as well as 316 

many other epibenthic organisms (e.g. Chabot and Bourget 1988; Savoya and 317 

Schwindt 2010; Wethey 1986).  318 

Substratum roughness influences settlement, often involving active larval 319 

searching behaviour (e.g. Thompson et al. 1998), as well as post-settlement 320 

processes via influences on attachment strength and refuge provision (e.g. 321 

Aldred et al. 2010; Walters and Wethey 1996). At Tregear Point, recruitment 322 
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patterns can be explained at least partly by the influence of substratum texture 323 

on cyprid settlement. Here, significantly more cyprids settled on grooved 324 

concrete compared to the other treatments, which had the highest number of 325 

recruits at the end of the settlement season. Similarly, smoothed concrete had 326 

both fewest settlers and significantly fewer recruits at the end of the season. 327 

However, no difference in cyprid settlement was found between the control and 328 

exposed concrete tiles and the rock clearings, which indicates that settlement 329 

patterns alone cannot explain relative differences in adult recruitment. Rather, 330 

post-settlement and post-recruitment mortality may have also differed as a 331 

function of substratum texture. For example, higher post-recruitment mortality 332 

has been observed on the plain-cast (control) concrete compared with the other 333 

treatments used in this study (Coombes 2011). This was attributed to 334 

competition for space within the millimetre-scale air holes in which Chthamalid 335 

cypris larvae preferentially settled. This means that whilst plain-cast concrete 336 

may initially support comparable numbers of barnacle recruits as natural rock 337 

(Fig. 5), numbers of established adults may ultimately be lower on concrete due 338 

to higher post-recruitment mortality (Fig. 6). 339 

By the end of the settlement season most recruits were counted not on the 340 

roughest treatment (exposed aggregate concrete) but on tiles with intermediate 341 

roughness (grooved concrete), on both shores. This may reflect the fact that 342 

direct geometric measures of roughness (such as Ra in Fig. 2) do not 343 

necessarily reflect favourable scales of roughness for colonists, which probably 344 

relate more to the size of the settling body and its attachment structures 345 

(Herbert and Hawkins 2006; Hills and Thomason 1996; Walters and Wethey 346 
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1996). For Chthamalid spp. cyprids, which have a length of around 0.5 mm, 347 

topographic elements in the order of 1 mm and less are likely to represent the 348 

most suitable settlement sites. In their study of C. montagui, Herbert and 349 

Hawkins (2006) found that natural substratum microtopography was an 350 

important factor in recruitment to different calcareous rocks in southern 351 

England, and for S. balanoides Hills and Thomason (1998) found a preference 352 

for fine scale (<0.5 mm) and medium scale (0.5–2.0 mm) roughness elements 353 

compared to smoother and rougher alternatives. In this study, the millimetre and 354 

sub-millimetre scale ridges of the grooved concrete (Fig. 2c) proved more 355 

favourable for Chthamalid cyprids than the coarser roughness of the exposed 356 

aggregate treatment. This was reflected by the typically uniform alignment of 357 

cyprids and juveniles along the ridges of this treatment observed in the field. 358 

Settlement on the control tiles also occurred first in the small (typically < mm) air 359 

holes present on their surfaces, and on the exposed aggregate concrete and 360 

rock clearings in association with pits, ridges and other weathering forms. In 361 

comparison, settlement and recruitment on the smoothed concrete (on which air 362 

holes were removed during the curing process) were correspondingly low. 363 

These results are not unexpected (e.g. Crisp and Barnes 1954), but our data 364 

demonstrate how increasing the availability of such fine-scale features 365 

artificially—by manipulating surface roughness—can have significant impact on 366 

early-stage colonisation of common engineering materials.  367 

Our finding that the strength of the effect of texture on barnacle colonisation 368 

varied between shores (Table 3) is of particular interest, and may be explained 369 

by overall differences in barnacle supply. For example, Raimondi (1990) 370 
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suggests that spatial differences in the settlement of a different chthamalid 371 

barnacle (C. anisopoma) on rocky shores in the Gulf of California occurred only 372 

when settlement was relatively high, and thus when the availability of surface 373 

pits and depressions became a limiting factor (a ‘saturation’ effect). In a similar 374 

way, the comparatively low numbers of barnacles at Gala Rocks overall 375 

probably meant that texture had less of an influence here compared to Tregear 376 

Point, where settlement and recruitment were much higher. Furthermore, 377 

barnacle settlement is gregarious (Bracewell et al. 2013; Southward 2008), so 378 

that attracting initial colonists will probably favour subsequent settlement and 379 

recruitment, reinforcing any initial textural influences to some degree. 380 

Competition with the earlier-settling S. balanoides at Gala Rocks may also have 381 

influenced Chthamalid recruitment here, through exclusion effects (Connell 382 

1961). Indeed, some S. balanoides recruits were observed here within rock 383 

clearings before Chthamalus spp. settlement had begun, and end-of-season 384 

recruitment to this treatment was unexpectedly low relative to the concrete tiles 385 

when compared to patterns at Tregear Point (Fig. 6).  386 

4.1. Implications for ecological enhancement of coastal structures 387 

The rate and success of larval settlement and recruitment of early colonists are 388 

limiting factors in the development of more complex and diverse intertidal 389 

assemblages (Anderson and Underwood 1994; Connell et al. 1987; Farrell 390 

1991; Gaines and Roughgarden 1985). The exclusion of barnacles through a 391 

lack of fine-scale settlement sites (as is likely on typically smooth engineered 392 

structures) has important implications for the ecological potential of concrete 393 

structures in the coastal zone. Barnacles are known to facilitate later arriving 394 
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invertebrates through the provision of biogenic habitat structure (e.g. Farrell 395 

1991; Harley 2006; Thompson et al. 1996), and our supplementary 396 

observations after 32 months support this (Fig. 7). As such, targeting early 397 

colonists like barnacles by manipulating fine-scale surface texture offers 398 

opportunities for enhancing the local biodiversity value of concrete structures 399 

where they have to be built, and for supporting marine biodiversity conservation 400 

more widely. This includes higher organisms such as some species of fish, 401 

which are known to feed on invertebrate communities growing on marine 402 

infrastructure (e.g. Wilhelmsson et al. 2006). 403 

‘Kick-starting’ succession in this way could prove particularly important for 404 

structures on which species may otherwise be excluded. This not only includes 405 

those lacking suitable settlement sites (i.e. those that are smooth) but also 406 

where colonists may be easily out-competed by dominant or invasive species, 407 

and where the provision of physical refuge will be most important, such as at 408 

the edges of species’ vertical ranges. For relatively ‘young’ engineering 409 

materials on which weathering morphologies are largely absent, applying fine-410 

scale roughness offers a way of compensating for the lack of natural physical 411 

habitat structure. 412 

These principles have broader implications for biodiversity conservation, 413 

ecological enhancement, and restoration more generally, by demonstrating how 414 

conservation/enhancement activities targeted towards key species, such as 415 

other ‘ecosystem engineers’ and ‘niche constructors’ (Boogert et al. 2006; 416 

Jones et al. 1994; Wright and Jones 2006), may be one effective strategy. This 417 

may be especially true where resources and/or ecological potential are 418 
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generally limited, such as may be the case in some urban areas (McKinney 419 

2006). Our data demonstrate that in the case of hard coastal infrastructure, a 420 

fine, grooved texture can support comparable numbers of barnacles to naturally 421 

weathered rock, and this is expected to lead to the faster establishment of a 422 

greater range invertebrate species relative to smooth materials. 423 

Where required, the potential for fine-scale textural manipulation to exclude 424 

rather than promote ‘fouling’ organisms (Terlizzi and Faimali 2010) is also worth 425 

highlighting, by using smooth concrete over rough for example. This is 426 

especially the case where exclusion of invasives or species that are not 427 

common to an area is a management objective. This may be the case in some 428 

ports and harbours, or where little or no ‘natural’ hard-bottomed communities 429 

exist (Hulme 2009).  430 

As with any approach to ecological enhancement it is important to note that the 431 

potential for design interventions to yield appreciable increases (or decreases) 432 

in species abundance and diversity will be site dependent, as factors such as 433 

tidal height and local larval supply will often have overriding control on 434 

community development (Burcharth et al. 2007). This was demonstrated here 435 

by a clear difference in the magnitude of the effect of texture on barnacle 436 

colonisation between the two experimental shores. Ecological enhancement via 437 

the manipulation of habitat structure is widely seen as having strong potential 438 

for supporting conservation efforts in urbanised coastal environments 439 

(Chapman and Underwood 2011; Firth et al. 2014; Moschella et al. 2005), but 440 

requires careful consideration on a case-by-case basis. 441 
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 442 

5. Conclusions 443 

Simple and inexpensive manipulation of concrete surface texture, at finer scales 444 

than previously tested, can promote colonisation by intertidal barnacles. As a 445 

key ecosystem engineer, this provides opportunities for enhancing the 446 

conservation value of urban marine infrastructure, by facilitating the provision of 447 

biogenic habitat. Several areas now need further research attention. First, the 448 

influence of textural manipulation on the development of epibenthic 449 

assemblages over longer periods of time needs to be assessed. Specifically, 450 

whilst we found some evidence that enhancing concrete for barnacles was 451 

associated with more invertebrate species after few years, it remains to be 452 

tested whether this translates to appreciable increases in local biodiversity over 453 

engineering timescales (decades–centuries). The ability of ‘enhanced’ 454 

structures to support biodiversity at the regional scale also needs more 455 

attention. Greatest potential here exists in regions where urban structures are 456 

particularly common, such as areas of the Adriatic Sea (Airoldi et al. 2005), and 457 

where built structures represent possible refuge or stepping-stones for species 458 

responding to climate change (Firth et al. 2013a; Hawkins et al. 2008). The 459 

extent to which enhancing coastal structures may aid the dispersal of invasive 460 

species is also an issue of on-going research priority (Bulleri and Airoldi 2005; 461 

Glasby et al. 2007).  462 

More broadly, further testing is needed of the potential for textural manipulation 463 

(and other forms of ecological engineering) to contribute to management goals 464 
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at the coast, in addition to biodiversity conservation. This might include targeting 465 

commercially valuable species (e.g. Martins et al. 2010) or those that may 466 

provide protection from deteriorative marine agents in a context of engineering 467 

durability (e.g. Coombes et al. 2013; Lv et al. 2015; Perkol-Finkel and Sella 468 

2014). There is much potential here for incorporating concepts of 469 

‘multifunctionality’ and ecosystem services more fully into coastal planning and 470 

engineering design, to support broader biodiversity conservation goals (Mander 471 

et al. 2007). This said, many engineering questions remain as to the 472 

implications of encouraging marine species on concrete, as well as other 473 

construction materials, and these need to be addressed using experimental and 474 

applied examples before widespread application can be expected (e.g. 475 

Coombes et al. 2012). This includes issues of chloride ingress and salt attack, 476 

drag coefficients and hydrokinetic loading, thermal decay, aesthetics, and 477 

whole-life performance (CIRIA 2010). Epilithic organisms likely have both 478 

positive and negative impacts in these respects, all of which warrant further 479 

attention.  480 

Pragmatically, the feasibility of reproducing ecologically favourable textures 481 

during the manufacturing process needs to be examined. This will necessarily 482 

involve developing novel moulding techniques, for example, alongside the 483 

incorporation of larger-scale habitat features in pre-cast units and during on-site 484 

construction. These options are already receiving promising attention as viable 485 

possibilities (see Perkol-Finkel and Sella 2014). In practice, the incorporation of 486 

physical heterogeneity at a range of spatial scales offers the greatest potential 487 

for ecological enhancement in coastal engineering. Fine-scale (millimetre–488 
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centimetre) textures like those tested here can facilitate (or conversely exclude, 489 

if required) settlement and recruitment by sedentary organisms such as 490 

barnacles, while larger-scale (centimetre–meter) water-retaining features such 491 

as holes and pools provide refuge for motile species that may otherwise be 492 

absent. ‘Multi-scale ecological engineering’ is therefore likely to prove the most 493 

successful approach to maximising the ecological potential of hard marine 494 

infrastructure, and for supporting biodiversity conservation in urbanised coastal 495 

regions. 496 

 497 
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Table 1. Texture treatments applied to marine concrete 783 

 Production method Surface roughness Indicative 
roughness (R)* 

Control 
(plain-cast) 

Standard casting and 
curing procedures 
(see Section 2) – no 
further manipulation 
was applied. 

Smooth surface with the exception 
of small holes (a few millimetres in 
diameter Fig. 2a) formed from air 
bubbles settling out of the mixture 
whilst curing. 

Comparable to the surfaces of 
precast armour units (e.g. tetrapod 
units) and precast/site-cast 
structures. 

R = 1.09  

(R = 1.31 
including air 
holes) 

Smoothed Tiles wiped with a 
fabric cloth during 
the curing process, 
whilst semi-dry. 

Slightly more undulating than the 
control treatment, but without the 
presence of air holes. 

R = 1.12 

Grooved Tiles wiped with a 
course wire brush 
during the curing 
process, whilst semi-
dry. 

A millimetre-scale texture, with a 
regular grooved finish. 

  

R = 1.52 

Exposed 
aggregate 

Upper layer of 
cement washed 
away during the 
curing process using 
a water jet. 

A millimetre–centimetre scale, 
spatially-variable texture.  

Most comparable in texture to the 
naturally weathered rock on both 
experimental shores. 

R = 1.92 

*R = Tr/Tt, where Tr = length of profile trace and Tt = measurement distance (n 784 

= 10); representative surface profiles of each treatment are shown in Fig. 2. 785 

  786 
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Table 2. ANOVA result for numbers of cyprids counted on textured concrete 787 

and rock clearings for a heavy settlement event at Tregear Point, 13th August 788 

2010 (n = 10) 789 

 790 

Source of variation d.f.  MS  F  p 791 

Treatment   4  6.40  17.51  0.001 792 

RES    45  0.37  –  – 793 

Total    49  –  –  –  794 
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Table 3. ANOVA result for numbers of Chthamalus spp. recruits counted at the 795 

end of the settlement season (November 2010) on textured concrete and 796 

natural rock on two shores in Cornwall, UK (n = 10) 797 

Source of variation d.f.  MS  F  p 798 

Shore = Sh   1  595.95 196.46 0.001 799 

Treatment = Tr  4  389.82 13.49  0.014 800 

Sh x Tr   4  28.89  13.49  0.001 801 

RES    90  3.03  –  – 802 

Total    99  –  –  – 803 

  804 
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Figure Captions 805 

Fig. 1. Concrete coastal structures with typically vertical, relatively smooth 806 

surfaces often have limited ecological value 807 

Fig. 2. Representative surface profiles for all experimental treatments 808 

Fig. 3. Location of experimental shores in South West England, UK 809 

Fig. 4. Mean (+SE, n = 10) number of barnacle cyprids counted on each 810 

treatment for a heavy settlement event at Tregear Point on 13th August (for 811 

post-hoc comparisons ‘<’ denotes p = 0.05, ‘<<’ denotes p = 0.01, and ‘=’ 812 

denotes no significant difference) 813 

Fig. 5. Mean (+SE, n = 10) number of metamorphosed Chthamalus spp. 814 

recruits counted on all treatments in July and August 2010 at Tregear Point, 815 

Porthleven (points have been shifted slightly for clarity) 816 

Fig. 6. Mean (+SE, n = 10) number of Chthamalus spp. recruits counted on all 817 

treatments at the end of the settlement season (November 2010) at Porthleven 818 

(black bars) and Gala Rocks (white bars). For post-hoc comparisons ‘<’ denotes 819 

p = 0.05, ‘<<’ denotes p = 0.01, and ‘=’ denotes no significant difference) 820 

Fig. 7. Invertebrate species richness and barnacle abundance on remaining 821 

concrete tiles after 3 seasons (32 months) 822 


