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Abstract

Spiral and non-spiral blood flows through three-dimensional models of 75%

axisymmetric arterial stenosis are investigated by using two-equation stan-

dard k-ω transitional model and Large Eddy Simulation (LES). The arterial

stenosis models chosen are straight stenosed tubes without and with upstream

curved segments of various angles of curvature. The Reynolds numbers in-

vestigated are 500, 1000, 1500 and 2000. Spiral effect is introduced by taking

one-sixth of the bulk velocity as a tangential velocity at the inlet, and the

inlet turbulence intensity was introduced for matching experimental results.

LES results with a right amount of inlet turbulence intensity matches exper-

imental results better than the k-ω results. The results show that the spiral

flow affects the turbulence kinetic energy in the post stenosis region. Other
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important results such as the wall pressure and shear stress remain almost

unchanged by the spiral velocity. But the presence of the upstream curved

segment in artery moderately affects the results of the maximum pressure

drop and wall shear stress.

Keywords: Arterial stenosis, Non-spiral flow, Spiral flow, Transition-to-turbulence

flow, k-ω, LES
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1 Introduction

An interesting feature of blood-flow is its spiral or helical characteristic. Blood-flow

may exhibit spiral pattern as a normal physiological process i.e., because of the

twisting of the heart on its own axis and/or because of the anatomy of the arterial

tree such as the presence of bifurcation, tapered or curved section in an artery (see

Stonebridge [1], Stonebridge et al. [2]). The hemodynamics of stenosed artery in the

downstream of stenosis is significantly altered when non-spiral or spiral blood flow

passes through the stenosis depending on the degree of stenosis and inflow pattern,

resulting in potentially dangerous pathological scenarios. The post-stenotic flow

is highly disturbed due to the flow passing through moderate or severe stenosis

and transients to turbulence state. With the state-of-the-art computing facilities,

numerous studies have been carried out to get a sound understanding of transition-

to-turbulence phenomena of non-spiral flow through stenosis. However, to get a

better insight into the transition-to- turbulence flow through the arterial stenosis,

spiral effect should be incorporated into the flow. But computational studies on

spiral blood flow through stenosis are very few and incomplete.

Stonebridge et al. [3] and Paul and Larman [4] investigated spiral blood flow

through stenosis and carried out turbulence analysis of the flow in stenosed artery.

Stonebridge et al. [3] investigated steady spiral flow in moderately stenosed (43.75%

area reduction) conduit using MRI and CFD software STAR-CD.

On the other hand, Paul and Larman [4] studied steady spiral blood flow through

a rigid stenosed pipe with 75% area reduction stenosis for Reynolds number of 500

and 1000 using k-ω model and showed most of the results including the turbu-

lence kinetic energy along the centreline. They found the spiral flow generates less

turbulence kinetic energy (TKE) than the non-spiral flow for Re = 500 and no dif-

ference between the spiral flow TKE and the non-spiral flow TKE for Re = 1000.

But, maximum turbulence intensities occur in the shear layer rather than along the

centreline (Deshpande and Giddens [5]). Moreover, their other results (centreline

total pressure and wall shear stresses) show that differences between spiral and non-
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spiral flow exist mostly for Re = 500, not for Re = 1000. Apart from the twisting

of the heart on its own axis, spiral pattern in blood flow may also be generated

due to the presence of a curved section in the upstream. Above mentioned two

studies were only on a straight stenosed tube. Therefore, to get a better insight

of the transition-to-turbulence of spiral blood flow through arterial stenosis, more

numerical investigations are required.

In this paper, transition of steady spiral blood flow through models of arterial

stenosis with and without an upstream curved section is studied by applying two-

equation standard k-ω transitional turbulence model and LES technique. The k-

ω turbulence model was previously used by other researchers (e.g. see Ghalichi

et al. [6], Varghese and Frankel [7], Lee et al. [8, 9] and Li et al. [10]) to study the

axisymmetric stenotic flow. In the context of LES applications, most recent studies

include Varghese et al. [11], Paul et al. [12, 13, 14, 15], Tan et al. [16], G̊ardhagen

et al. [17] and Barber and Simmons [18].

Straight tubes having axisymmetric stenosis with and without upstream curved

segment of varying angles are taken as the computational domains. A parabolic

profile for axial velocity was introduced at the inlet. And for generating spiral effect

at the inlet, one-sixth of the bulk velocity was taken as the tangential velocity, as

suggested by Stonebridge et al. [2, 3] that the spiral velocity is one-sixth of the

forward velocity within the artery. At the outlet, a constant static pressure of

80 mmHg (or 10665.6 Pa) was imposed. In this study, the focus is on the effects of

spiral pattern on the flow physics in the downstream region of the stenosis.

The filtering operation in LES divides the flow field up into large scale eddies

and small scale (Sub-grid scale or SGS) eddies. The turbulence energy containing

large scale eddies are resolved directly while the unresolved small scale eddies are

modelled using Smagorinsky-Lilly dynamic subgrid model (Germano [19], Lilly [20]

and Kim [21]). The commercial code Fluent 6.3 is validated for axial velocity profiles

in the non-spiral blood flow in a model arterial stenosis for Reynolds numbers Re =

1000 and 2000 against available corresponding experimental data of Ahmed and
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Giddens [22, 23]. The performance of k-ω-SST transitional model in comparison

with standard k-ω transitional model is also assessed by comparing the axial velocity

profiles obtained from using them against the available corresponding experimental

data. In addition, it is also examined how much inlet turbulence intensity can

be introduced in LES and k-ω transitional model to control transition and hence

benchmark against the experimental data. Effects of spiral pattern on the post-

stenotic flow are assessed in terms of some important turbulence results such as

the turbulence kinetic energy, wall shear stress and wall pressure along with their

relevant pathophysiological implications.

2 Problem formulation

2.1 Flow Models and Meshing

Solid models of stenosed arteries with and without upstream curved section of vary-

ing angles were built using GAMBIT 2.4 (Fluent Inc.) and are shown in Fig. 1.

Diameter of the unstenosed section of the arterial models is D = 0.02m and the an-

gle of curvature (θ) for the upstream curved sections are: 60◦, 90◦ and 120◦. Axial

direction is along the z-coordinate axis. For the straight tube (without upstream

curved section), stenosis is centred at z = 0. Length of the stenosis, upstream and

downstream sections of the model arteries are 2D, 3D and 22D respectively, as

measured from the stenosis throat. Vessels with curved upstream section are fur-

ther extended to 10D in the upstream as shown in Fig. 1. Degree of a stenosis is

generally measured by a percentage reduction in diameter or cross-sectional area at

the throat of the stenosis. For our study a 75% stenosis by area reduction, corre-

sponding to a 50% diameter reduction was used as it is clinically significant when

the area reduction is greater than 75% (Young [24] and Ku [25]). Furthermore, a

75% stenosis has also been used in many previous experimental and computational

studies.
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The stenosis is formed using the following cosine-type relation

r (z)

R
= 1− δc

2

(
1 + cos

zπ

D

)
, −D ≤ z ≤ D (1)

where r and R are the local radius (radial co-ordinate) and radius of the models

respectively. The parameter δc determines the cross-sectional area reduction of the

stenosis and it is fixed to 1
2
, giving a 75% reduction of the cross-sectional area at the

centre of the stenosis. The cosine-type realistically shaped constriction/stenosis de-

veloped in the model arteries using the above relation (1) provides a quite reasonable

representation of an arterial stenosis, see Ahmed and Giddens [23].

Meshing of the flow domains was done using the meshing software GAMBIT 2.4

(Fluent Inc.). As no-slip condition is applied to the wall, a boundary layer is devel-

oped inside the wall to increase the resolution in the sublayer. A gradient scheme

is also applied along the axial direction of the models to ensure the finest mesh at

the centre and immediate downstream of the stenosis because high level of vortices

and turbulence fluctuations occur in these regions. And in the further downstream

region of the stenosis a gradually coarsening mesh helps keeping computational cost

to a minimal.

2.2 Governing Equations

Blood exhibits non-Newtonian effects only in small arteries and capillaries. Hence,

blood flow in a large arterial vessel may be modelled as a Newtonian fluid (Ku [25],

Pedley [26] and Fung [27]). So the blood flow through the arterial stenosis can be

described completely by the Navier-Stokes equations of motion. Blood in this study

was assumed to be homogeneous, incompressible and Newtonian with a density

of ρ = 1060 kg/m3 and a constant dynamic viscosity of µ = 3.71 × 10−3 Pa s.

Therefore, the governing equations for a Newtonian and constant density blood flow

can be written as the continuity equation,

∂ui
∂xi

= 0, (2)
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and the momentum equations,

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (3)

Cartesian tensor notation is used in the above equations, where xi is the coordinate

system and ui is the corresponding velocity components, p is the pressure, ρ is the

density and ν is the kinematic viscosity of fluid.

It should be noted that the above equations define both incompressible laminar

and turbulence flow. Analytical solutions of the Navier-Stokes equations exist for

only a few laminar flow cases, such as pipe and annulus flows or boundary layers.

Turbulence flows are modelled by using various turbulence modelling schemes. In

this study, two-equation k-ω Transitional models and LES are employed for turbu-

lence analysis.

2.3 Inflow Boundary Condition

A parabolic velocity profile along the axial direction:

w(x, y) = 2V̄
[
1−

(
r

R

)2]
, (4)

where V̄ is the bulk axial velocity which depends on the blood flow Reynolds number

defined as Re = ρV̄ D
µ

, is imposed at the inlet of the models. And for introducing

the spiral flow, a tangential velocity profile defined as

vt =
V̄

6

(
r

R

)
, (5)

is applied at the inlet. These inlet boundary conditions were coded in C-language

using the User Defined Function (UDF) interface of Fluent and linked with the

solver. In this paper, each model is investigated for four Reynolds numbers namely

Re = 500, 1000, 1500 and 2000. The parameters of the models are presented in

Table 1 and models will be referred by their names in the following sections of the

paper.

Inlet turbulence characteristics are defined by inlet turbulence intensities and

diameter of the model. For the k-ω models, inlet turbulence intensity of 3.8%,
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Table 1: Parameters of stenosed arteries with and without upstream curved section

models.

Model θ (angle of curvature) Re

A1 0◦ 500

A2 60◦ 500

A3 90◦ 500

A4 120◦ 500

B1 0◦ 1000

B2 60◦ 1000

B3 90◦ 1000

B4 120◦ 1000

C1 0◦ 1500

C2 60◦ 1500

C3 90◦ 1500

C4 120◦ 1500

D1 0◦ 2000

D2 60◦ 2000

D3 90◦ 2000

D4 120◦ 2000
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1.5%, 1.0% and 0.7% is found to give acceptable results for Re = 500, 1000, 1500

and 2000 , respectively , as it is clear from the experimental validation for two

Reynolds numbers presented in § 4. LES is applied to only model D1 for both

the non-spiral and spiral blood flow cases and model B1 for the non-spiral blood

flow. Three different inlet turbulence intensities: 0% i.e., no inlet perturbation, 1%

and 5% are considered for experimental validation. The inlet perturbations in LES

were generated using the vortex method ([28]) and the magnitude of these artificial

intensities adjust downstream from the inlet. A time-step size of 1.0×10−3 s is taken

for temporal advancement in LES. Instantaneous axial velocity at several points

on the centreline is recorded for each time-step and sampling for time statistics

is initiated when the initial transients has vanished. A total time-steps of 15000

are used to get statistical convergence when the time averaged values have levelled

off. Results presented in the paper are mainly of k-ω model unless it is mentioned

otherwise.

3 Overview of Numerical Procedures

An outline of the solution procedure used this study is laid out in this section. The

cell-centered finite volume fully implicit and second order accurate in both space

and time code, Fluent 6.3, with its turbulence models namely two-equation k-ω

Transitional model and LES with Smagorinsky-Lilly dynamic subgrid model was

employed to solve the incompressible governing equations for the spiral blood flow

through the models of arterial stenosis. Fluent with above mentioned turbulence

models has previously been exploited to investigate pulsatile and steady flow in

arterial stenosis by Ryval et al. [29], Varghese et al. [11], Paul and Larman [4],

Barber and Simmons [18] and G̊ardhagen et al. [17].

Pressure-based fully implicit solver was chosen for this study. Finite-volume

approach is used to discretise the governing equations to construct a system of

linear equations. For the k-ω Transitional model, the diffusive and convective terms

9



of the momentum equations and the equations of turbulence kinetic energy (k) and

specific dissipation rate (ω) were discretised by using second-order upwind scheme.

However, in LES, a second-order-accurate bounded central differencing scheme is

used to discretise the diffusive and convective terms of the momentum equations.

And the pressure at a cell face was computed using second-order scheme for both LES

and k-ω Transitional model. In addition, three-point backward difference scheme is

used to discretise time derivatives.

A segregated pressure correction algorithm, SIMPLEC (Vandoormaal and Raithby [30])

for the k-ω Transitional model and PISO (Pressure-Implicit with Splitting of Opera-

tors, Issa [31]) for LES, is employed to couple pressure with the velocity components

and results are stored at the cell centres as the code uses a co-located scheme. To

prevent unphysical checker-boarding of pressure, the Poisson like pressure-correction

equation is discretised by using a procedure similar to Rhie and Chow [32] pressure

smoothing approach. The pressure correction equation is solved by using the alge-

braic multigrid (AMG) method. Splitting error, introduced by segregated solution

process, is controlled by using an iterative-time advancement scheme.

A point implicit (Gauss-Seidel) solver in conjunction with algebraic multigrid

(AMG) method is used to solve the discretised system of linear equations. For

all the computations, convergence is assumed to have achieved when the residuals

become less than 1, normalised by10−5.

4 Validation with Experiment

Before discussing the main results, it would be interesting to see how the simula-

tion results obtained from using the different turbulence models match the available

experimental results of Ahmed and Giddens [23, 22]. Figs. 2 and 3 show a com-

parison of the axial velocity profiles at various locations downstream of the stenosis

models B1 and D1 respectively for the non-spiral flow i.e., straight tube with 75%

cross-sectional area reduction stenosis for the Reynolds numbers Re = 1000 and
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2000 respectively. Velocity profiles in models B1 and D1 obtained by using the k-ω

models with an inlet intensity of 1.5% and 0.7% respectively closely follow the cor-

responding experimental data, though they over-predict in the further downstream

region. For the k-ω models, any inlet intensity lower than the above intensities for

a corresponding geometric model gives unconvincing velocity profiles as it is clear

from Figs. 2 and 3. It is to note from the above figures that the standard k-ω

(skw) transitional and k-ω-SST transitional models give almost the same results,

i.e., none of the two k-ω models matches the experimental data better than the

other. So, the standard k-ω transitional model will be used in preference to the

k-ω-SST transitional model.

Three distinct inlet perturbations, 0%, 1% and 5% were introduced in LES for

both geometric models B1 and D1. It appears from the above figures that the LES

with a 0% inlet intensity agrees better with the experimental results than the other

two inlet intensities for model B1. However, for model D1, the LES with a 5% inlet

intensity matches the experimental data better. Therefore for model D1, 5% inlet

intensity will be used in this study. Furthermore, performance of LES is obviously

better than the k-ω transitional model as it can be seen that the blunt turbulence

velocity profiles in the downstream region from the experimental data matches only

the LES results. In spite of small disagreements with the experimental results of

Ahmed and Giddens [23, 22], which are also present in the studies of Ryval et al. [29]

and G̊ardhagen et al. [17], overall agreement of the present simulation results with

the experimental results is very good.

5 Results and discussion

Although all the geometric models are studied for the spiral blood flow, results from

models D1, D2, D3 and D4 are presented in detail while the findings from all the

models are summarised in bar charts at the end. As the focus is on the effects of

spiral pattern on the flow field in the downstream of the stenosis, results in the
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curved section of all the models having upstream section are ignored to compare the

results in the remaining section with corresponding results in the stenosed straight

tube without upstream curved section.

5.1 Grid Resolution Study

Grid resolution tests are done for the spiral flow in two models namely D1 and D3

by applying the LES and standard k-ω transitional model respectively to ensure

simulation results are independent of grid arrangements employed. The test results

are shown in Figs. 4 and 5 for the axial velocity profiles at different locations along

the axial directions. In Fig 4 for model D1, Grid 1 corresponds to a total of ≈

500, 000 control volumes which is increased by 40% for Grid 2 to get ≈ 700, 000

control volumes. Grid 3 consists of huge control volumes i.e., ≈ 1, 260, 000 which is

further 80% increase of Grid 2. However, in Fig 5 for model D3, Grid 1, Grid 2 and

Grid 3 consists of ≈ 750, 000 , 950, 000 and 1, 500, 000 control volumes respectively,

keeping almost the same ratio of control volumes as in model D1. The grid resolution

studies in Figs. 4 and 5 clearly show that resolution of Grid 2 is good enough to

get high level accuracy in the simulation while keeping the computational cost to a

minimum. In addition, three different time-step (dt = 1.5 × 10−3s, 1.0 × 10−3s

and 8.5× 10−4s) were used and the results obtained with dt = 1.0× 10−3s showed

to have a good time-step independency.

5.2 Assessment of Flow Field

To see how the flow field in the downstream of the stenosis in the non-spiral flow

differs from that of the spiral flow, cross-sectional streamlines are appended on the

contour plot of the axial velocity at various locations along the flow directions in

Figs. 6-9 for models D1 and D3. Fig. 6 demonstrates that the re-circulation region,

evidenced by the presence of the negative axial velocity near the walls, for the non-

spiral flow in model D1 is between 2D (frame e) and 4D (frame g). While for the

spiral flow in the same model, the re-circulation region is predicted to be slightly
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larger and lies between 2D (frame e) and 5D (frame h), as seen in Fig. 7. Also

the twisting pattern of the spiral flow in this region is much stronger and the spiral

property tries to stabilise the flow towards the the further downstream region. The

large recirculation zones in the downstream of model stenosis are clinically harmful

as these may cause potential damage to blood cells and intima of the stenosed artery

(Paul and Larman [4], Paul et al. [12]).

The “twisted” pattern found in the downstream of the spiral flow in model D1, as

seen in Fig. 7, is similar to the “corkscrew” pattern found in the MRI measurements

of the blood flow in a thrombosed artery by Frydrychowicz et al. [33]. However, the

length of the recirculation zone for the non-spiral and spiral flow in model D3 is

almost same and lies between 2D (frame e) and 5D (frame h), as it is clear from

Figs. 8 and 9. Further, it is to note that unlike the spiral flow in model D1 as in

Fig. 7, no stable spiral pattern is seen in the upstream region and at the throat of

the stenosis for either non-spiral or spiral flow in model D3. But for the spiral flow

in model D3 as in Fig. 9, a rotational pattern is visible in the further downstream

region. Moreover, two distinct recirculations of secondary flow can be observed for

both non-spiral and spiral flow in model D3 at −3D (frame a) in the upstream of

the stenosis due to the presence of a curved section. Additionally, for both spiral

and non-spiral flow in models D1 and D3, velocity vectors move towards the centre

at the throat of the stenosis where the axial velocity is maximum. At the onset

of turbulence at 2D (frame e), direction of the vectors reverses from their previous

direction at 1D (frame d) where they start to break away from the centre as it is

clear from Figs. 6, 7, 8 and 9.

The mean axial velocity, 〈w〉, profiles for both the non-spiral and spiral flow at

different locations in the models D1 and D2, D3 and D4 are presented in Figures 10

and 11, respectively. Note that the corresponding LES results in model D1 are also

appended in Figure 10. As blood enters the stenosis, it accelerates through the

constriction, generating a plug-shaped velocity profile within the stenosis and a flow

separation region immediately downstream of the stenosis. No substantial effect of
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the spiral flow on the axial velocity is observed from the above figures. However, the

axial velocity in model D1 increases for the spiral flow near the wall and decreases

around the centre between 2D (frame d) and 4D (frame f) which can be seen from

the LES results. In the further downstream region, i.e. after 8D (frame j), it is

almost same for all the models. But the magnitude of the axial velocity around the

centre is maximum in model D1 in the immediate downstream region and it falls

slightly from this maximum value in model D3. While it is minimum in models D2

and D4. Particularly, it is found that the axial velocity decreases in model D4

compared to that of D2 around the mid-region between the wall and the centre in

the downstream between 3D (frame e) and 4D (frame f). All these differences in

the axial velocity profiles in the different models are due to the effect of an upstream

curved segment of varying angles of curvature.

Figures 12 and 13 show the mean x-velocity (radial), 〈u〉, profiles at different

locations in models D1 and D2, D3 and D4, respectively. The LES results for the

mean x-velocity differ significantly from the corresponding k-ω model results, which

can be seen from Figure 12. Also in model D1, the spiral effect on 〈u〉 is distinctly

visible, especially up to 9D (frame k) as the 〈u〉 profiles in the non-spiral flow vary

in magnitude and pattern from those in the spiral flow. However, in other models,

the effect of the spiral flow is not significant on 〈u〉, as it is clear from Figure 13. The

magnitudes of 〈u〉 are maximum in model D2 and of opposite pattern in model D4

which can be attributed to the existence of an upstream curved segment of different

angles of curvature.

The mean y-velocity (tangential) profiles, 〈v〉, in models D1 and D2, D3 and

D4 are shown in Figures 14 and 15, respectively, to see the influence of the spiral

flow and an upstream curved section on 〈v〉. As already seen in the 〈u〉 profiles,

the LES results for 〈v〉 do not match the corresponding k-ω model results, which

is clear from Figure 14. Due to the effect of spiral velocity introduced at the inlet,

the 〈v〉 profiles for the spiral flow at different locations differ from the corresponding

results for the non-spiral flow in model D1, which can also be seen from this figure,
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especially from the LES results. In the other models, as can be seen in Figure 15,

the effect of the spiral and upstream curved section on 〈v〉 is also distinctly visible.

Particularly, at some places in the downstream region up to 5D (frame g), 〈v〉 is

maximum in model D4 which is followed by its corresponding value in models D3

and D2. In the further downstream region, the 〈v〉 profiles are almost same in all

models.

5.3 Turbulence Characteristics

The effects of the spiral flow and upstream curved segment on the turbulence kinetic

energy (TKE) at different locations in the flow domain in modelsD1 and D2, D3 and

D4 are presented in Figures 16 and 17, respectively. The LES results in Figure 16

clearly show that in model D1 at some places between 2D (frame d) to 5D (frame

g) i.e., in the core turbulence region, the TKE increases for the spiral flow though it

may decrease along the centreline as shown by Paul and Larman [4]. Also the TKE

in model D2 increases at some places when a spiral effect is introduced at the inlet

of the model as can be seen from Figure 17(d-f). No major influence of the spiral

flow on the TKE in the other models (D3 and D4) can be seen from Figure 17.

It remains same at the corresponding locations, however, the TKE is high in the

post-stenotic region between 2D (frame d) and 6D (frame h). The high TKE in the

post-stenotic region for the spiral flow in models D1 and D2 has even more serious

detrimental effect on the human circulatory system because large TKE damages the

red blood cell materials and activates the platelets in the blood leading to many

pathological diseases (Ku [25]).

5.4 Wall Pressure and Shear Stress

Circumferential average wall pressure and wall shear stress (WSS) obtained from all

the models are presented in Figs. 18 and 19 respectively. Fig. 18 generally shows

that the wall pressure drop around the stenosis throat is greater in models D1 and

D3 than that of the other two models D2 and D4. Particularly, the wall pressure
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drop in model D3 is maximum and it is same and minimum in models D2 and D4.

The LES results also show that the wall pressure recovers in model D1 earlier than

the other models after the drop and some variations between the results of spiral

and non-spiral flow are found in the downstream region. It should be noted that

the high Bernoulli-type pressure drop at the stenosis throat could potentially cause

local collapse of the stenosis in severe stenoses (Wootton and Ku [34]). Consequently,

choking can restrict the flow rate, and generated compressive loading may rupture

the plaque, a precipitating event in most heart attacks and stroke (Wootton and

Ku [34], Li et al. [35]).

The WSS increases just prior to the throat of the stenosis in Fig. 19 because

of the high velocity found at the throat. It drops just after the throat where it

is almost zero and takes an oscillatory form in the post-stenotic region. Like the

pressure drop, the WSS increases just before the throat and it is maximum (31 Pa)

and almost same in models D1 and D3. While in models D2 and D4, the WSS

is of same value and prior to the throat it increases (25 Pa) less than that in the

other two models. This high increase in WSS just before the throat has many

pathological significances. Malek et al. [36] reported that the shear stress higher

than 70 dynes/cm2 (or 7 Pa) may induce thrombosis. According to Fry [37], high

WSS (> 379± 85 (SD) dynes/cm2) around the throat may damage endothelial cells

and fissure plaque. And it may also overstimulate platelet thrombosis (Ku [25]),

leading to a total occlusion (Folts et al. [38]). Additionally, high shear stress (>

100 dynes/cm2 or 10 Pa) is also responsible for deformation of the red blood cells

(Sutera and Mehrjardi [39]). Moreover, the abnormal oscillatory shear stress found

in the downstream of the stenosis in all the models may cause potential damage to

the red blood cells and the inner lining of a post-stenotic blood vessel (Paul and

Molla [15]).

16



5.5 Summary of the other models

Bar charts in Fig. 20 summarise the effects of the spiral flow and upstream curved

segments on the maximum (derived from the whole domain) TKE in all the models.

The maximum TKE increases slightly for the spiral flow in models A1, B1, B3,

C2, D1 and D2; while for the spiral flow in models A2, A3, A4, B2, B4, C4 and

D4 it decreases a little and its change in the remaining models is very insignificant.

Specifically, for the spiral flow, the maximum increase in TKE is ≈ 6%, ≈ 2%, ≈ 3%

and ≈ 5% for Re = 500 in the straight stenosed tube, Re = 1000 in the straight

stenosed tube, Re = 1500 in the 60◦ curved upstream model, and Re = 2000 in

the 60◦ curved upstream model, respectively. And the maximum decrease in TKE

is ≈ 7%, ≈ 3%, ≈ 2% and ≈ 2% for Re = 500 in the 60◦ curved upstream model,

Re = 1000 in the 60◦ curved upstream model, Re = 1500 in the 120◦ curved

upstream model, and Re = 2000 in the 120◦ curved upstream model respectively.

Influence of the upstream curved segment on the maximum TKE can also be seen

for all the Reynolds numbers. For example, for the Reynolds numbers Re = 1000,

1500 and 2000, the maximum TKE increases most in the model with 120◦ curved

upstream segment which is followed by the maximum TKE in the 60◦, 90◦ and 0◦

curved upstream segment models respectively. But for Re = 500, the maximum

TKE decreases most in the 120◦ curved upstream segment model. In terms of their

quantitative comparisons, the maximum TKE rises 18%, 18% and 19% in the 120◦

curved upstream model from its minimum value in the straight stenosed tube for

Re = 1000, 1500 and 2000 respectively. While for Re = 500, it rises 34% in the 60◦

curved upstream model from its minimum value in the 120◦ curved upstream model.

As mentioned earlier, this extreme rise in TKE in curved models may potentially

harm the red blood cells and further activate the platelets in the blood, resulting in

many pathological diseases (Ku [25]).

Additionally, contour plots of the TKE for both the non-spiral and spiral flow in

model A1 in Fig. 21 also show that the maximum TKE increases for the spiral flow

(frame b), though it decreases along the centreline for the spiral flow as reported
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by Paul and Larman [4]. Therefore, taking only the centreline data for TKE would

provide an incomplete description of the spiralling effects.

Furthermore, it can be observed that the effect of the spiral flow on the maximum

blood pressure drop (Fig. 22) and the maximum WSS (Fig. 23) in any model for

all the Reynolds numbers is very insignificant. However, the effect of the upstream

curved segment on the maximum blood-pressure drop and the maximum WSS is

clearly seen. For instance, the maximum blood pressure drop increases ≈ 7% in

the 120◦ curved upstream model from its minimum value in the straight stenosed

tube for all the investigated Reynolds numbers. On the other hand, the maximum

WSS increases ≈ 3%, ≈ 1.5%, ≈ 3% and ≈ 4% in the 120◦ curved upstream model

from its minimum value in the straight stenosed tube for Re = 500, 1000, 1500 and

2000 respectively. Thus, the stenosis in curved artery increases the risk of potential

rupture and thrombosis as discussed in § 5.4.

6 Conclusion

The standard k-ω transitional model and LES were applied to study the effects of the

spiral blood flow in various stenosed arterial models with an effect of curvature placed

upstream at various angles. The results presented in the paper generally show that

the spiral blood flow slightly increases the recirculation zone in the straight stenosed

tube. Moreover, depending on the flow Reynolds number and model geometry the

influence of the spiral blood flow may also moderately increase the turbulence

kinetic energy in the post-stenosis region.

As for the effects of the upstream curved segment, the maximum TKE increases

significantly in the 120◦ curved upstream model from its minimum value found

in the straight stenosed tube for Re = 1000, 1500 and 2000. But, it decreases

dramatically compared to that obtained in the 60◦ curved upstream model for Re =

500. Additionally, the maximum pressure drop and the maximum WSS increase in

the 120◦ curved upstream model from their corresponding minimum values in the

18



straight stenosed tube for all the Reynolds numbers.

Though, in this study, the walls of the models are taken rigid instead of biolog-

ically realistic distensible wall, this paper potentially gives some understanding of

the effects of the spiral velocity in the post-stenotic region. The study in this paper

was also simplified by considering the steady flow in the arterial stenosis models,

whereas the blood flow is physiologically pulsatile. A thorough numerical inves-

tigation of the physiologically pulsatile spiral blood flow in stenosed (distensible)

arteries is a natural extension of this paper. Moreover, a simplified tangential ve-

locity was introduced at the inlet of the arterial models to generate the steady-state

spiral flow. Further study is thus also required to better implement the feature of

the heart twisting and blood flow spiralling through arteries.
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Figure 1: Three dimensional view of the model arteries without and with an up-

stream curved section of varying angles of curvature (θ). Angle of curvature (θ) in

frame (a), (b), (c) and (d), is 0◦, 60◦, 90◦ and 120◦ respectively.
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Figure 2: Axial velocity comparison with the experimental data of Ahmed and

Giddens [22] for the non-spiral flow in model B1 at (a) z/D = 0, (b) z/D = 1, (c)

z/D = 2.5, (d)z/D = 4, (e) z/D = 5 and (f) z/D = 6.
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Figure 3: Axial velocity comparison with the experimental data of Ahmed and

Giddens [23] for the non-spiral flow in model D1 at (a) z/D = 0, (b) z/D = 1, (c)

z/D = 2.5, (d)z/D = 4, (e) z/D = 5 and (f) z/D = 6.

25



0 1 2 3 40

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(f)

0 1 2 3 40

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(e)

0 1 2 3 40

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(d)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Grid 1
Grid 2
Grid 3r/

R

w/V-

(a)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

r/
R

w/V-

(b)

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

r
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z/D = 5 and (f) z/D = 6.
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spiral flow in model D1 at (a) z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2,

(e) z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8, (k)

z/D = 9, (l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22. Note that

LES was also applied to this model.
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Figure 15: Mean y-velocity (tangential), 〈v〉, profiles for both the non-spiral and

spiral flow in models D2, D3 and D4 at (a) z/D = −1, (b) z/D = 0, (c) z/D = 1,

(d) z/D = 2, (e) z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7,

(j) z/D = 8, (k) z/D = 9, (l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and

(o)z/D = 22.
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Figure 16: Turbulence kinetic energy, k (m2/s2), for both the non-spiral and spiral

flow in model D1 at (a) z/D = −1, (b) z/D = 0, (c) z/D = 1, (d) z/D = 2, (e)

z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7, (j) z/D = 8, (k)

z/D = 9, (l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and (o)z/D = 22. Note that

LES was also applied to this model.
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Figure 17: Turbulence kinetic energy, k (m2/s2), for both the non-spiral and spiral

flow in models D2, D3 and D4 at (a) z/D = −1, (b) z/D = 0, (c) z/D = 1, (d)

z/D = 2, (e) z/D = 3, (f) z/D = 4, (g) z/D = 5, (h) z/D = 6, (i) z/D = 7,

(j) z/D = 8, (k) z/D = 9, (l) z/D = 10, (m) z/D = 12, (n) z/D = 16 and

(o)z/D = 22.
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Figure 18: Circumferential average wall pressure (Pa) for both the non-spiral and

spiral flow in models D1, D2, D3 and D4.
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Figure 19: Circumferential average wall shear stress, τ (Pa), for both the non-spiral

and spiral flow in models D1, D2, D3 and D4.
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Figure 20: Bar charts of the maximum turbulence kinetic energy for both the non-

spiral and spiral flow in all models for (a) Re = 500, (b) Re = 1000, (c) Re = 1500

and (d) 2000.
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Figure 21: Contour plots of the TKE, k (m2/s2), in model A1 for (a) the non-spiral

flow and (b) the spiral flow.
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Figure 22: Bar charts of the maximum blood pressure drop for both the non-spiral

and spiral flow in all models for (a) Re = 500, (b) Re = 1000, (c) Re = 1500 and

(d) 2000.

42



23.2

23.4

23.6

23.8

24

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

(a) Re = 500

22.8

23

23.2

A1 A1 

spiral

A2 A2 

spiral

A3 A3 

spiral

A4 A4 

spiral

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

25.4

25.6

25.8

26

(b) Re = 1000

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

25

25.2

B1 B1 

spiral

B2 B2 

spiral

B3 B3 

spiral

B4 B4 

spiral

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

27.4

27.6

27.8

28

28.2

(c) Re = 1500

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

26.8

27

27.2

C1 C1 

spiral

C2 C2 

spiral

C3 C3 

spiral

C4 C4 

spiral

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

32

32.4

32.8

33.2

33.6
(d) Re = 2000

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

31.2

31.6

32

D1 D1 

spiral

D2 D2 

spiral

D3 D3 

spiral

D4 D4 

spiral

M
ax

 W
al

l S
he

ar
 S

tr
es

s 
(P

a)

Figure 23: Bar charts of the maximum wall shear stress for both the non-spiral and

spiral flow in all models for (a) Re = 500, (b) Re = 1000, (c) Re = 1500 and (d)

2000.
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