
knn

Kouzapas, D., Gutkovas, R., and Gay, S. J. (2014) Session Types for
Broadcasting. In: 7th Workshop on Programming Language Approaches to
Concurrency and Communication-cEntric Software, 12 Apr 2014,
Grenoble, France.

Copyright © 2014 The Authors

http://eprints.gla.ac.uk/101390/

Deposited on: 22 January 2015

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296169176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Submitted to:

Session Types for Broadcasting

Dimitrios Kouzapas
University of Glasgow

dimitrios.kouzapas@glasgow.ac.uk

Ramūnas Gutkovas
Uppsala University

ramunas.gutkovas@it.uu.se

Simon J. Gay
University of Glasgow

simon.gay@glasgow.ac.uk

Up to now session types have been used under the assumptions of point to point communication,
to ensure the linearity of session endpoints, and reliable communication, to ensure send/receive du-
ality. In this paper we define a session type theory for broadcast communication semantics that by
definition do not assume point to point and reliable communication. Our session framework lies
on top of the parametric framework of broadcasting ψ-calculi, giving insights on developing session
types within a parametric framework. Our session type theory enjoys the properties of soundness and
safety. We further believe that the solutions proposed will eventually provide a deeper understanding
of how session types principles should be applied in the general case of communication semantics.

1 Introduction

Session types [5, 7, 6] allow communication protocols to be specified as types and verified by type-
checking. Up to now, session type systems have assumed reliable, point to point message passing com-
munication. Reliability is important to maintain send/receive duality, and point to point communication
is required to ensure session endpoint linearity.

In this paper we propose a session type system for unreliable broadcast communication. Developing
such a system was challenging for two reasons: (i) we needed to extend binary session types to handle
unreliability as well as extending the notion of session endpoint linearity, and (ii) the reactive control
flow of a broadcasting system drove us to consider typing patterns of communication interaction rather
than communication prefixes. The key ideas are (i) to break the symmetry between the s+ and s− end-
points of channel s, allowing s+ (uniquely owned) to broadcast and gather, and s− to be shared; (ii) to
implement (and type) the gather operation as an iterated receive. We retain the standard binary session
type constructors.

We use ψ-calculi [1] as the underlying process framework, and specifically we use the extension
of the ψ-calculi family with broadcast semantics [2]. ψ-calculi provide a parametric process calculus
framework for extending the semantics of the π-calculus with arbitrary data structures and logical as-
sertions. Expressing our work in the ψ-calculi framework allows us to avoid defining a new operational
semantics, instead defining the semantics of our broadcast session calculus by translation into a broadcast
ψ-calculus. Establishing a link between session types and ψ-calculi is therefore another contribution of
our work.

Intuition through Demonstration. We demonstrate the overall intuition by means of an example.
For the purpose of the demonstration we imply a set of semantics, which we believe are self explanatory.
Assume types S =!T ; ?T ;end, S =?T ; !T ;end for some data type T , and typings s+ : S, s− : S, a : 〈S〉,
v : T . The session type prefix !T means broadcast when used by s+, and single destination send when
used by s−. Dually, ?T means gather when used by s+, and single origin receive when used by s−.

Session Initiation through broadcast, creating an arbitrary number of receiving endpoints:
as−.P0 | ax.P1 | ax.P2 | ax.P3 −→ P0 | P1{s−/x} | P2{s−/x} | ax.P3

2 Session Types for Broadcasting

Due to unreliability, ax.P3 did not initiate the session. We denote the initiating and accepting session
endpoint as s+ and s− respectively.

Session Broadcast from the s+ endpoint results in multiple s− endpoints receiving:
s+!〈v〉;P0 | s−?(x);P1 | s−?(x);P2 | s−?(x);P3 −→ P0 | P1{v/x} | P2{v/x} | s−?(x);P3

Due to unreliability, a process (in the above reduction, process s−?(x);P3) might not receive a message.
In this case the session endpoint that belongs to process s−?(x);P3 is considered broken, and later we
will introduce a recovery mechanism.

Gather: The next challenge is to achieve the sending of values from the s− endpoints to the s+

endpoint. The gather prefix s+?(x);P0 is translated (in Section 4) into a process that iteratively receives
messages from the s− endpoints, non-deterministically stopping at some point and passing control to P0.

s+?(x);P0 | s−!〈v1〉;P1 | s−!〈v2〉;P2 | s−!〈v3〉;P3 −→∗ P′0 | P1 | s−!〈v2〉;P2 | P3

with P0{{v1,v3}/x} −→ P′0.
After two reductions the messages from processes s−!〈v1〉;P1 and s−!〈v3〉;P3 had been received by the s+

endpoint. On the third reduction the s+ endpoint decided not to wait for more messages and proceeded
with its session non-deterministically, resulting in a broken sending endpoint (s−!〈v2〉;P2), which is pre-
dicted by the unreliability of the broadcast semantics. The received messages, v1 and v2, were delivered
to P0 as a set.

Prefix Enumeration: The above semantics, although capturing broadcast session initiation and in-
teraction, still violate session type principles due to the unreliability of communication:

s+!〈v1〉;s+!〈v2〉;0 | s−?(x);s−?(y);0 | s−?(x);s−?(y);0 −→
s+!〈v2〉;0 | s−?(y);0 | s−?(x);s−?(y);0 −→ 0 | 0 | s−?(y);0

The first reduction produced a broken endpoint, s−?(x);s−?(y);0, while the second reduction reduces
the broken endpoint. This situation is not predicted by session type principles. To solve this problem we
introduce an enumeration on session prefixes:

(s+,1)!〈v1〉;(s+,2)!〈v2〉;0 | (s−,1)?(x);(s−,2)?(y);0 | (s−,1)?(x);(s−,2)?(y);0−→
(s+,2)!〈v2〉;0 | (s−,2)?(y);0 | (s−,1)?(x);(s−,2)?(y);0−→ 0 | 0 | (s−,1)?(x);(s−,2)?(y);0

The intuitive semantics described in this example are encoded in the ψ-calculi framework. From this it
follows that all the operational semantics, typing system and theorems are stated using the ψ-calculus
framework.

Contributions. This paper is the first to propose session types as a type meta-theory for the ψ-
calculi. Applying session semantics in such a framework meets the ambition that session types can
effectively describe general communication semantics. A step further is the development of a session
type framework for broadcast communication semantics. It is the first time that session types escape
the assumptions of point to point communication and communication reliability. We also consider as
a contribution the fact that we use enumerated session prefixes in order to maintain consistency of the
session communication. We believe that this technique will be applied in future session type systems
that deal with unreliable and/or unpredictable communication semantics.

Related Work. Carbone et al. [4] extended binary session types with exceptions, allowing both
parties in a session to collaboratively handle a deviation from the standard protocol. Capecchi et al.
[3] generalized a similar approach to multi-party sessions. In contrast, our recovery processes allow a
broadcast sender or receiver to autonomously handle a failure of communication. Although it might be
possible to represent broadcasting in multi-party session type systems, by explicitly specifying separate
messages from a single source to a number of receivers, all such systems assume reliable communication
for every message.

D. Kouzapas, R. Gutkovas & S. J. Gay 3

2 Broadcast Session Calculus

We define an intuitive syntax for our calculus. The syntax below will be encoded in the ψ-calculi
framework so that it will inherit the operational semantics.

P,R ::= as−.P | ax.P | s+!〈v〉;P | s−!〈v〉;P | s+?(x);P | s−?(x);P
| s+⊕ l;P | s−&{li : Pi} | P ./ R | 0 | µX .P | X | P | P | (ν n)P

Processes as−.P, ax.P are prefixed with session initiation operators that interact following the broad-
cast semantics. Processes s+!〈v〉;P, s−!〈v〉;P define two different sending patterns. For the s+ endpoint
we have a broadcast send. For the s− endpoint we have a unicast send. Processes s+?(x);P, s−?(x);P
assume gather (i.e. the converse of broadcast send) and unicast receive, respectively. We allow selec-
tion and branching s+⊕ l;P, s−&{li : Pi} only for broadcast semantics from the s+ to the s− endpoint.
Each process can carry a recovery process R with the operator P ./ R. The process can proceed non-
deterministically to recovery if the session endpoint is broken due to the unreliability of the communica-
tion. Process R is carried along as process P reduces its prefixes. The rest of the processes are standard
π-calculus processes.

Structural congruence is defined over the abelian monoid defined by the parallel operator (|) and
the inactive process (0) and additionally satisfies the rules:

(ν n)0≡ 0 P | (ν n)Q≡ (ν n)(P | Q) if n /∈ fn(P)

3 Broadcast ψ-Calculi

Here we define the parametric framework of ψ-calculi for broadcast. For a detailed description of ψ-
calculi we refer the reader to [1].

We fix a countably infinite set of names N ranged over by a,b,x. ψ-calculi are parameterised over
three nominal sets: terms (T ranged over by M,N,L), conditions (C ranged over by ϕ), and assertions
(A ranged over by Ψ); and operators: channel equivalence, broadcast output and input connectivity
.↔,

.
≺,

.
�: T×T→C, assertion composition⊗ : A×A→A, unit 1∈A, entailment relation `A×C, and

a substitution function substituting terms for names for each set. The channel equivalence is required to
be symmetric and transitive, and assertion composition forms abelian monoid with 1 as the unit element.
We do not require output and input connectivity be symmetric, i.e., Ψ ` M

.
≺ N is not equivalent to

Ψ ` N
.
�M, however for technical reasons require that the names of L should be included in N and M

whenever Ψ ` N
.
≺ L or Ψ ` L

.
�M. The agents are defined as follows

P,Q ::= M(λ ã)N.P | MN.P | caseϕ1 : P1 [] . . . [] ϕn : Pn | LΨM | (νa)P | P | Q | !P

where ã bind into N and P. The assertions in the case and replicated agents are required to be guarded.
We abbreviate the case agent as case ϕ̃ : P̃; we write 0 for L1M, we also write a#X to intuitively mean that
name a does not occur freely in X .

We give a brief intuition behind the communication parameters: Agents unicast whenever their sub-
ject of their prefixes are channel equivalent, to give an example, ML.P and N(λ ã)K.Q communicate
whenever Ψ ` M .↔ N. In contrast, broadcast communication is mediated by a broadcast channel, for
example, the agents MN.P and Mi(λ ãi)Ni.Pi (for i > 0) communicate if they can broadcast and receive
from the same channel Ψ `M

.
≺ K and Ψ ` K

.
�Mi.

In addition to the standard structural congruence laws of pi-calculus we define the following, with
the assumption that a # ϕ̃,M,N, x̃ and π is permutation of a sequence.

(νa)case ϕ̃ : P̃≡Ψ case ϕ̃ : (̃νa)P case ϕ̃ : P̃≡Ψ caseπ · (ϕ̃ : P̃)
MN.(νa)P≡Ψ (νa)MN.P M(λ x̃)N.(νa)P≡Ψ (νa)M(λ x̃)N.P

4 Session Types for Broadcasting

The following is a reduction context with two types of numbered holes (condition hole [̂] and process
hole []) such that no two holes of the same type have the same number.

C ::= (case [̂] j : C [] ϕ̃ : P̃) |C | ∏k>0[]ik

The filling of the holes is defined in the following way: filling a process (resp. condition) hole with
a assertion guarded process (resp. condition) taken from the number position of a given sequence. We
denote filling of holes as C[(ϕi)i∈I;(Pj) j∈J;(Qk)k∈K] where the first component is for filling the condition
holes and the other two are for filling process holes.

We require that I is equal to the numbering set of condition holes and furthermore J and K are disjoint
and their union is equal to the numbering set of context for the process holes. We also require that every
J numbered hole is either in parallel with any of the K holes or is parallel to case where recursively a K
numbered hole can be found. When the numbering is understood we simply write C[ϕ̃; P̃; Q̃].

In the following we define reduction semantics of ψ-calculi, in addition to the standard labelled
transition semantics [1]. The two rules describe unicast and broadcast semantics. We identify agents up
to structural congruence, that is, we also assume the rule such that two agents reduce if their congruent
versions reduce. In the broadcast rule, if for some a ∈ ã, a ∈ n(K), then b̃ = ã, otherwise b̃ = ã\n(N).
To simplify the presentation we abbreviate ∏ L̃ΨM as ˆLΨM and ⊗iΨi as Ψ̂. We prove that reductions
correspond to silent and broadcast transitions.

N′ = N[x̃ := L̃] and Ψ̂ `M .↔M′ and ∀i.Ψ̂ ` ϕi

(ν ã)(C[ϕ̃; R̃; M(λ x̃)N.P, M′N′.Q] | ˆLΨM) → (ν ã)(P[x̃ := L̃] | Q | ∏ R̃ | ˆLΨM)

Ψ̂ `M
.
≺ K and ∀i.Ψ̂ ` K

.
�M′i and N′i [x̃i := L̃i] = N and ∀ j.Ψ̂ ` ϕ j

(ν ã)(C[ϕ̃; R̃; MN.P,(˜M′(λ x̃)N′.Q)] | ˆLΨM) → (ν b̃)(P | ∏i Qi[x̃i := L̃i] | ∏ R̃ | ˆLΨM)

Theorem 3.1. Let α be either a silent or broadcast output action. Then, 1.P α−→ P′ iff P→ P′

Proof Sketch. The complicated direction is =⇒ . One needs to prove similar results for the other actions,
and then demonstrate that they in parallel have the right form.

4 Translation of Broadcast Calculus to Broadcast ψ-Calculus

The semantics for the broadcast session calculus are given as an instance of the ψ-calculi with broadcast
[2]. To achieve this effect we define a translation between the syntax of § 2 and a particular instance of
the ψ-calculi. Operational semantics are then inherited by the ψ-calculi framework.

We fix the set of labels L and ranged over by l, l1, l2 The following are the nominal sets

T = N ∪{∗}∪{(np,k),(np, i),(np,k,u),(np, l,k),n · k | n,k ∈ T∧ i ∈ N∧ l ∈L ∧ p ∈ {+,−}}
C = {t1

.↔ t2, t1
.
≺ t2, t1

.
� t2 | t1, t2 ∈ T}∪{true}

A = T→ N

We define the ⊗ operator (here defined as multiset union) and the ` relation:

(f ⊗g)(n) =

f (n)+g(n) if n ∈ dom(f)∩dom(g)
f (n) if n ∈ dom(f)
g(n) if n ∈ dom(g)
undefined otherwise

Ψ ` (sp1 ,k,u) .↔ (sp2 , j,u) iff Ψ(k) = Ψ(j)
Ψ ` (s+,k)

.
≺ (s+, i) iff Ψ(k) = i

Ψ ` (s+, i)
.
� (s−,k) iff Ψ(k) = i

Ψ ` true Ψ ` a .↔ a ∈N

D. Kouzapas, R. Gutkovas & S. J. Gay 5

It can be easily checked that the definition is indeed a broadcast ψ-calculus. We write Σi∈IP as a short-
hand for case t̃rue : P̃, and P+Q for case true : P [] true : Q

The translation is parameterised by ρ , which tracks the enumeration of session prefixes, represented
by multisets of asserted names LkM. The replication in s+?(x,ui);P implements the iterative broadcast re-
ceive. We annotated the prefixes s+?(x,ui);b P and µXb.P ./ R with b∈ {0,1} to capture their translation
as a two step (0 and 1) iterative process. The recovery process can be chosen in a non-deterministic way
instead of a s− prefix. Otherwise it is pushed in the continuation of the translation.

Jas−.P ./ RKρ = (νk)(as−.JP ./ RKρ∪{s+:k}) Jax.P ./ RKρ = (νk)(a(λx)x.JP ./ RKρ∪{s−:k})

Js+!〈v〉;P ./ RKρ∪{s+:k} = (s+,k)v.(JP ./ RKρ∪{s+:k} | LkM)
Js−!〈v〉;P ./ RKρ∪{s−:k} = (s−,k,u)v.(JP ./ RKρ∪{s−:k} | LkM)+ JRKρ∪{s−:k}
Js+?(x,u);0 P ./ RKρ∪{s+:k} = (ν n)(nu.0 | !(n(λx)x.((s+,k,u)(λy)y.n(x · y).0)

+τ.(JP ./ RKρ∪{s+:k} | LkM)))
Js+?(x,u);1 P ./ RKρ∪{s+:k} = (ν n)(((s+,k,u)(λy)y.n(u · y).0)+ τ.(JP ./ RKρ∪{s+:k}[x := u] | LkM)

| !(n(λx)x.((s+,k,u)(λy)y.n(x · y).0)+ τ.(JP ./ RKρ∪{s+:k} | LkM)))
Js−?(x);P ./ RKρ∪{s−:k} = (s−,k)(λx)x.(JP ./ RKρ∪{s−:k} | LkM)+ JRKρ∪{s−:k}
Js+⊕ l;P ./ RKρ∪{s−:k} = (s+, l,k)∗ .(JP ./ RKρ∪{s+:k} | LkM) JLkMKρ∪{sp:k} = LkM
Js−&{li : Pi}i∈I ./ RKρ∪{s−:k} = Σi∈I(s−, li,k)(λ)∗ .(JPi ./ RKρ∪{s−:k} | LkM)+ JRKρ∪{s−:k}
JµX0.P ./ RKρ = (ν n)(!(n(λ)∗ .JP ./ RKρ∪{X :n}) | n∗ .0)
JµX1.P ./ RKρ = (ν n)(JP ./ RKρ∪{X :n} | !(n(λ)∗ .JP ./ RKρ∪{X :n}))
JXKρ∪{X :n} = n∗ .0 J0Kρ = 0 J0 ./ RKρ = 0 JP | QKρ = JPKρ | JQKρ J(ν n)PKρ = (νn)JPKρ

The encoding respects the following desirable properties.

Lemma 4.1 (Encoding Properties). Let P be a session broadcast process.
1. JP[x := v]K = JPK[x := v]
2. JPK→ Q implies that for a session broadcast process P′,Q≡Ψ JP′K.

5 Broadcast Session Types

Broadcast session types syntax is identical to classic binary session type syntax (cf. [7]), with the excep-
tion that we do not allow session channel delegation. We assume the duality relation as defined in [7].
Note that we do not need to carry the session prefix enumeration in the session type system or semantics.
Session prefix enumeration is used operationaly only to avoid communication missmatch.

S ::= !U ;S | ?U ;S | ⊕{li : Si}i∈I | &{li : Si}i∈I | end | X | µX.S
U ::= 〈S〉 | [U]

Typing judgements are: Γ ` P read as P is typed under environment Γ, with
∆ ::= /0 | ∆ · sp : S Γ ::= /0 | Γ ·a : 〈S〉 | Γ · sp : S | Γ ·X : ∆

∆ environments map only session names to session types, while Γ maps shared names to shared types,
session names to session types and process variables to ∆ mappings.

The rules below define the broadcast session type system:

Γ ·n : U ` n : U [Name]
Γ ` P sp /∈ fn(P)

Γ · sp : end ` P
[Weak]

s /∈ dom(Γ)
Γ ` 0 [Inact]

Γ ` R sp /∈ dom(Γ)
Γ ` 0 ./ R

[Recov]

6 Session Types for Broadcasting

Γ ` a : 〈S〉 Γ ` s+ : S Γ ` P
Γ · s− : S ` as−.P

[BInit]
Γ ` a : 〈S〉 Γ · x : S ` P

Γ ` ax.P
[BAcc]

Γ · s+ : S ` P ./ R Γ ` v : 〈S′〉
Γ · s+ :!〈S′〉;S ` s+!〈v〉;P ./ R

[BSend]
Γ · s− : S ` P ./ R Γ ` v : 〈S′〉 s− /∈ dom(Γ)

Γ · s− :!〈S′〉;S ` s−!〈v〉;P ./ R
[USend]

Γ · s+ : S · x : 〈S′〉 ` P ./ R Γ ` u : [〈S′〉]
Γ · s+ :?〈S′〉;S ` s+?(x,u);b P ./ R

[URcv]
Γ · s− : S · x : 〈S′〉 ` P ./ R s− /∈ dom(Γ)

Γ · s− :?〈S′〉;S ` s−?(x);P ./ R
[BRcv]

Γ · s+ : Sk ` P ./ R k ∈ I
Γ · s+ :⊕{li : Si}i∈I ` s+⊕ lk;P ./ R

[Sel]
Γ · s− : Si ` Pi ./ R s− /∈ dom(Γ)

Γ · s− : &{li : Si}i∈I ` s−&{li : Pi}i∈I ./ R
[Bra]

Γ1 ` P1 Γ2 ` P2 s+ /∈ dom(Γ1)∩dom(Γ2)

Γ1∪Γ2 ` P1 | P2
[Par]

Γ · s+ : S · {s− : Si}i∈I ` P S = Si

Γ ` (ν s)P
[SRes]

Γ ·a : 〈S〉 ` P
Γ ` (ν a)P

[ShRes]
Γ∪∆ ·X : ∆ ` P sp /∈ dom(Γ)

Γ∪∆ ` µXb.P
[Rec] Γ∪∆ ·X : ∆ ` X [RVar]

Rule [Recov] types the recovery process. We expect no free session names in a recover process. Rules
[BInit], [BAcc], [BSend], [Usend], [BRcv], [BRcv], [Sel] and [Bra] type prefixes in the standard way, i.e. check
for object and the subject type match. Rule [URcv] types both binary instances of the unicast receive
prefix with the same type. We require that the recovery process is carried and typed inductively in the
structure of a process. A recovery process must not (re)use any session endpoints ([Recov]). Also we
require the s− to be the only one in Γ. Multiple s− endpoints are collected using the [Par] rule. The [Par]
rule expects that there is no duplicate s+ endpoint present inside a process. When restricting a session
name we check endpoint s+ and the set of endpoints s− to have dual types. The rest of the rules are
standard.

5.1 Soundness and Safety

We use the standard notion of a context C on session types S with a single hole denoted as []. We
write C [S] for filling a hole in C with the type S. We define the set of non-live sessions in a context as
d(Γ) = {s− : S | s+ : S′ ∈ Γ and S =C[S′] with C 6= []} and live l(Γ) = Γ\d(Γ). We say that Γ is well
typed iff ∀s+ : S ∈ l(Γ) then {s− : Si}i∈I ⊂ l(Γ) with S = Si or S =?U ;Si.

Theorem 5.1 (Subject Congruence). If Γ ` P with Γ well typed and P≡ P′ then Γ ` P′.

Theorem 5.2 (Subject Reduction). If Γ ` P with Γ well typed, dom(ρ) ⊆ dom(Γ) and JPKρ → Q, then
there is P′ such that JP′Kρ ≡Ψ Q, Γ′ `P′ and Γ′ well typed with either Γ′= d(Γ)∪l(Γ′) or Γ′= d(Γ)\{s− :
S}∪ l(Γ′) or Γ′ = d(Γ)∪{s− : S}∪ l(Γ′).

Definition 5.1 (Error Process). Let s-prefix processes to have the following form:
1. s+!〈v〉;P 2. s+⊕ l;P 3. s+?(x);P 4. ∏i∈I s−?(x);Pi | ∏ j∈J C j[s−?(x);Pj]
5. ∏i∈I s−!〈vi〉;Pi | ∏k∈K Pk | ∏ j∈J C j[s−?(x);Pj]
where ∏i∈I Pi | ∏k∈K Pk | ∏ j∈J C j[s−?(x);Pj] forms an s-redex.
6. ∏i∈I s−&{lk : Pk}k∈Ki | ∏ j∈J C j[s−&{lk : Pk}k∈K j]

with C j[] being a context that contains s− prefixes.
A valid s-redex is a parallel composition of either s-prefixes 1 and 4, s-prefixes 2 and 6, or s-prefixes

3 and 5. Every other combination of s-prefixes is invalid. An error process is a process of the form
P≡ (ν ñ)(R | Q) where R is an invalid s-redex and Q does not contain any other s-prefixes.

Theorem 5.3 (Type Safety). A well typed process will never reduce into an error process.

D. Kouzapas, R. Gutkovas & S. J. Gay 7

Proof. The proof is a direct consequence of the Subject Reduction Theorem (5.2) since error process are
not well typed.

6 Conclusion

We have defined a system of session types for a calculus based on unreliable broadcast communication.
This is the first time that session types have been generalised beyond reliable point-to-point communica-
tion. We defined the operational semantics of our calculus by translation into an instantiation of broadcast
ψ-calculi, and proved subject reduction and safety results. The use of the ψ-calculi framework means
that we can try to use its general theory of bisimulation for future work on reasoning about session-typed
broadcasting systems. The definition of a session typing system is also a new direction for the ψ-calculi
framework.

Acknowledgements Kouzapas and Gay are supported by the UK EPSRC project “From Data Types to
Session Types: A Basis for Concurrency and Distribution” (EP/K034413/1). This research was supported
by a Short-Term Scientific Mission grant from COST Action IC1201 (Behavioural Types for Reliable
Large-Scale Software Systems).

References
[1] Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2009): Psi-calculi: Mobile Processes,

Nominal Data, and Logic. In: LICS, pp. 39–48, doi:10.1109/LICS.2009.20.
[2] Johannes Borgström, Shuqin Huang, Magnus Johansson, Palle Raabjerg, Björn Victor, Johannes Åman Po-

hjola & Joachim Parrow (2011): Broadcast Psi-calculi with an Application to Wireless Protocols. In Gilles
Barthe, Alberto Pardo & Gerardo Schneider, editors: SEFM, Lecture Notes in Computer Science 7041,
Springer, pp. 74–89, doi:10.1007/978-3-642-24690-6 7.

[3] Sara Capecchi, Elena Giachino & Nobuko Yoshida (2014): Global Escape in Multiparty Sessions. Mathemat-
ical Structures in Computer Science. To appear.

[4] Marco Carbone, Kohei Honda & Nobuko Yoshida (2008): Structured Interactional Exceptions in Session
Types. In: CONCUR, LNCS 5201, Springer, pp. 402–417, doi:10.1007/978-3-540-85361-9 32.

[5] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disciplines
for Structured Communication-based Programming. In: ESOP’98, LNCS 1381, Springer, pp. 22–138,
doi:10.1007/BFb0053567.

[6] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty Asynchronous Session Types. In:
POPL’08, ACM, pp. 273–284, doi:10.1145/1328897.1328472.

[7] Nobuko Yoshida & Vasco Thudichum Vasconcelos (2007): Language Primitives and Type Discipline for
Structured Communication-Based Programming Revisited: Two Systems for Higher-Order Session Communi-
cation. Electr. Notes Theor. Comput. Sci. 171(4), pp. 73–93, doi:10.1016/j.entcs.2007.02.056.

http://dx.doi.org/10.1109/LICS.2009.20
http://dx.doi.org/10.1007/978-3-642-24690-6_7
http://dx.doi.org/10.1007/978-3-540-85361-9_32
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328897.1328472
http://dx.doi.org/10.1016/j.entcs.2007.02.056

	Introduction
	Broadcast Session Calculus
	Broadcast -Calculi
	Translation of Broadcast Calculus to Broadcast -Calculus
	Broadcast Session Types
	Soundness and Safety

	Conclusion

