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 7 
Abstract: An anisotropic plasticity model is proposed to describe the fabric effect on sand 8 

behavior under both monotonic and cyclic loading conditions within the framework of 9 

anisotropic critical state theory. The model employs a cone-shaped bounding surface in the 10 

deviatoric stress space and a yield cap perpendicular to the mean stress axis to describe sand 11 

behavior in constant-mean-stress shear and constant-stress-ratio compression, respectively. 12 

The model considers a fabric tensor characterizing the internal structure of sand associated 13 

with the void space system and its evolution with plastic deformation. The fabric evolution 14 

law is assumed to render the fabric tensor to become co-directional with the loading direction 15 

tensor and to reach a constant magnitude of unit at the critical state. In constant-stress-ratio 16 

compression, the final degree of anisotropy is proportional to a normalized stress ratio. An 17 

anisotropic variable defined by a joint invariant of the fabric tensor and loading direction 18 

tensor is employed to describe the fabric effect on sand behavior in constant-mean-stress 19 

monotonic and cyclic shear. A systematic calibrating procedure of the model parameters is 20 

presented. Satisfactory comparison is found between the model simulations and test results 21 

on Toyoura sand in both monotonic and cyclic loadings with a single set of parameters. The 22 

important role of fabric and fabric evolution in capturing the sand behavior is highlighted. 23 

Limitations and potential improvement of the model in describing cyclic mobility of very 24 

dense sand and sand behavior in non-proportional loading have been discussed. 25 

Keywords: Constitutive modeling; fabric tensor; anisotropy; bounding surface; cyclic 26 

loading; sand. 27 
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Introduction 1 

Natural and manmade sand deposits/samples are frequently cross-anisotropic due to 2 

gravitational forces and/or compaction. The anisotropic soil fabric consists of preferentially 3 

orientated sand particles, inter-particle contacts and void spaces with special geometric 4 

properties and plays an important role in affecting the overall sand behavior. For example, 5 

repeated experimental data indicate that sand fabric may significantly affect both the strength 6 

and the deformation behavior of sand. Careful consideration of fabric effects has to be a 7 

major component in safe design of major infrastructures since they are commonly built on/in 8 

sand with fabric anisotropy (Uthayakumar and Vaid 1998).  9 

 10 

With two model strip foundations built on the same sand, Oda et al. (1978) demonstrated that 11 

the bearing capacity for the model with the load perpendicular to the bedding plane may be 12 

34% higher than the other one with a load parallel to the bedding plane. The observed 13 

difference in strength is apparently attributable to the effect of cross anisotropy. Similar 14 

observations have been further confirmed by many laboratory tests (Miura and Toki 1982; 15 

Azami et al. 2010; Gao et al. 2010). Meanwhile, the undrained shear strength and cyclic 16 

liquefaction resistance of sand, which are of great concern in earthquake engineering design, 17 

are also found to be strongly dependent on the degree of fabric anisotropy and the relative 18 

orientation between the loading direction and material fabric (Miura and Toki 1982; Miura 19 

and Toki 1984; Yoshimine et al. 1998; Uthayakumar and Vaid 1998; Oda et al. 2001; Sze and 20 

Yang 2014). For instance, Miura and Toki (1982) and Sze and Yang (2014) found that sand 21 

deposits with higher degree of anisotropy (bedding plane is horizontal) show higher 22 

undrained shear strength in monotonic triaxial compression tests but lower liquefaction 23 

resistance in undrained cyclic triaxial tests. This is mainly due to that sand samples that are 24 

more anisotropic show more contractive responses in the triaxial extension side in cyclic 25 
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loading. For the same anisotropic sand deposit tested with horizontal and vertical deposition 1 

plane orientations, the sample with horizontal deposition plane has higher undrained shear 2 

strength in monotonic triaxial compression tests but lower liquefaction resistance in 3 

undrained cyclic triaxial tests, which is also due to that it shows more contractive response in 4 

the triaxial extension side during cyclic loading (Miura and Toki 1984; Oda et al. 2001; Sze 5 

and Yang 2014).  6 

 7 

To characterize the fabric effect on sand behavior, many theoretical attempts have been made 8 

during the past few decades. For example, various constitutive models have been developed 9 

to describe the effect of inherent anisotropy on sand responses (e,g., Pietruszczak 1999; Li 10 

and Dafalias 2002; Dafalias et al. 2004; Yin et al. 2010). These models are shown to be able 11 

to characterize the stress-strain and strength behavior of sand under certain loading conditions 12 

with varied degree of satisfaction. However, the assumption of a constant fabric during 13 

loading in these models may not be consistent with experimental and numerical observations 14 

where sand fabric has been found to change appreciably during loading in order to 15 

accommodate the applied stress in an optimum manner (Oda et al. 2001; Cui and O’Sullivan 16 

2006; Li and Li 2009; Li and Dafalias 2012; Guo and Zhao 2013; Zhao and Guo 2013). The 17 

evolution of sand fabric, if not properly accounted for, may result in some important features 18 

of sand behavior unable to be well captured. Typical examples include the non-coaxiality 19 

between the principle axes of plastic strain increment and stress (Gao et al. 2014) and the 20 

uniqueness of critical state line (Li and Dafalias 2012). There have been attempts to account 21 

for the change of anisotropy through incorporating rotational hardening (Sekiguchi and Ohta 22 

1977; Gajo and Wood 2001; Oka et al. 1999) and/or kinematic hardening (Wang et al. 1990; 23 

Li 2002). However, as shown by Kaliakin (2003), these techniques consider the loading 24 

history only, and are generally unable to adequately account for the influence of fabric and its 25 
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evolution associated with the physical structure of sand. Proper fabric tensor(s) characterizing 1 

the internal structure of sand has to be proposed and incorporated into a constitutive model to 2 

render physically realistic and mathematically robust modeling of sand behavior (Oda and 3 

Nakayama 1989; Wan and Guo 2001; Dafalias and Manzari 2004; Li and Dafalias 2004; 4 

Bauer et al. 2004; Gao et al. 2010). In this regard, Wan and Guo (2001), Li and Dafalias 5 

(2012) and Gao et al. (2014) were among the first to develop advanced constitutive models 6 

for sand with proper consideration of fabric evolution. These studies are however limited to 7 

the description of sand behavior in monotonic shear with fixed principal stress directions. The 8 

behavior of sand in relation to fabric and fabric evolution under other general loading 9 

conditions (such as constant-stress-ratio compression and cyclic loading), which is of 10 

apparent importance for engineering practice, remains inadequately addressed. 11 

 12 

The main objective of this work is to present a comprehensive bounding surface model to 13 

describe the fabric effect on sand behavior in both monotonic and cyclic loading based on the 14 

recent work by Gao et al. (2014) and the anisotropic critical state theory (Li and Dafalias 15 

2012). An evolving bounding surface and a yield cap are employed to model sand response in 16 

constant-mean-stress shear and constant-stress-ratio compression, respectively. An 17 

anisotropic variable
 
defined by a joint invariant of the fabric tensor and loading direction 18 

tensor is conveniently employed to characterize the fabric effect on plastic hardening, plastic 19 

flow and dilatancy of sand in constant-mean-stress shear. Fabric evolution in both constant-20 

mean-stress shear and constant-stress-ratio compression will be considered. 21 

 22 

Bounding surface 1f  and yield cap 2f  23 

The proposed model is based on the bounding surface concept originally described by Wang 24 

et al. (1990) and Li (2002) and the double hardening concept (Vermeer 1978), with further 25 
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adaption to be consistent with the anisotropic critical state theory recently developed by Li & 1 

Dafalias (2012) and materialized by Gao et al. (2014). Experimental observations show that 2 

there is appreciable plastic strain accumulation in sand during cyclic shear (Oda et al. 2001; 3 

Kiyota et al. 2008; Chiaro et al. 2009), we hence employ a cone-shaped bounding surface 1f  4 

to describe sand behavior under such loading conditions (Fig. 1). Since the sand behavior is 5 

found to be nearly elastic in constant-stress-ratio unloading and reloading (Pestana and 6 

Whittle 1995; Taiebat and Dafalias 2008; Northcutt and Wijewickreme 2013), a yield cap 2f  7 

perpendicular to the mean stress axis is employed to model sand behavior under such loading 8 

condition (Fig. 1). As a notation convention, all the quantities evaluated on the bounding 9 

surface 1f  are distinguished by a superposed bar.  10 

 11 

The bounding surface 1f  is expressed as (Li 2002) 12 

 1 1/ 0f R g H                                                        (1) 13 

where 3 2 ij ijR r r  with ijr  being the ‘image’ stress ratio tensor of the current stress ratio 14 

tensor  ij ij ij ijr s p p p     (Fig. 2), in which ij  is the stress tensor, ijs  is the 15 

deviatoric stress tensor and ij  is the Kronecker delta ( 1
 
for i j

 
and 0

 
for i j ); 1H  is 16 

a function of the internal state variables associated with the loading history;  g   is an 17 

interpolation function describing the variation of critical state stress ratio with Lode angle   18 

(Li 2002) 19 

 
     

 

2
2 2 21 4 1 sin 3 1

2 1 sin 3

c c c c
g

c






    



                                        (2) 20 

where e cc M M  with eM  and cM  denoting the critical state stress ratio in triaxial 21 

extension and compression, respectively.  22 
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The condition of consistency for the cone, 1 0df   is expressed as (Li and Dafalias 2002; Li 1 

2002) 2 

1 1 1 1 1 0ij ij p ij ij pdf pn dr L K pn dr L K                                         (3) 3 

where  ijn  [
 
 

1 1

1 1

3

3

ij mn mn ij

ij mn mn ij

f r f r

f r f r

 

 

    


    
] is the deviatoric unit loading direction tensor 4 

defined as the norm to 1f  at the image stress ratio point ijr  (Fig. 2), 
1pK  and 1pK  are 5 

respectively the plastic moduli for the reference and current stress state, 1L  is the loading 6 

index for constant-mean-stress shear and   are the Macauley brackets such that 
1 1L L  7 

for 1 0L   and 
1 0L   for 1 0L  . Eq. (3) indicates the size of the bounding surface 1f  8 

(denoted by 1H ) increases and decreases when 
1pK  is greater and less than 0, respectively (Li 9 

and Dafalias 2002; Li 2002). An explicit expression of 1H  is not necessarily needed but the 10 

evolution of 1H  is which is provided in Appendix 2.  11 

 12 

The ‘image’ stress ratio tensor ijr  is obtained by the radial mapping rule shown in Fig. 2. In 13 

the virgin loading, the projection center ij  is located at the origin of the deviatoric stress 14 

ratio space O. If 1L  changes from being positive to negative, 
 ij  will be relocated to the 15 

current stress ratio point in the following step (Fig. 3). Therefore, there will be a sudden 16 

change in the direction of ijn  when the projection centre  is relocated. More detailed 17 

discussion on this can be found in Li (2002). In Fig. 3,   and   denote respectively the 18 

distances of the ‘image’ and current stress ratio point from the projection centre ij . Notice 19 

that the relocation of the projection center in a small unloading and reloading cycle can the 20 

cause ‘overshoot’ problem for this model (E-Kan and Taiebat, 2014). 21 

ij
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 1 

The cap yield surface is expressed as (Li, 2002) 2 

2 2 0f p H                                                               (4) 3 

where 2H  defines the location of the flat cap at the mean stress axis. Its initial value is equal 4 

to the maximum mean stress the sample has been subjected to. The condition of consistency 5 

for this cap is (Li, 2002) 6 

2 2 2 0pdf dp L K                                                     (5) 7 

where 2L  is the loading index for constant-stress-ratio compression and 2pK  is the plastic 8 

modulus for the yield cap. At the initial state, there is a pre-existing yield cap 2f , the location 9 

of which is defined by the initial 2H  which is equal to the maximum mean stress the sand 10 

sample has been subjected to. For virgin consolidation before shearing, 2H  is just the 11 

maximum consolidation pressure. When the current stress state lies on 2f  and p  increases, 12 

2H  will increase as 2pK  is always greater than 0 (formulation for 2pK  will be shown in the 13 

subsequent sections). 14 

 15 

Following Gao et al. (2014) and Gao and Zhao (2013), a fabric dependent flow rule 16 

expressed as below is employed for constant-mean-stress shear 17 

1

1

p

ij ijde L m , with 
 

 

3

3

ij mn mn ij

ij

ij mn mn ij

g r g r
m

g r g r

 

 

    


    
                          (6) 18 

where 1p

ijde  is the plastic deviatoric strain increment associated with the loading index 1L . 19 

The plastic potential function g  is expressed in terms of the fabric tensor ijF , ijr  and ijn  as 20 

below 21 

   
2

1
0

k A

gg R g H e
 

                                       (7) 22 
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where k  is a positive model parameter with default value of 0.03; A  is an anisotropic 1 

variable expressed as a joint invariant of ijF  and ijn  (the definition of A  will be shown in the 2 

following section); 
gH  should be adjusted to make 0g   based on current ijr  and ijF .   The 3 

plastic potential expressed by Eq. (7) which borrowed the same expression used by Gao et al. 4 

(2014), has been based on a micromechanical consideration that the shear resistance of sand 5 

is jointed contributed by inter-particle friction (denoted by 
gH ) and fabric anisotropy 6 

(denoted by A ) (see also Nemat-Nasser, 2000). Notably, the inclusion of fabric anisotropy 7 

via the joint invariant A  in g  naturally addresses the non-coaxiality between the plastic 8 

strain increment and current stress in monotonic shear when the stress and fabric are initially 9 

non-coaxial (Gao et al. 2014; Gao and Zhao 2013). Eq. (6) is a general expression based on 10 

Eq. (7). Notice that the surface of g can only be visualized in the principal stress space (or 11 

the π-plane) in special cases with fixed relative orientation between the principal axes of ijF  12 

and ijn (related to ijr ) (see Fig. 10 in Gao et al., 2014 for demonstrative examples), since g  is 13 

a general function dependent on A  which is a joint invariant of   ijF and ijn . 14 

 15 

In constant-stress-ratio compression, the plastic deviatoric strain increment is assumed to 16 

align in the same direction of ijr  as follows (Li 2002) 17 

2

2

p

ij ijde L l , with 
ij ij ijl r r

                                            

(8) 18 

where 2p

ijde  is the plastic shear strain increment associated with the loading index 2L . 19 

 20 

Assuming that the plastic deviatoric and volumetric strain increments ( p

ijde  and 
p

vd ) can be 21 

decomposed into two parts associated with 1L  and 2L , respectively, one has 22 
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1 2

1 2

p p p

ij ij ij ij ijde de de L m L l                                                      (9) 1 

    1 2 1 1 2 2

1 2 1 1 2 22 3 2 3p p p p p p p

v v v ij ij ij ijd d d D de de D de de L D L D           (10) 2 

where 1D  ( 1 1 12 3p p p

v ij ijd de de ) and 2D  ( 2 2 22 3p p p

v ij ijd de de ) denote the dilatancy 3 

relations for constant-mean-stress shear and constant-stress-ratio compression, respectively. It 4 

should be mentioned that 
2 0p

vd   as 2 0pK   and 
2p

vd  occurs only when p  increases. 5 

 6 

It is instructive to briefly discuss the interaction between the two loading mechanisms. The 7 

shear loading mechanism is active as long as 0ij ijn dr   (Eq. 3), and the compression loading 8 

mechanism is active only when 2p H  and p  increases. The interaction between the two 9 

mechanisms is entailed in Appendix 1. An example in undrained cyclic triaxial compression 10 

is also shown in Fig. 4. Both mechanisms are active for path A to B and only the shear 11 

loading mechanism is active from O to A and B to C. 12 

 13 

Anisotropic variable A  and dilatancy state parameter   14 

The evolving bounding surface 1f  
and the projection centre ij  can help to effectively 15 

capture the effect of loading history (e.g., cyclic loading) on sand behavior (Wang et al. 1990; 16 

Li 2002; Ling and Yang 2006). Meanwhile, a fabric tensor characterizing the internal 17 

structure of sand needs also to be introduced to account for the fabric effect on sand response 18 

(Li and Dafalias 2004, 2012; Gao et al. 2014). The current model adopts the void-vector-19 

based deviatoric fabric tensor ijF  defined in Li and Li (2009). This tensor characterizes the 20 

geometric property of the void spaces of a granular assembly and has been shown to be more 21 

efficient than other fabric tensors in describing the dilatancy of granular materials (Li and Li 22 
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2009). For an initially cross-anisotropic sand sample with the isotropic plane being the x-y 1 

plane and the deposition direction aligning with the z-axis, the initial ijF  can be expressed as 2 

0

0

0

0 0 0 0
2

0 0 0 2 0
3

0 0 0 0 2

z

ij y

x

F F

F F F

F F

   
   

     
      

                            (11) 3 

where 0F   is the initial degree of anisotropy. For convenience, ijF  is normalized in a way that 4 

its magnitude 
ij ijF F F  is the maximum and unit at the critical state. If one chooses a 5 

coordinate system which is not aligned with the deposition direction or the material has been 6 

rotated in a fixed coordinate system, a corresponding orthogonal transformation must be 7 

carried out. 8 

 9 

The following anisotropic variable A  and dilatancy state parameter   (Li and Dafalias 2012) 10 

will be used to characterize the fabric effect on the dilatancy and plastic hardening of sand in 11 

constant-mean-stress shear 12 

ij ijA F n                                                                 (12) 13 

     1 2 1
x

A re A e A


           
 

                                (13) 14 

where re  and   are positive model parameters, ce e    is the state parameter defined by 15 

Been and Jefferies (1985) with ce  being the critical state void ratio corresponding to the 16 

current p . 50x   is a default model constant which makes the term   0
x

    unless   is 17 

very close to   (Fig. 3). It can be seen that Eq. (13) guarantees a smooth transition of Ae  18 

from re  in virgin loading with 1    to 2 re
 when the current stress state is inside the 19 

bounding surface with 1   . A Ae  varying with    is used here to gain a better 20 

description of sand response in cyclic loading. Consider a case in which the current stress 21 
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state is inside the bounding surface and   0
x

   , Eq. (13) gives  2 1re A    . On 1 

the other hand, A constant A re e  (Li and Dafalias, 2012; Gao et al., 2014) will lead to 2 

 1re A      which is typically smaller than   as 1 0A  . Bigger   will render the 3 

sand behavior more contractive (see Eq. 18 below) and such consideration is found to offer 4 

better description of the sand dilatancy in cyclic loading. Notice that using of a variable Ae  is 5 

for improving model response but the physical significance for such assumption is not clear. 6 

 7 

In the present model, the critical state line in the e p  plane is given by (Li and Wang 1998) 8 

 c c ae e p p


                              (14) 9 

where e , c  and  are material constants and ap  ( 101 kPa ) is the atmospheric pressure. 10 

 11 

Plastic modulus and dilatancy relation for constant-mean-stress shear 12 

The following plastic modulus is employed in constant-mean-stress shear  13 

 
2

1 e n

p c

Gh
K M g R

R

 





  

   
   

                                            (15) 14 

where G  is the elastic shear modulus, the expression of which will be shown in the 15 

subsequent sections, n  is a positive model parameter, h  is a scaling factor for the plastic 16 

modulus dependent on the density, A  and loading history. It can be seen from Eq. (15) that 17 

the model gives pure elastic sand response at the onset of loading direction reversal as 1pK  is 18 

infinite (     ), which is in supported by experimental observations (Kiyota et al. 2008; 19 

Chiaro et al. 2009). When    (corresponding to the virgin loading case), 20 

 1 1 e n

p p cK K Gh R M g R      , which essentially gives a peak stress ratio R  (or R ) 21 

dependent on  . 22 
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 1 

In the present model, the following form of h  is used 2 

m ch h h                                                           (16) 3 

where  4 

 1 eA

m hh c e      and     
 

 1

2
1

1

x x

c

h
h

F
      

 
                 (17) 5 

where hc  and 1h  are two positive model parameters, 50x   renders mh h  in the virgin 6 

loading with the stress state on 1f  (   1
x

     ) and  
2

1 1mh h h F   when the stress 7 

state is inside 1f  ( 1    and   0
x

   ). The function mh  is proposed based on the 8 

observations of monotonic sand behavior that the shear modulus increases as the void ratio 9 

decreases and the anisotropic variable A  increases (Li and Dafalias 2012). The term  
2

1 F  10 

is used to render 1h  to decrease with F . This is based on experimental observations that 11 

more anisotropic sand samples show a higher rate of positive excess pore pressure 12 

accumulation in undrained cyclic loading under otherwise identical conditions (Miura and 13 

Toki 1982; Sze and Yang 2014). 14 

 15 

The following dilatancy relation in constant-mean-stress shear is proposed based on the work 16 

by Li (2002), Li and Dafalias (2012) and Gao et al. (2014), 17 

 
 

1

1
1 1

e
2 3

p
mv

c
p p

cij ij

d d
D M g R

M gde de

 




  
    

  
                       (18) 18 

where

 

19 

    1 1
x x

cd d d      
 

                                         (19)

 

20 
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1

1

e

1 e

p
v

p
v

d

c d

r

d

d

 

 










                                                (20) 1 

where m , 1d ,   and rd  are positive model parameters.   is a model constant with default 2 

value of 5000, rd  is a  relatively small number with default value of 0.1. Eqs. (19) and (20) 3 

indicate that d  varies smoothly from 1d  when the stress state is on 1f  in virgin loading to 4 

1 cd d  when the stress state is inside. 5 

 6 

The newly introduced cd  is used to describe the effect of cyclic loading history on sand 7 

dilatancy. It is commonly observed that, during undrained cyclic loading with moderate stress 8 

ratio, the rate of excess pore water pressure increases dramatically at the onset of loading 9 

direction reversal when the stress state goes above the phase transformation line, which may 10 

be attributable to that the highly anisotropic void space system that has developed due to 11 

fabric evolution can be extremely unstable when the loading direction changes (Oda et al. 12 

2001; Sazzad and Suzuki, 2010; Soroush and Ferdowsi 2011). It can be seen from Eq. (20) 13 

that  cd  will increase dramatically after the occurrence of the first phase transformation 14 

( 1p

vd  becomes positive). This is because   is very big and small increase in 1p

vd  15 

can result in big increase in 
1

e
p
vd   and cd  according to Eq. (20). The integral 1p

vd  16 

keeps increasing as long as 
1 0p

vd   and remain unaltered to the value they have reached 17 

when the stress reversal takes place above the phase transformation line. The maximum cd  is 18 

around 10 when   1cR M g    and 
1

e
p
vd    . Therefore, the model gives an increasing 19 

1D  after the first phase transformation. Higher 1D  leads to higher rate of excess pore pressure 20 

accumulation in undrained cyclic loading. It is worth mentioning that Eq. (20) is essential for 21 
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getting better fit of sand behavior in cyclic loading but has its own drawback as one cannot 1 

distinguish whether the plastic volumetric strain is caused by the shear or compression 2 

mechanism. Indeed, other similar approaches have also been proposed to model the cyclic 3 

loading history on sand behavior by employing plastic-deformation-dependent dilatancy 4 

relation and/or plastic modulus (e.g., Wang et al. 1990; Oka et al. 1999; Li 2002; Ling et al. 5 

2006; Wang and Xie 2014). 6 

  7 

Plastic modulus and dilatancy relation for constant-stress-ratio compression 8 

We propose the following plastic modulus under constant stress ratio loading   9 

                                                     
 

2 2

2

2

3

c

p

M g
K d

Rr


                                                     (21) 10 

where   is the Lode angle for ijr ,  3 2ij ijR r r  is the current stress ratio, 2d  is a positive 11 

model parameter. The expression for 2r  describes the e-p relation in constant-stress-ratio 12 

compression which is always greater than zero. The term 2 3  is added to offer a simpler 13 

relation between 
2p

vd  and dp  [see Eq. (23) below], where 
2p

vd  is the plastic volumetric 14 

strain increment in constant-stress-ratio compression and dp  is the increment of mean 15 

effective stress. It follows from Eqs. (5), (8) and (20) that  2pK    at 0R  , and thus, 16 

2 0L  , which indicates that no plastic shear strain occurs in isotropic compression. 2pK  17 

becomes finite when 0R  and plastic shear strain is produced for constant-stress-ratio 18 

compression with 0R  . Eq. (21) is proposed to have such features based on the following 19 

experimental observations. In isotropic compression with 0R  , shear strain is not expected 20 

for an isotropic sample and negligible amount of plastic shear strain is found for an 21 

anisotropic one (Abelev et al. 2007). In a constant-stress-ratio compression with 0R  , 22 
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however, shear strain is always observed for both isotropic and anisotropic samples 1 

(McDowell et al. 2002; Northcutt and Wijewickreme 2013).  2 

 3 

The dilatancy in constant-stress-ratio loading is expressed as follows 4 

 
 

2

2 2
2 2

1
2 3

p
xcv

c
p p

ij ij

M gd
D d R M g

Rde de


                             (22) 5 

where 50x   is a default big number which renders  1 1
x

cR M g      when 6 

 cR M g  . The McCauley brackets  are to prevent 2D  becoming negative at 7 

 cR M g   (plastic volumetric expansion is not expected in constant-stress-ratio 8 

compression) and guarantee zero dilatancy at the critical state (Li 2002). Note that similar 9 

dilatancy relation has also been employed in other models (Wang et al. 1990; Taiebat and 10 

Dafalias 2008). 11 

 12 

Based on Eqs. (5), (10), (21) and (22), the compressive behavior of sand under constant-13 

stress-ratio loading [  cR M g  ] can be obtained as below 14 

2

2

p

vd r dp                                                             (23) 15 

In the present model, the expression for 2r  is proposed based on Taiebat and Dafalias (2008)  16 
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e K p


  
 
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   

                                 (24) 17 

where 0K  is a model parameter for the elastic modulus of sand,   is a parameter which 18 

controls the curvature of the predicted e-p relation in constant-stress-ratio compression, c  is 19 

the slope of the limit compression curve (LCC) for isotropic compression in the log loge p  20 

space (Pestana and Whittle 1995) and  21 
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b c

p R

p M g




  
         

                                        (25) 1 

where bp  is the ‘image’ mean stress on the LCC for isotropic compression corresponding to 2 

the current void ratio e (Pestana and Whittle 1995; Taiebat and Dafalias 2008). The 3 

expression for the LCC in isotropic compression is  log logc re p p , where rp  is the 4 

means stress corresponding to 1e  on the LCC. For more detailed discussion on the 5 

derivation of Eqs. (24) and (25), please refer to Pestana and Whittle (1995) and Taiebat and 6 

Dafalias (2008). 7 

 8 

The same 2d
 
is employed to express the plastic modulus in Eq. (21) and the dilatancy 9 

relation in Eq. (22), which facilitates the derivation of Eq. (23). However, it does not imply 10 

that 2d
 
has the same effect on both 

2p

vd  and 2p

qd (= 2 22 3p p

ij ijde de ) in constant-stress-ratio 11 

compression. Indeed, the relation between 
2p

vd  and
 

dp  is uniquely controlled by the 12 

expression for 2r  in Eq. (24) while the relation between 2p

qd  and dp  is dependent on 2d . 13 

Nevertheless it should be noted that the model gives a constant K0 value only when p is large 14 

enough to cause particle crushing, and hence may not be particularly effective in predicting 15 

the K0 behavior in sand. 16 

 17 

Fabric evolution 18 

It remains a challenging task to measure the fabric and its evolution of sand in laboratory. 19 

Knowledge on fabric evolution of granular materials has been mainly based on 20 

micromechanics-based investigations such as distinct element simulations (Li and Li 2009; 21 

Guo and Zhao 2013; Zhao and Guo 2013). By neglecting potential fabric change due to pure 22 

elastic deformation, the following fabric evolution is assumed in the present model 23 
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 
 

1 2p p
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 
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   
     

   

                                 (26) 1 

where fk  is a model parameter describing the rate of fabric evolution with plastic strain 2 

increment associated with 1p

qd  ( 1 12 3p p

ij ijde de ) and 2p

vd . Note that the same fk
 
is used 3 

for 
2p

vd  and 1p

qd  for simplicity. A better and more reasonable description of fabric 4 

evolution under general loading conditions can be obtained if different values of fk  are used 5 

for the two loading mechanisms. It is worth mentioning that 2p

qd
 
cannot be used in Eq. (26) 6 

as 2 0p

qd 
 
in isotropic compression for the present model. According to Abelev et al. 7 

(2007), fabric evolution does occur under such loading condition when the sample is initially 8 

anisotropic. (26) indicates that ijF  will eventually become co-directional with ijn  and reach a 9 

constant magnitude of 1F   when 1p

q ( 1p

qd  ) is sufficiently large, which complies with 10 

the anisotropic critical state theory (Li and Dafalias 2012). In a pure constant-stress-ratio 11 

compression, Eq. (26) will not lead ijF  to critical state but give a material fabric which is co-12 

directional with ijl  and has a constant magnitude  cF R M g   when 
2p

v  ( 2p

vd  ) is 13 

large enough. This assumption is reasonable as the sample will not reach the critical state if it 14 

is subjected to constant-stress-ratio compression only. The fabric evolution law (Eq. 26) can 15 

also be expressed as below based on Eqs. (9) and (10),  16 
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   
     

   

                    (27) 17 

Fig. 5 shows the simulated e-p relation and fabric evolution in isotropic compression. It can 18 

be seen that F  decreases with the accumulation of plastic volumetric strain (Fig. 5b), which 19 

is in agreement with the experimental observations by Abelev et al. (2007). In the unloading 20 

and reloading cycles, the model gives pure elastic response (Fig. 5a) and the fabric does not 21 
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evolve (Fig. 5b). Fig. 6 shows the simulated stress-strain relation and fabric evolution in a 1 

drained triaxial test with one unloading and reloading cycle. The fabric and stress are initially 2 

con-directional and 0 0.5F  . For this case, fabric evolution is dominated by the shear 3 

loading mechanism as 1p

qd  is much bigger than 
2p

vd . At large strain level, the fabric 4 

reaches the critical state with a constant magnitude 1, which complies with the anisotropic 5 

critical state theory (Li and Dafalias, 2012). Noting that the loading direction ijn  reverses 6 

when unloading occurs (Fig. 3), the fabric ijF  will hence adjust itself to become co-7 

directional with the loading direction (Eq. 26). Specifically, the major principal component 8 

decreases and the minor principal component increases, which makes F  decreases (Fig. 6b). 9 

At the onset of loading direction reversal, there is a sudden change in A  (Fig. 6c). The model 10 

parameters used in the two simulations above are shown in Table 1. More discussion on the 11 

fabric evolution and its relation with sand behavior can be found in Gao et al. (2014). 12 

 13 

ELASTIC STRESS STRAIN RELATIONS 14 

Hypo-elastic stress-strain relations are used in this model. For the elastic shear modulus G , 15 

the equation by Richard et al. (1970) is adopted, which is a function of p  and e  expressed as 16 

 
 
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e
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
                                                (28) 17 

where 0G  is a model parameter. 18 

 19 

Following Taiebat and Dafalias (2008) and Pestana and Whittle (1995), the elastic bulk 20 

modulus K  expressed below is used for the present model 21 

2 3
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1
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a

e p
K K p

e p

 
  

 
                                                   (29) 22 
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Note that Eq. (29) has been used to derive Eq. (24) in Taiebat and Dafalias (2008). One may 1 

also use    2 1 3 1 2K G      to obtain K  based on Eq. (28) where   is the Poisson’s 2 

ratio. However, the behavior of sand in isotropic compression may not be well captured. 3 

  4 

Determination of model parameters 5 

The initial degree of anisotropy 0F  needs to be determined before the model parameters. 6 

Since it remains difficult to measure the fabric of sand using conventional laboratory tests 7 

and other in situ test techniques, 0 0.5F   is simply assumed for Toyoura sand prepared by 8 

dry-deposition in several layers (Yoshimine et al., 1998) and air-pluviation ( Kiyota et al., 9 

2008; Chiaro et al., 2009) in this study (Figs. 7-10). Different
 0F

 
is used for Toyoura sand 10 

prepared by other methods (see the text below). A feasible way to determine 0F  may be 11 

based on the anisotropic elastic stiffness tensor of sand which can be expressed as a function 12 

of the fabric tensor (Cowin 1985; Lashkari 2010). Since the initial stress state is isotropic for 13 

all the simulations here, the initial 1H  is 0 and the initial 2H is the mean effective stress after 14 

consolidation.  15 

 16 

There are 6 groups of model parameters and their values for Toyoura sand are shown in Table 17 

1. The calibration method will be discussed in the following. 18 

(a) Elastic parameters. The elastic parameter 0K  can be determined according to the e-p 19 

relation in constant-stress-ratio unloading (e.g, the unloading curve in isotropic 20 

consolidation tests shown in Fig. 5a). The parameter 0G  can be determined based on 21 

the stress-strain relations at the very beginning of triaxial tests (Taiebat and Dafalias 22 

2008). Note that the maximum pressure level in Fig. 5 can cause particle crushing but 23 

this model does not consider effect of particle crushing on sand behavior. 24 
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(b) Critical state parameters. The critical state parameters can be obtained directly from 1 

the critical state stress ratio in triaxial compression and extension (for cM  and c ) and 2 

the location of the critical state line in the e-p plane (for e , c  and  ). 3 

(c) Parameters relevant to constant-mean-stress shear. There are 9 parameters associated 4 

with constant-mean-stress shear. They can be determined based on shear-dominated 5 

tests such as monotonic and cyclic triaxial and simple shear tests. The parameter hc  6 

vary in a small range and only fine tune is needed for different sands to capture the 7 

effect of void ratio on plastic hardening of sand in monotonic loading (Gao et al. 8 

2014). The parameter re  describes the effect of fabric anisotropy and loading 9 

direction on dilatancy and plastic hardening of sand in shear-dominated monotonic 10 

loading. It can thus be determined by fitting the test results in triaxial extension. It is 11 

also found that the variation of re  is small for different sands (Gao et al. 2014). The 12 

parameters n , 1d  and m  can be determined by trial and error to fit the monotonic 13 

triaxial compression tests. It is found that these parameters ( hc , re , n , 1d  and m ) are 14 

closely related to the particle constitution of sand (gradation, maximum and minimum 15 

void ratio) (Gao et al. 2014) and their typical ranges are shown in Table 1. 1   is 16 

assumed in this paper. The parameter 1h  controls the value of plastic modulus 1pK  in 17 

cyclic loading and thence controls the rate of excess pore pressure accumulation in 18 

undrained cyclic loading. It can be determined by best fitting the effective stress paths 19 

in undrained cyclic loading. Default value of 5000 and 0.1 can be sued for   and rd , 20 

respectively. 21 

(d) Parameters relevant to constant-stress-ratio compression. The parameters c  and rp  22 

can be directly obtained based on the location of the LCC for isotropic compression in 23 

the log loge p  space and   can be determined by best fitting the isotropic/one-24 
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dimensional compression curve in the e-p plane (Figs. 4a). Since there is no test data 1 

available for dilatancy of Toyoura sand in constant-stress-ratio compression, 2 

parameter 2d  is assumed to be 1 here. 3 

(e) Fabric evolution parameter. While it is still not possible to measure the fabric 4 

evolution in laboratory tests, fk  cannot be directly obtained. It is found that the 5 

predicted fabric evolution with fk =7.0-8.0 is in qualitative agreement with the 6 

distinct element simulations, especially when static liquefaction occurs (Gao et al. 7 

2014). Therefore, 7.35fk   is used in this study and can be treated as a constant for 8 

other sands with particle constitution similar to that of Toyoura sand. 9 

 10 

Model simulations for sand behavior in monotonic loading 11 

Fig. 7 shows the model simulations of undrained tests of dry-deposited Toyoura sand in 12 

monotonic triaxial compression and extension in comparison with laboratory test results. The 13 

test setup and loading conditions have been discussed in Yoshimine et al. (1998). In Fig. 7, 14 

a , r , a  and r  denote the axial effective stress (in the vertical direction), radial effective 15 

stress, axial strain and radial strain, respectively. It can be observed that the model captures 16 

the effect of confining pressure, fabric anisotropy and density on monotonic sand behavior 17 

reasonably well. Since the current model has been based on that in Gao et al. (2014) which 18 

was proposed for monotonic shear, more of its predictive capacity for the monotonic loading 19 

case can be referred to that early study.  20 

 21 

Model simulations for sand behavior in cyclic simple shear 22 

This section will present the model simulations for sand behavior in both drained and 23 

undrained cyclic simple shear. The test results for Toyoura sand prepared by air-pluviation 24 
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(Kiyota et al., 2008; Chiaro et al., 2009) will be used. Since this sample preparation method is 1 

similar to the dry-deposition method used by Yoshimine et al. (1998), 0 0.5F   is also used 2 

for these sand samples.  3 

  4 

Fig. 8 compares the model simulations against test data for Toyoura sand in undrained cyclic 5 

simple shear tests. For the test shown here, the sample was first isotropically consolidated to 6 

100kPap   and cyclic undrained simple shear was then applied with constant amplitude of 7 

shear stress   (Chiaro et al. 2009). Evidently, the model gives good predictions for the 8 

effective stress path and shear stress-strain relation. In Figs. 8-10, max  and min  respectively 9 

denote the maximum and minimum shear stresses in each cycle and    is the shear strain. 10 

 11 

Figs. 9 and 10 show the comparison between the model simulations and test results for 12 

drained cyclic simple shear behavior of Toyoura sand. The samples were first isotropically 13 

consolidated to 100 kPa and constant amplitude of shear stress (50 kPa for Fig. 9 and 60 kPa 14 

for Fig. 10) was then applied by keeping all the normal stress components constant. In Figs. 9 15 

and 10,   is the circumferential stress. The model captures the main characteristics of sand 16 

behavior in cyclic drained loading but the simulations are not quite accurate. The model 17 

simulations can be improved in the following aspects. First, the double amplitude cyclic 18 

strain decreases as the number of cycles increases, but the rate is smaller than the 19 

observations. Better model performance is expected if the ch
 
of Eqs. (16) and (17) is also 20 

assumed to be dependent on the plastic strain accumulation during cyclic loading, which 21 

renders the plastic modulus increase with the accumulation of plastic volumetric or shear 22 

strain (see also Ling et al. 2006 and Wang and Xie 2014). Secondly, the model gives stiffer 23 
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shear modulus for both tests. The model performance can be improved by better expression 1 

for mh
 
which can give better description of sand stiffness at relatively low shear strain level. 2 

  3 

Model description for the effect of fabric anisotropy on cyclic sand response 4 

Figs. 11a and 11b show the undrained cyclic triaxial test results on Toyoura sand prepared by 5 

two different methods (Miura and Toki, 1982). The monotonic triaxial test results indicate 6 

that the sample prepared by wet rodding method is approximately isotropic (Miura and Toki, 7 

1982), and thus 0 0F   is used in the simulations (Fig. 11c). The sample prepared by the 8 

multiple sieving pluviation method is found to be initially anisotropic (Miura and Toki, 1982), 9 

its initial degree of anisotropy is set to be 0 0.22F   based on best fitting of the effective 10 

stress path shown in Figs. 11b and d. Note that the model parameters listed in Table 1 (except 11 

0F ) are used for these two samples.  12 

 13 

Though the predicted effective stress path shows relatively large deviation from the measured 14 

one for the sample prepared by multiple sieving pluviation method, the model does give 15 

reasonable characterizations of the fabric effect on the sand behavior in cyclic loading-more 16 

isotropic sample shows higher liquefaction resistance in undrained cyclic triaxial tests ( p  17 

decreases with the number of cycles more slowly). For example, at the end of the 6
th

 cycle, 18 

p  for the sample prepared by multiple sieving pluviation is around 110 kPa, which is lower 19 

than that for the wet-rodded sample (155 kPa) (Figs. 9a and 9b). Figs. 11c and 11d indicate 20 

that the model is capable of capturing this difference. The stress-strain loops are not available 21 

and the corresponding simulations are not presented. 22 

 23 

Fig. 12 shows the model simulation for the behavior of Toyoura sand in cyclic triaxial test. 24 

The sample was prepared by depositing boiled sand in de-aired water (Ishihara et al., 1975), 25 
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which is different from the preparation methods described above. Thus, 0 0.05F   is used to 1 

best fit the test results. Other parameters are the same as those shown in Table 1.The test 2 

results are obtained from Dafalias and Manzari (2004). It can be seen that the model gives 3 

good simulations for both the stress and strain relation and stress path. It should be mentioned 4 

that only 0F  is changed to simulate effect of initial fabric (different preparation methods 5 

create different initial sand fabric) on sand behaviour. However, this is based on limited 6 

number of tests. Other parameters may also need to be changed to get accurate prediction on 7 

effect of sample preparation on sand behaviour. 8 

 9 

Fig. 13 demonstrates the effect of bedding plane orientation on the undrained cyclic triaxial 10 

sand behavior. The initial confining pressure is 196 kPa and 0 0.2F    for both samples. 11 

Under identical loading conditions, the effective stress path for the sample with α=0° 12 

approaches the origin faster than the comparison sample with α=90° (Figs. 13b and d). Such 13 

sand behavior has also been observed by Miura and Toki (1984) and Oda et al. (2001) in both 14 

manmade and in situ sand samples with initially anisotropic fabric. Their studies indicate that, 15 

compared to the samples with horizontal bedding plane orientation (α=0°), those with vertical 16 

bedding plane orientation (α=90°) have higher cyclic undrained triaxial strength and reach 17 

initial liquefaction after more cycles. The main reason is that the samples with horizontal 18 

bedding plane orientation (α=0°) show much more contractive response in the triaxial 19 

extension side (Miura and Toki 1984; Oda et al. 2001), which is captured by our model (Figs. 20 

13b and d). In addition, the samples with α=0° shows faster accumulation of negative axial 21 

strain (Figs. 13a and c), which is also in agreement with the experimental observations 22 

(Miura and Toki 1984). Notice that cyclic mobility is observed for both samples. Note that 23 

the model gives too much preferred accumulation of negative a  in Fig. 13a and future 24 

improvement is needed. 25 
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 1 

CONCLUSION 2 

This paper presents a comprehensive bounding surface model to characterize the fabric effect 3 

on the behavior of sand in both monotonic and cyclic loading conditions within the 4 

framework of the anisotropic critical state theory (Li and Dafalias 2012). The model has the 5 

following key features: 6 

(a) An evolving cone-shaped bounding surface and a yield cap perpendicular to the mean 7 

stress axis are used to describe the sand behavior in constant-stress-ratio shear and 8 

constant-mean-stress compression, respectively. 9 

(b) A fabric tensor which describes the geometrical properties of void spaces of a 10 

granular assembly is employed in the model. It is assumed to evolve with both plastic 11 

shear and volumetric strains. In a shear-dominated loading, the fabric tensor will 12 

eventually become co-directional with the loading direction tensor and reach a 13 

constant magnitude of unity at the critical state. In constant-stress-ratio compression, 14 

the fabric tensor will finally become co-directional with the stress ratio tensor and 15 

reach a magnitude proportional to a normalized stress ratio. 16 

(c) An anisotropic variable which is defined as the joint invariant of the fabric tensor and 17 

loading direction tensor is used to model the fabric effect in the plastic hardening, 18 

plastic flow and dilatancy of sand in constant-mean-stress shear, including both 19 

monotonic loading with fixed loading direction and cyclic loading. 20 

(d) The model offers a unified description to account for the effect of fabric and fabric 21 

evolution in both monotonic and cyclic loading of sand. The model predictions of 22 

sand behavior for a series tests on Toyoura sand compare well with the test data. 23 

 24 



26 

 

While it has been shown to be able to capture the fabric effect on monotonic and cyclic sand 1 

behavior, the proposed model still contains several notable limitations which may be 2 

improved in the future: 3 

(a) The term  ch   (Eqs. 16 and 17) is assumed to be affected by F  only. Such 4 

formulation is not sufficient for modeling the cyclic mobility of very dense sand. Fig. 5 

14 shows the model simulations for the behavior of dense Toyoura sand (relative 6 

density 80%rD  , 0 0.5F  ) in undrained a cyclic simple shear test (data from Dr. 7 

Takashi Kiyota through personal communication). The model gives cyclic mobility at 8 

higher mean effective stress level and lower shear strain amplitude. Indeed, past 9 

studies indicate that a plastic-strain-dependent ch
 
should be used to model the cyclic 10 

mobility of very dense sand (Li 2002; Ling et al. 2006; Wang and Xie 2014). For 11 

instance, in order to capture such soil response, Li (2002) and Wang and Xie (2014) 12 

assume that ch  decreases with plastic shear strain. However, such assumption is valid 13 

for the undrained loading only, as shear modulus degradation is not observed in 14 

drained loading. A better treating technique is indeed needed to address this issue in 15 

the future. 16 

(b) The elasticity of sand is assumed isotropic in the present model. Experimental 17 

observations (e.g., Kuwano and Jardine 2002) have shown that the elastic stiffness is 18 

typically anisotropic and evolves with deformation. This can indeed be achieved by 19 

employing a fabric-dependent anisotropic elastic stiffness tensor (Cowin 1985). The 20 

evolution of anisotropic elasticity can then be naturally accounted for based on the 21 

evolution of fabric with deformation. Indeed, Lashkari (2010) showed that 22 

employment of an evolving anisotropic elastic stiffness tensor can improve the model 23 

performance in describing undrained cyclic sand response. 24 
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(c) The present model cannot describe the plastic strain accumulation in sand when the 1 

stress increment is normal to the norm of the bounding surface. A third loading 2 

mechanism may be needed for modeling sand behavior under such loading conditions 3 

(Li and Dafalias, 2004). 4 
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 11 

Appendix 1: constitutive equations 12 

The elastic relations based on Eqs. (28) and (29) can be expressed as 13 

2 2

ij ij ije

ij

ds pdr r dp
de

G G


                                                     (30) 14 

and 15 

e

v

dp
d

K
                                                              (31)  16 

where e

ijde  and 
e

vd  denote the elastic deviatoric and volumetric strain increments, 17 

respectively. 18 

Assuming that the total strain increment ijd  is the summation of the elastic and plastic shear 19 

strain increments ( e p

ij ij ijd d d    ), the following equation can be obtained based Eqs. (5), 20 

(10) and (31) 21 

   1 1 2 2 2 22 3 2 3p

v v v pdp K d d K d D L D L L K                            (32) 22 

Thus, 2L  can be expressed in terms of 1L  as below according to Eq. (32) 23 



28 

 

1 1

2

2 2

2 3

2 3

v

p

Kd KD L
L

K KD

 



                                                       (33) 1 

According to the additive decomposition of the total strain increment and Eqs. (3), (6), (9), 2 

(30) and (32), one has 3 

   1 2 1 1 1 1 2 22 2 3 2 3ij ij ij ij p ij ij vGn de L m L l K L n r K d D L D L              (34) 4 

The expression for 1L  can be obtained based on Eqs. (33) and (34) as below 5 
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where 7 
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                                                (36) 8 

and 9 

1 12 2 3ij ij ij ij pC Gn m n r KD K                                             (37) 10 

The expression for 2L  can be obtained by substituting Eq. (35) into Eq. (33) as following 11 
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2

2 2

2 3
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ij ij

ij ij ij
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K KD
L d d
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
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 
  


                                     (38) 12 

The incremental stress-strain relation can then be written as the following based on Eqs. (6), 13 

(8), (9), (10), (33), (38) and the additive decomposition of the total strain increment, 14 
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     
 

        

   (39) 15 

where  h L  is the Heaviside step function, with  0 1h L    and  0 0h L    and 16 

   2 3ijkl ij kl ki lj li kjE K G G                                                 (40) 17 

 12 27ij ijkl kl klY E m D                                                        (41) 18 
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 22 27ij ijkl kl klZ E l D                                                         (42) 1 

 2 

Appendix 2: evolution of the bounding surface 3 

For a nonlinear elasto-plastic model, it is not necessary (or often impossible) to present an 4 

explicit expression of hardening parameter. However, an incremental of it, i.e., the evolution 5 

law, is needed to furnish a constitutive model. It is instructive to add some remarks on the 6 

bounding surface 1f  first. In the current model, there is a pre-existing 1f  at the initial state. 7 

When the initial state is on 1f  (e.g., a virgin loading), the initial value of 1H  is equal to the 8 

initial  R g  according to Eq. (1). If the stress state is initially inside the bounding surface, 9 

the initial 1H  is a state variable that should be given based on the past loading history, which 10 

is essentially equal to the size of the bounding surface.  While the evolution of the size of 1f  11 

is implicitly given in the model, and the derivation for the explicit expression of 1dH  is 12 

provided here. The condition of consistency for 1f  can be expressed in terms of the ‘image’ 13 

stress state as below  14 

1

1 1 1
1 1 1

1

0ij ij H

ij ij

f f f
df dr dH dr L r

r H r

  
    
  

                         (43) 15 

where 16 

1
1 1 H

dH L r                                                           (44) 17 

Eq. (43) can also be expanded as below 18 

1

1 1 1
1 1 0

3 3
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               (45) 19 

Since 1 0
3
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mn ij
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f
dr

r








, Eq. (45) can be rewritten as 20 
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1
1 1 0ij ij H

df Bn dr L r  
                                         (46) 

1 

where 
2 

 1 1 3ij mn mn ijB f r f r                                                (47)
 

3 

Combining Eq. (3) and (46), one has 
4 

1

1p

H

K
r B

p
                                                          (48) 5 
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Table 1 Summary of model parameters for Toyoura sand 4 

Parameter Symbol Value Typical range 

Elasticity 0G  125 120-150 

0K  150 120-160 

Critical state 

cM  1.25 1.0-1.6 

c  0.75 0.75-0.8 

e  0.934 0.9-1.1 

c  0.019 0.01-0.03 

c  0.7 Around 0.7 

Parameters associated with 

constant-mean-stress shear 

hc  0.90 0.8-0.9 

re  0.09 0.09-0.11 

n  4.0 2.0-5.0 

1d  0.4 0.2-0.6 

m  5.3 1.0-6.0 

1h  7.6 3.0-10.0 


 

5000 Default value 

rd  0.1 Default value 

  1 Assumed 

Parameters associated with 

constant-stress-ratio 

compressioncompression 

c  0.37 0.3-0.4 

rp (kPa) 5500.0 3000-6000 

  0.18 0.1-0.3 

2d  1 Assumed 

Fabric evolution 
fk
 7.35 7.0-8.0 

 
Initial anisotropy 

0F
 

0.5 for Figs. 7-10 0-0.6 

 5 

 6 
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