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THE DEGREE OF THE HILBERT-POINCARÉ POLYNOMIAL

OF PBW-GRADED MODULES

TEODOR BACKHAUS AND LARA BOSSINGER AND CHRISTIAN DESCZYK AND
GHISLAIN FOURIER

Abstract. In this note, we study the Hilbert-Poincaré polynomials for the
associated PBW-graded modules of simple modules for a simple complex Lie
algebra. The computation of their degree can be reduced to modules of fun-
damental highest weight. We provide these degrees explicitly.

Nous étudions les polynômes de Hilbert-Poincaré pour les modules PBW-
gradués associés aux modules simples d’une algèbre de Lie simple complexe.
Le calcul de leur degré peut être restreint aux modules de plus haut poids
fondamental. Nous donnons une formule explicite pour ces degrés.

1. Introduction

Let g be a simple complex finite-dimensional Lie algebra with triangular de-
composition g = n+ ⊕ h ⊕ n−. Then the PBW filtration on U(n−) is given as
U(n−)s := span{xi1 · · · xil | xij ∈ n−, l ≤ s}. The associated graded algebra is

isomorphic to S(n−). Let V (λ) be a simple finite-dimensional module of highest
weight λ and vλ a highest weight vector. Then we have an induced filtration on
V (λ) = U(n−)vλ, denoted V (λ)s := U(n−)svλ. The associated graded module
V (λ)a is a S(n−)-module generated by vλ.
These modules have been studied in a series of papers. Monomial bases of the
graded modules and the annihilating ideals have been provided for the sln, spn
[FFL11a, FFL11b, FFL13b], for cominuscule weights and their multiples in other
types [BD14], for certain Demazure modules in the sln-case in [Fou14b, BF14].
In type G2 there is a monomial basis provided by [Gor11].
The degenerations of the corresponding flag varieties have been studied in [Fei12,
FFL13a, CIL14, CILL14]. Further, it turned out ([Fou14a]), that these PBW
degenerations have an interesting connection to fusion product for current alge-
bras. The study of the characters of PBW-graded modules has been initiated in
[CF13, FM14].
In the present paper we will compute the maximal degree of PBW-graded mod-
ules in full generality (for all simple complex Lie algebras), where there have been
partial answers in the above series of paper for certain cases.
We denote the Hilbert-Poincaré series of the PBW-graded module, often referred
to as the q-dimension of the module, by

pλ(q) =

∞∑
s=0

(dimV (λ)s/V (λ)s−1) q
s.

Since V (λ) is finite-dimensional, this is obviously a polynomial in q. In this note
we want to study further properties of this polynomial. We see immediately that
the constant term of pλ(q) is always 1 and the linear term is equal to

dim(n−)− dim Ker
(
n− −→ End(V (λ))

)
.
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Our main goal is to compute the degree of pλ(q) and the first step is the following
reduction [CF13, Theorem 5.3 ii)]:

Theorem. Let λ1, . . . , λs ∈ P+ and set λ = λ1 + . . .+ λs. Then

deg pλ(q) = deg pλ1(q) + . . .+ deg pλs(q).

It remains to compute the degree of pλ(q) where λ is a fundamental weight. We
have done this for all fundamental weights of simple complex finite-dimensional
Lie algebras:

Theorem 1. The degree of pωi(q) is equal to the label of the i-th node in the
following diagrams:

An
1 2 3 3 2 1

Bn >
2 2 4 4 6

2d n-1
2 e

d n
2 e

Cn <
1 2 n-2 n-1 n

Dn
2 2 4 4 6

2d n-2
2 e

d n-1
2 e

d n-1
2 e

E6
2 4

6

4 2

2

E7
2 6

8

7 4 3

5

E8
4 8

14

11 8 6 2

8

F4 >
2 6 4 2

G2 <
2 2

The paper is organized as follows: In Section 2 we introduce definitions and basic
notations, in Section 3 we prove Theorem 1.
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Mathematisches Institut, Universität Bonn, Germany, School of Mathematics and
Statistics, University of Glasgow, UK (G.F.)

2. Preliminairies

Let g be a simple Lie algebra of rank n. We fix a Cartan subalgebra h and a
triangular decomposition g = n+⊕h⊕n−. The set of roots (resp. positive roots)
of g is denoted R (resp. R+), θ denotes the highest root. Let αi, ωi i = 1, ..., n
be the simple roots and the fundamental weights. Let W be the Weyl group
associated to the simple roots and w0 ∈ W the longest element. For α ∈ R+

we fix a sl2 triple {eα, fα, hα = [eα, fα]}. The integral weights and the dominant
integral weights are denoted P and P+.
Let {x1, x2, ...} be an ordered basis of g, then U(g) denotes the universal envelop-
ing algebra of g with PBW basis {xi1 · · · xim | m ∈ Z≥0, i1 ≤ i2 ≤ ... ≤ im}.
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2.1. Modules. For λ ∈ P+ we consider the irreducible g-Module V (λ) with
highest weight λ. Then V (λ) admits a decomposition into h-weight spaces,
V (λ) =

⊕
τ∈P V (λ)τ with V (λ)λ and V (λ)w0(λ), the highest and lowest weight

spaces, being one dimensional. Let vλ denote the highest weight vector, vw0(λ)

denote the lowest weight vector satisfying

eαvλ = 0, ∀α ∈ R+ ; fαvw0(λ) = 0, ∀α ∈ R+.

We have U(n−).vλ ∼= V (λ) ∼= U(n+).vw0(λ).
The comultiplication (x 7→ x ⊗ 1 + 1 ⊗ x) provides a g-module structure on
V (λ) ⊗ V (µ). This module decomposes into irreducible components, where the
Cartan component generated by the highest weight vector vλ ⊗ vµ is isomorphic
to V (λ+ µ).

2.2. PBW-filtration. The Hilbert-Poincaré series of the PBW-graded module
V (λ)a :=

⊕
s≥0 V (λ)s/V (λ)s−1 is the polynomial

pλ(q) =
∑

s≥0
dim(V (λ)s/V (λ)s−1)q

s

= 1 + dim(V (λ)1/V (λ)0)q + dim(V (λ)2/V (λ)1)q
2 + ...

and we define the PBW-degree of V (λ) to be deg(pλ(q)).

It is easy to see that n+.(U(n−)s.vλ) ⊆ U(n−)s.vλ ∀ s ≥ 0 (see also [FFL11a])
and hence U(n+).V (λ)s ⊆ V (λ)s. Let sλ be minimal such that vw0(λ) ∈ V (λ)sλ .

Then V (λ) = U(n+).vw0(λ) ⊆ V (λ)sλ and

Corollary. sλ = deg(pλ(q)) and

V (λ) = V (λ)sλ .

2.3. Graded weight spaces. The PBW filtration is compatible with the de-
composition into h-weight spaces:

dimV (λ)τ =
∑
s≥0

dim (V (λ)s/V (λ)s−1) ∩ V (λ)τ .

So we can define for every weight τ the Hilbert-Poincaré polynomial:

pλ,τ (q) =
∑
s≥0

dim (V (λ)s/V (λ)s−1)τ q
s and then pλ(q) =

∑
τ∈P

pλ,τ (q).

A natural question is, if we can extend our results to these polynomials? If the
weight space V (λ)τ is one-dimensional, then pλ,τ (q) is a power of q. For τ = λ

this is constant 1, for τ = w0(λ), the lowest weight, this is qdeg pλ(q) as we have
seen in Corollary 2.2. A first approach to study these polynomials can be found
in [CF13].

2.4. Graded Kostant partition function. For the readers convienience we
recall here the graded Kostant partition function (see [Kos59]), which counts the
number of decompositions of a fixed weight into a sum of positive roots, and how
it is related to our study. We consider the power series and its expansion:∏

α>0

1

(1− qeα)
,
∑
ν∈P

Pν(q)eν .

We have immediately charS(n−) =
∑

ν∈P Pν(q)e−ν .
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Remark. For a polynomial p(q) =
∑n

i=0 aiq
i, we denote mindeg p(q) the minimal

j such that aj 6= 0. Then we have obviously

(2.1) mindeg pλ,ν(q) ≥ mindegPλ−ν(q).

We will use this inequality for the very special case ν = w0(λ) in the proof of
Theorem 1.
We see from Theorem 1 that this inequality is a proper inequality for certain
cases in exceptional type as well as B,Dn (this has been noticed also in [CF13]).

3. Proof of Theorem 1

In this section we will provide a proof of Theorem 1. For a fixed 1 ≤ i ≤ rank g,
we will give a monomial u ∈ U(n−) of the predicted degree mapping the highest
weight vector vωi to the lowest weight vector vw0(ωi). We then show that there is
no monomial of smaller degree satisfying this.
To write down these monomials explicitly, let us denote θXn the highest root of
a Lie algebra of type Xn. We set further (using the indexing from [Hum72]):

• In the An-case, Yn−2 the type of the Lie algebra generated by the simple
roots {α2, . . . , αn−1}.
• In the Bn, Dn-case, Yn−k the type of the Lie algebra generated by the

simple roots {αk+1, . . . , αn}.
• In the exceptional and symplectic cases, θXn = ckωk for some k, Yn−1 the

type of the Lie algebra generated by the simple roots {α1, . . . , αn}\{αk}.
Let u ∈ U(n−) be one of the monomials in Figure 1. It can be seen easily from

Figure 1 that u = f
a∨i
θXn

u1, where a∨i = wi(hθXn ) and u1 is the monomial in Figure

1 corresponding to the restriction of ωi to the Lie subalgebra of type Yn−`. If we
denote n−1 the lower part in the triangular decomposition of the Lie subalgebra
of type Yn−`, then u1 ∈ U(n−1 ).

Let u = f b1θ1 f
b2
θ2
. . . f brθr . Note that all fθj commute and it is easy to see that

θj(hθj+p) = 0, ∀p ≥ 0 (since θj is a sum of fundamental weights, which are all
orthogonal to the simple roots of the Lie algebra with highest root θj+p) and
bj = ωi(hθj ).
The Weyl group W acts on V (ωi) and if v is an extremal weight vector of weight
µ, then w.v is a nonzero extremal weight vector of weight w(µ). Further if w = sα

(reflection at a root α) and µ(hα) ≥ 0, then w.v = c∗f
µ(hα)
α .v for some c∗ ∈ C∗.

Now consider w = sθr . . . sθ1 , where sθj is the reflection at the root θj . Then we
have w.vωi = vw0(ωi) = u.vωi 6= 0 in V (ωi). So we obtain an upper estimate for
the degree.
In general the degree of u is bigger than the minimal degree coming from Kostant’s
graded partition function (2.1). For An, Cn the degrees coincide and hence we
are done in these cases.
We will prove Theorem 1 for the remaining cases Xn by induction on the rank of
the Lie algebra. So we want to prove that if p ∈ U(n−) with p.vωi = vw0(ωi) then
deg(p) ≥ deg(u), where u is from Figure 1.
Consider the induction start, e.g. ωi = θXn , then the minimal degree is obviously

2. The maximal non-vanishing power of fθXn is certainly a∨i and f
a∨i
θXn

.vωi is

the highest weight vector of a simple module of fundamental weight for the Lie
algebra Yn−l defined as above. By induction we know that if q ∈ U(n−1 ) with

q.(f
a∨i
θXn

.vωi) = vw0(ωi) then deg(q) ≥ deg(u1).
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Xn ωi = θXn f2θXn
An ωi fθAnfθAn−2

· · · fθAn+2−2min{i,n−i}

Cn ωi fθCnfθCn−1
· · · fθCn+1−i

Bn ω2i f2θBn
f2θBn−2

· · · f2θBn+2−2i

Bn ω2i+1 f2θBn
f2θBn−2

· · · f2θBn−2i
fα2i+1

Bn n even, ωn fθBnfθBn−2
· · · fθB2

Bn n odd, ωn fθBnfθBn−2
· · · fθB2

fαn
Dn ω2i f2θDn

f2θDn−2
· · · f2θDn+2−2i

Dn ω2i+1 f2θDn
f2θDn−2

· · · fθDn−2i
fα2i+1

Dn n even, ωi, i = n− 1, n fθDnfθDn−2
· · · fθD4

fαi
Dn n odd, ωi, i = n− 1, n fθDnfθDn−2

· · · fθD5
fθA4

E6 ω1, ω6 fθE6
fθA5

E6 ω3, ω5 f2θE6
fθA5

fθA3

E6 ω4 f3θE6
fθA5

fθA3
fα4

E7 ω2 f2θE7
fθD6

fθD4
fα2

E7 ω3 f3θE7
fθD6

fθD4
fα3

E7 ω4 f4θE7
f2θD6

f2θD4

E7 ω5 f3θE7
f2θD6

fθD4
fα5

E7 ω6 f2θE7
f2θD6

E7 ω7 fθE7
fθD6

fα7

E8 ω1 f2θE8
f2θE7

E8 ω2 f3θE8
f2θE7

fθD6
fθD4

fα2

E8 ω3 f4θE8
f3θE7

fθD6
fθD4

fα3

E8 ω4 f6θE8
f4θE7

f2θD6
f2θD4

E8 ω5 f5θE8
f3θE7

f2θD6
fθD4

fα5

E8 ω6 f4θE8
f2θE7

f2θD6

E8 ω7 f3θE8
fθE7

fθD6
fα7

F4 ω2 f3θF4
fθC3

fθA2
fα2

F4 ω3 f2θF4
fθC3

fθC2

F4 ω4 fθF4fθC3

G2 ω1 fθG2
fα1

Figure 1.

First we suppose f
a∨i
θXn

.vωi is a factor of p, so p = f
a∨i
θXn

p′ and then by weight

considerations p′ ∈ U(n−1 ). Then p′.(f
a∨i
θXn

.vωi) = vw0(ωi) (the lowest weight vector

in V (ωi) as well as in the simple submodule). Therefore deg(p′) ≥ deg(u1) which
implies deg(p) ≥ deg(u).

Suppose now the maximal power of fθXn in p is f
a∨i −k
θXn

, k ≥ 0 and deg(p) < deg(u).

Let Xn be of type Bn, Dn or exceptional, then θXn = ωj and we denote

R+
s = {α ∈ R+ |wj(hα) = s},
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Then R+
2 = {θXn} and if β ∈ R+

1 then θXn − β ∈ R+
1 . By weight reasons

p = f
a∨i −k
θXn

fβ1 · · · fβ2kp1 for some β1, . . . , β2k ∈ R+
1 and some polynomial p1 in

root vectors of roots in R+
0 . We have to show that p.vωi = 0 ∈ V (ωi)

a and we
will use induction on k for that: The induction start is k = 0. The induction step
is for k ≥ 1:

0 = p1f
a∨i +k
θXn

.vωi = (eθXn−β1) · · · (eθXn−β2k)p1f
a∨i +k
θXn

.vωi

= cf
a∨i −k
θXn

fβ1 · · · fβ2kp1.vωi +
∑k

`>0 f
a∨i −k+`
θXn

q`.vωi

for some c ∈ C∗, q` ∈ U(n−). For 0 ≤ ` < k all the summands are equals to
zero by induction (on k). For ` = k, we recall our assumption deg(p) < deg(u)

and so deg(qk) < deg(u1) which implies fa
∨
i qk.vωi = 0. So we can conclude

f
a∨i −k
θXn

fβ1 · · · fβ2kp1.vωi = 0.
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