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Abstract

Self-renewal and differentiation are two fundamental characteristics of stem cells. Stem cell self-
renewal is critical for replenishing the stem cell population, while differentiation is necessary for main-
taining tissue homeostasis. Over the last two decades a great deal of effort has been applied to discov-
ering the processes that control these opposing stem cell fates. One way of examining the role of the
physical environment is the use of biomaterial strategies that have the ability to manipulate cells with-
out any requirement for chemical factors. Themechanismwhereby cells have been found to respond to a
mechanical stimulus is termed mechanotransduction, the process by which a mechanical cue (or
alteration in cell spreading changing internal cellularmechanics, i.e. intracellular tension) is transduced
into a chemical signal inside the cell, eliciting changes in gene expression. This can occur either directly,
as a result of changes in the cell cytoskeleton, or indirectly through a series of biochemical signalling
cascades. The main focus of this review is to examine the role of mechanotransduction in the differen-
tiation and self-renewal of stem cells. In particular, we will focus on the use of biomaterials as a tool for
examining mechanotrandsuctive effects on self-renewal and differentiation. © 2014 The Authors.
Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
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1. Stem cells

There are different types of stem cells, including adult
(e.g.mesenchymal stem cells, MSCs), embryonic (ESCs)
and inducible pluripotent (iPSCs). Adult stem cells are
derived from adult tissues and are more accessible.
However, they are less potent than embryonic stem cells.
ESCs are derived from embryos and are therefore associated
with many ethical issues. Pluripotent stem cells can be
produced following viral transfection of a terminally
differentiated cell, using four key genes, Oct4 (Pou5f1),
Sox2, cMyc and Klf4. They provide us with the potential
to address the issues of achieving increases in pluripotency
and accessibility. However, they are also the subject of
ethical issues (Takahashi et al., 2007).

Throughout different studies on stem cell differentia-
tion in normal culture, the addition of differentiation fac-
tors into the medium is the accepted route; for example,
dexamethasone addition to the culture medium induces
osteogenic differentiation; insulin is used to induce
adipogenic differentiation; and retinoic acid is used for
neural differentiation (Pittenger et al., 1999; Jaiswal et al.,
2000; Mbalaviele et al., 2000). However, over the last
decade, researchers have shown that the sole use of
nanotopography can induce differentiation without the
need for supplements for specific media (Engler et al.,
2006, Dalby et al., 2007c). This is an important issue
when culturing cells with the potential to be transplanted
into patients.

2. The stem cell niche

Schofield (1978) first reported the concept of a stem cell
niche, where a stem cell may reside and associate with
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other cells types that help to regulate their behaviour and
maintenance. The first stem cell niche to be identified, a
germ-line stem cell niche in Drosphila melanogaster, was
reported by Xie and Spradling (2000). Research has since
identified niches associated with various stem cell types in
mammals, such as haematopoietic, neural, skin and intes-
tinal (Bjerknes and Cheng, 2001; Calvi et al., 2003;
Doetsch, 2003; Zhang et al., 2003; Tumbar et al., 2004;
Tavazoie et al., 2008). While a definitive stem cell niche
associated with MSCs has not yet been identified, it has
been proposed that MSCs reside within putative
perivascular (Simmons, 2009) and endosteal (Bianco,
2011; Ehninger and Trumpp, 2011) niches. However,
using these previously identified stem cell niches, it is
possible to identify key factors which appear to be essen-
tial for maintaining the niche environment. Physical
components include the interaction of stem cells with
other cell types, the basement membrane and extracellu-
lar matrix (ECM), whilst intrinsic and extrinsic signalling
from other cells within and outwith the niche, as well as
neural and metabolic signalling, can also serve as regula-
tors of self-renewal or differentiation (Li and Xie, 2005;
Scadden, 2006).

2.1. Stem cell division

Proliferation, and therefore cell division, is an inherent
part of self-renewal. However, the outcome of cell divi-
sion can be different for both daughter cells. Stem cell
division can be classed as either symmetrical, in which
the stem cell divides to produce identical daughter
cells, or asymmetrical, resulting in one stem cell and
one differentiating cell (Morrison and Kimble, 2006;
Wilson et al., 2008). It is the balance between symmet-
rical and asymmetrical cell division that can lead to
either replenishment of the stem cell pool or mainte-
nance of tissue homeostasis. In vivo, within the stem
cell niche, the orientation of the mitotic spindle is
thought to play a critical role in regulating symmetrical
versus asymmetrical differentiation, with the relative
positioning of daughter cells within the niche poten-
tially resulting in different cell fates (Wodarz, 2005;
Kanamori et al., 2008; Yamashita, 2009, 2010; Yama-
shita et al., 2010; Yadlapalli and Yamashita, 2013). In
vivo, it is thought that stem cells undergo mainly asym-
metrical differentiation, maintaining a constant stem
cell pool while allowing for tissue replenishment.
However, this propensity for stem cells to undergo
asymmetrical cell division when cultured ex vivo leads
to a diminishing stem cell population as the number of
differentiating progenitor cells increases. This loss of
the stem cell population limits the use of adult stem
cells in particular as a therapeutic target where ex vivo
expansion of the population is required following
extraction from a patient (Banfi et al., 2000; Muraglia
et al., 2000; Sherley, 2002; Siddappa et al., 2007;
Sarugaser et al., 2009).

2.2. Cell cycle control of self-renewal and
differentiation

Whilst the molecular control of MSC self-renewal and dif-
ferentiation is still not fully understood, in vitro studies
examining various stem cell types have identified a func-
tional link between self-renewal, the cell cycle and cell di-
vision (Walkley et al., 2005; Orford and Scadden, 2008;
He et al., 2009). The cell cycle is made up of four distinct
stages, growth phase 1 (G1), synthesis phase (S), growth
phase 2 (G2) and mitosis (M). In addition, cells that are
no longer undergoing division due to quiescence or senes-
cence can exit the cell cycle and enter into G0 phase. Pro-
gression of the cell cycle is tightly regulated by intrinsic
checkpoints, which help to ensure the integrity of the ge-
nome as well as extrinsic mitogenic signals, with G1 being
split into two phases, an early mitogen-dependent and a
late mitogen-independent phase (Elledge, 1996; Foster
et al., 2010).

A role for the cell cycle in stem cell self-renewal first be-
came evident when it was discovered that embryonic stem
cells (ESCs) have a significantly shorter G1 phase than
other somatic cells (Savatier et al., 1994; White and Dal-
ton, 2005; White et al., 2005; Becker et al., 2006). Further
evidence for this includes observations that bone marrow
haematopoietic stem cells (HSCs) maintain their cell pop-
ulation and preserve their self-renewal capabilities by
continuously switching between states of quiescence and
self-renewal, entering and exiting the cell cycle (Cheshier
et al., 1999; Wilson et al, 2008). Furthermore, it was
found that induced pluripotent stem cells (iPSCs) adopt
a shortened G1 phase, similar to ESCs, indicating that G1

phase in particular may play a critical role in regulating
self-renewal versus differentiation (Ghule et al., 2011).
Adult stem cells are thought to utilize other mechanisms,
such as quiescence, to evade passing through G1, thereby
protecting the population from the effects of mitogenic
factors (Jaiswal et al., 2000). It is this requirement for
mitogen-activated protein kinases (MAPKs) in both the
progression through G1 cell cycle phase and in the early
onset of differentiation that makes self-renewing stem
cells particularly susceptible to differentiation (Jaiswal
et al., 2000; Zhang and Liu, 2002). In the case of MSCs
in vitro, they are found to be a slowly proliferating popu-
lation, with the onset on differentiation coupled with a
decrease in proliferation and the upregulation of
lineage-specific genes (Stein et al., 1990; Stein and Lian,
1993; Ullah et al., 2013).

3. Biomaterial control of stem cell
self-renewal and differentiation

The role of mechanical cues in vivo can be assessed using
biomaterials in vitro. In many of the studies listed below,
the stem cells of choice have been MSCs. These are partic-
ularly useful, due in part to their accessibility but also
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because their broad differentiation profile makes them
ideal for use in clinical applications.

MSCs possess the capacity to self-renew and exhibit
multipotency (Pittenger et al., 1999). They have the abil-
ity to differentiate into a number of cell types, including
osteoblasts and adipocytes (Pittenger et al., 1999), myo-
blasts (Engler et al., 2006; Narita et al., 2008), chondrocytes
(Muraglia et al., 2000), neural marker-expressing cells (Yim
et al., 2007), fibroblasts and stromal cells (Caplan, 2009).
However, the precise mechanisms underlying MSC self-
renewal require further elucidation.

Biomaterials can be used to assess the effect of chang-
ing chemistry, topography or physical environment on
cells. In recent years the effect of these parameters on
the differentiation and self-renewal of stem cells has been
studied (see review by Ingmar Schoen and Vogel, 2013).

3.1. Chemistry

The use of chemistry to pattern surfaces for culturing cells
has many advantages. These include being able to define
precisely the composition of the surface, such that the
density or type of ligands presented can be tailored. This
allows us to examine the role that individual ECM compo-
nents play in regulating stem cell adhesion and differenti-
ation. In addition, surfaces can be produced that alter cell
shape on a single-cell basis, allowing for artefacts caused
by differences in cell density and cell–cell contact to be
eliminated. Surfaces can be produced using two tech-
niques, microcontact printing (μCP), using self-assembled
monolayers (SAMS), and SAMS presenting a maleimide
group for immobilization of peptides such as RGD
(Mrksich et al., 1996, 1997; Mrksich and Whitesides,
1996; Chen et al., 1997).

μCP was initially used to look at the effect of protein ab-
sorption on cell adhesion and other fundamental cell pro-
cesses. However, a study conducted using μCP to alter
stem cell density, and therefore the degree of cell spread-
ing, was instrumental in demonstrating the influence of
mechanical cues during differentiation (McBeath et al.,
2004). This work showed that not only is stem cell differen-
tiation and lineage commitment (osteogenic vs adipogenic
differentiation) mechanically regulated, but also identified
RhoA as a key mechanical transducer. More recent work
using μCP to alter cell shape found that MSCs cultured on
patterns of star and flower shapes were able to direct line-
age commitment as a result of increased/decrease acto-
myosin contractility on the stars and flowers, respectively
(Kilian et al., 2010). In this study the authors went on to
propose that changes in cell shape not only alter cell con-
tractility but also their responsiveness to extracellular sig-
nalling molecules.

The mechanical regulation of epidermal stem cell ter-
minal differentiation has also been well documented
using μCP (Connelly et al., 2010, 2011). By altering pa-
rameters such as cell shape, ECM density and composi-
tion, the authors were able to deduce that terminal
differentiation is reliant on cytoskeletal actin to mediate

changes in cell shape over changes in ECM composition
and density. In this case the authors found that levels of
G-actin, as dictated by cell spreading on μCP surfaces, reg-
ulate the activity of serum response factor (SRF), a regu-
lator of terminal differentiation. This is in contrast to
MSCs, where cell shape changes in cytoskeletal tension,
not G-actin levels, regulate differentiation (Connelly et al.,
2010, 2011).

Using a second technique, SAMs have been developed
to precisely mimic ECM composition and density. Initial
studies using nanopatterns displaying the RGD ligand in
various degrees of order and disorder examined the fun-
damentals of integrin binding and focal adhesion forma-
tion (Cavalcanti-Adam et al., 2007). As a result of this
study, it was suggested by the authors that a key limita-
tion in focal adhesion formation is in fact due to the limit-
ing size of integrin-binding proteins, such as paxillin, as
this creates a minimal lateral distance over which binding
can occur.

More recently, work has shown the effect that the den-
sity and affinity of RGD ligands can have on influencing
stem cell fate (Kilian and Mrksich, 2012). Using both a cy-
clic RGD ligand with a higher affinity for integrin binding,
as well as a lower affinity linear RGD ligand, at both
higher and lower densities, (Kilian and Mrksich, 2012)
found that the lineage commitment of MSCs could be
tailored to three distinct cell fates (osteo-, myo- and neuro-
genic), depending on the combination of RGD density and
affinity. Together these studies highlight the role that me-
chanical cues play in regulating stem cell differentiation
and, importantly, provide insight into how these mechanical
cues elicit changes in gene expression and differentiation.

In terms of using ‘pure’ chemistry (surfaces with dif-
ferent chemical functionality) there have also been sev-
eral major observations. For example, in relation to
chemical information, different levels of complexity
have been explored. Simple surface chemistry (OH,
CH3, COOH, NH2) encourages deposition of the appro-
priate proteins from serum, which, in turn, dictates
MSC differentiation (Curran et al., 2006). The same
group, using precise patterning of CH3-modified sur-
faces, also demonstrated retention of MSC markers
and hence preservation of stem cell growth (Curran
et al., 2010). Anderson et al. (2004) and Langer and
Tirrell (2004) developed array-based methods to rap-
idly screen large libraries of chemical functionality for
MSC differentiation potential. In 3D hydrogel scaffolds,
remarkably simple chemical functionality was recently
shown to induce controlled MSC differentiation, with
hydrogels carrying t-butyl and phosphate functionali-
ties giving rise to osteogenesis and adipogenesis, re-
spectively (Benoit et al., 2008).

3.2. Topography

The use of topographically patterned surfaces to study
mechanotransduction was first pioneered in the 1950s
and 1960s. In these early studies, cells were shown to be
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responsive to topographies such as grooves, with cells
aligning to and along the grooves in what is known as
contact guidance (Curtis and Varde, 1964; Weiss and
Garber, 1952). Later, as techniques more commonly ap-
plied to the electronic industry became accessible, this
made the production and variety of topographic surfaces
more readily available. Since this early research, the size
of the surface features that can be achieved has decreased
dramatically, with features in the nanoscale range now
commonly produced. The drive to produce increasingly
smaller features is fuelled by an abundance of nanoscale
features and proteins that make up the ECM, and to which
cells readily come into contact within their native environ-
ment. Early research identified cellular interactions with
topography to have an effect on cellular functions such
as proliferation, morphology, adhesion and gene expres-
sion (Dalby et al., 2004, 2008; Milner and Siedlecki,
2007; Bettinger et al., 2008; Biggs et al., 2009; Yim
et al., 2010). However, further research using stem cells
showed that these changes in gene expression could

ultimately influence the fate of stem cells (Dalby et al.,
2007a, 2007b, 2007c; Yim et al., 2007).

Topography at the nanoscale level has been found to
alter focal adhesion size and orientation (Biggs and Dalby,
2010; Tsimbouri et al., 2014). This has been found, in
turn, to alter the cytoskeletal arrangement within the cell,
altering cell shape and intracellular signalling. Using
nanoscale-sized pits with altered geometries, MSCs were
found to have increased focal adhesion size (Figure 1a,
arrow) and an upregulation of osteogenic differentiation
markers (e.g. osteopontin, OPN) when the nanopits were
slightly disordered (Figure 2b). However, in a recent
study the authors also found that when MSCs were cul-
tured on ordered nanopits, MSCs instead underwent
self-renewal and prolonged growth as multipotent stem
cells (Figure 2a). This was found to correlate with a
decrease in focal adhesion size and intracellular tension,
indicating that self-renewal requires an intermediate level
of cellular tension, whilst adipogenic and osteogenic
differentiation require a lower and higher level,

Figure 1. Fluorescent microscopy images of MSC morphology and attachment on nanopit substrates. (A) On disordered
nanotopography [near square (NSQ), 120nm diameter pits, 100nm deep, average 300nm centre–centre spacing in a square arrange-
ment but with up to 50nm placement error; left SEM], the MSCs were spread with large lamellae and displayed an elongated cell
shape; cells were observed to develop super-mature adhesions (arrow). (B) On highly ordered nanotopography [square (SQ) as be-
fore, but with no placement error; right SEM], cells displayed less-spread morphology and adopted a stellate shape with smaller ad-
hesions. (C) Similarly, on the flat control substrate, MSCs displayed an intermediate morphology/adhesion pattern: green, vinculin;
blue, nucleus

Figure 2. Fluorescent microscopy images of cell surface markers for MSC self-renewal/differentiation status on nanotopographies.
(A) Only MSCs cultured for 4weeks on the SQ surface express the MSC marker STRO-1. (B) The MSCs cultured on NSQ50 showed
strong expression of the bone marker osteopontin (OPN). MSCs on planar controls did not express either of these genes after 4weeks
of culture: red, actin; green, STRO-1 or OPN; blue, nucleus
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respectively (McMurray et al., 2011; Tsimbouri et al.,
2012, 2014). This is in agreement with early work
published by McBeath et al. (2004), as discussed
previously.

Other studies using different topographic surfaces, such
as carbon nanotubes, have also shown an induction of os-
teogenic differentiation (Oh et al., 2009). MSCs have also
been proposed to undergo transdifferentiation, expressing
markers associated with neural differentiation (Yim et al.,
2007). Using nanogrooved surfaces, MSCs have also been
shown to express neural markers in the absence of chem-
ical induction factors. The authors further went on to
show that phosphorylated FAK plays a critical role in
transducing topographic signals for regulating cell fate.
Whilst a large body of research has been published exam-
ining the response of MSCs to topography, other stem cell
types are increasingly being investigated, such as embry-
onic and neural stem cells (Lim et al., 2010; Wang et al.,
2011b; Chen et al., 2012; Kingham and Oreffo, 2013;
Kingham et al., 2013; Qi et al., 2013). The ability to
culture stem cells without the requirement for chemical
supplements makes topography an attractive prospect
for clinical applications in particular.

3.3. Elasticity

Tissues within the body exhibit different physical proper-
ties (Figure 3). The cells are entrenched inside a complex
fibrous ECM. The mechanical properties of the ECM allow
the tissues to function properly by regulating cellular pro-
cesses, such as attachment and spreading, proliferation,
migration and stem cell differentiation (Discher et al.,
2005; Trappmann and Chen, 2013). Hence, the ECM can
directly control many important biological processes, such
as embryonic development and adult tissue homeostasis
(Wozniak and Chen, 2009). ECM is also involved in the
control of the pathogenesis of diseases such as cancer
and fibrosis (Paszek and Weaver, 2004; Paszek et al.,
2005; Georges et al., 2007).

The direct involvement of ECM in signal transduction
through integrin receptors has been well studied (also
mentioned in section 4). However, the physical properties
of the matrix, such as its elasticity or stiffness, are equally
important in the control of cellular processes (Discher
et al., 2005; Vogel and Sheetz, 2006). Engler et al.
(2006), in their effort to provide a new approach to direct
stem cell fate, used techniques originally employed to
study the effects of matrix elasticity on the growth and

morphology of differentiated cells (Engler et al., 2006).
They showed that a soft matrix of 0.1 kPa would support
differentiation of MSCs into neuronal-like cells, a medium
elasticity matrix of 11 kPa induced myogenic differentia-
tion, and a stiff matrix of 34 kPa promoted osteogenic differ-
entiation. Fu et al. (2010) used micromoulded elastomeric
micropost arrays consisting of a gradient of different rigidity
microposts and examined how MSCs cultured on these
micropost arrays would respond to changes in micropost ri-
gidity. They found that, in the presence of bipotential differ-
entiation medium on rigid microposts, hMSCs showed
osteogenic potential. In contrast, cells on soft microposts
displayed adipogenic differentiation.

Moreover, the maintenance of the appropriate mechan-
ical inputs from the ECM are required for maintaining the
differentiated state of the lineage-committed cells and
hence self renewal. Alcaraz et al. (2008) cultured mam-
mary epithelial cells on different elasticity biomimetic sur-
faces and they used the expression of β-casein, a milk
protein, as a marker of differentiation. They further
showed that the cells on soft substrates (~100 Pa) main-
tained the expression of β-casein, whereas those on more
rigid substrates (>250 Pa), stiffer than normal mammary
tissue, showed a reduced β-casein expression, a sign of de-
differentiation or even tumourigenesis.

Furthermore, Gilbert et al. (2010), using a mouse
model, tested the hypothesis that the elastic modulus of
the cell microenvironment plays an essential role in mus-
cle stem cell (MuSC) self-renewal and function in muscle
regeneration. They reported that when MuSCs were cul-
tured on substrates mimicking the rigidity of muscle tissue
(12 kPa), they self-renew to generate stem cell progeny
that can potentially repair damaged muscle when
transplanted in vivo.

Recent work on matrix elasticity and downstream regu-
lators has identified (Yes-associated protein (YAP) and
transcriptional coactivator with PDZ-binding motif (TAZ;
also known as WWTR1) as nuclear transmitters of me-
chanical signals applied by ECM rigidity and cell shape
(Dupont et al., 2011; Aragona et al., 2013). Their function
is closely regulated by the Rho GTPase activity and ten-
sion of the actomyosin cytoskeleton generated upon cell
adhesion to the ECM. The authors reported that their reg-
ulation is independent of the Hippo–LATS cascade. The
authors further showed that YAP/TAZ activity is essential
for the ECM stiffness-induced differentiation of MSCs and
for the survival of endothelial cells regulated by cell ge-
ometry. Recent work by Yang et al. (2014) on MSC cul-
tures on different-stiffness hydrogels revealed that stem

Figure 3. Tissue elasticity: solid tissues exhibit a range of stiffness, as measured by the elastic modulus, E
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cells have mechanical memory and that YAP/TAZ act as
an intracellular mechanical stiffness sensor.

4. Cell–extracellular matrix adhesions

Adhesion of cells to the ECM is mediated via transmem-
brane integrins (Humphries, 1990). Integrin binding can
occur via an outside-in or inside-outmechanism (Harburger
and Calderwood, 2009). This creates a dynamic relation-
ship whereby the ECM can transduce signals from the envi-
ronment inside the cell or, conversely, signalling from inside
the cell can result in remodelling of the ECM. For the pur-
poses of this review, however, it is their role as mediators
of outside-in signalling that is interesting, due to biomate-
rials now being designed to mimic various aspects of the ex-
tracellular environment. In particular, research that has
identified a correlation between focal adhesion size and in-
tracellular tension to regulating stem cell differentiation,
using various biomaterial strategies, has been well docu-
mented (Goffin et al., 2006; Dalby and Yarwood, 2007;
Biggs and Dalby, 2010; Kilian et al., 2010; Yim et al.,
2010). More recently, studies have also identified these to
be key regulators of self-renewal (Gilbert et al., 2010;
McMurray et al., 2011; Tsimbouri et al., 2012). This has al-
ready been discussed earlier in this review.

The binding of integrins to ECM proteins is a complex
process (Figure 4) and serves two functions: first, they

form points of contact between the cell and a surface,
allowing tension to be created; and second, as signalling
transmitters, relaying information from the ECM to the
cell. Although integrins themselves do not possess kinase
activity, the binding of various integrin-binding mole-
cules, such as focal adhesion kinase (FAK), leads to the ac-
tivation of intracellular signalling cascades. These include
extracellular signal-regulated kinase–mitogen-activated
protein kinase (ERK–MAPK), a key pathway involved in
regulating multiple cellular processes such as prolifera-
tion and differentiation (Miyamoto et al., 1995; Zhu and
Assoian, 1995).

Initial binding of integrins to ECM proteins results in
changes in both their conformation and affinity resulting
in integrin clustering and the formation of immature focal
complexes (Kawakami et al., 2001). The formation of
these immature focal complexes and subsequent binding
of actin linker proteins, such as vinculin and talin, result
in actin stress fibre formation and increased focal adhe-
sion size as the cell tries to counterbalance the internal
forces that result from increased cytoskeletal tension.

4.1. Integrin-mediated mechanotransduction

As mentioned previously, the interactions between
integrins and the ECM enable cells to generate tension
and relay information from the ECM to the nucleus
(Figure 5). This transformation of a mechanical signal into

Figure 4. Focal adhesion formation/turnover. Immature or nascent adhesions (right) are linked to the actin cytoskeleton through a
linking protein complex consisting of talin, vinculin and α-actinin. Signalling adaptors FAK and paxillin are also recruited to these fo-
cal complexes. Upon adhesion formation, signals are generated activating Rac, promoting actin polymerization and preventing myo-
sin II coupling in the lamellipodium. These signalling cascades are required for the turnover of some adhesions as the cell moves.
Some adhesions mature into focal adhesions (middle); during this process the focal complexes become larger and longer with the
addition of new proteins, such as tensin. Some components, such as talin, vinculin and p130Cas, have conformations that are ten-
sion-sensitive. RhoA activation leads to focal adhesion formation and actin bundling, due to increased myosin II activity. Dynamin
is involved in the internalization of the integrins and microtubule targeting, which may contribute to adhesion disassembly. Adapted
from Vicente-Manzanares et al. (2005)
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a biochemical signal is known as mechanotransduction. The
cytoskeleton is made up of various components that create a
dynamic structure that not only provides a physical and bio-
chemical link to the extracellular environment but also cre-
ates forces required for cell migration and maintaining cell
shape. The three main cytoskeletal components are mi-
crofilaments, microtubules and intermediate filaments.
It has been proposed that each of these components can
work together to maintain cellular tensegrity, where cell
shape is maintained through continuous tension (Ingber,
1997a, 1997b).

This cytoskeletal percolation provides non-homogeneity
to the cytoplasm and hence provides the basis of convey-
ance of mechanical changes to the nucleus. The cytosksleton
is attached to the nucleoskeleton, the lamins, via linkers of
the nucleoskeleton and the cytoskeleton (LINC complexes)
(Ostlund et al., 2009). This provides direct mechanical
connetection of the nucleus to focal adhesions via the cyto-
skeleton and from there into the extracellular environment
to which adhesions are anchored.

Swift et al. (2013) used proteomic analysis of different
human and mouse tissues to identify possible candidates
involved in cell responses to changes in extracellular ma-
trix (ECM) stiffness. They found that lamin A was more
prevalent in stiff tissues and that this expression varied,

depending on the tissue’s stiffness. In addition, they ob-
served that increased lamin A expression increased nu-
clear viscosity, rendering the nucleus more resistant to
physical stress. It has further been proposed that direct
mechanotransduction occurs as a result of changes in
the cytoskeleton that can directly affect lamin-bound in-
termediate filaments at the nucleus, altering the spatial
arrangement of lamin-bound chromatin and chromosome
packing or positioning, subsequently altering gene expres-
sion (Maniotis et al., 1997a, 1997b; Wang et al., 2001,
2009; Dalby et al., 2007a, 2007b; McNamara et al.,
2012; Tsimbouri et al., 2013).

4.2. Integrins and the cell cycle

In addition to mitogenic factors, the cell cycle is found to
be under regulation, again at G1, by adhesion and me-
chanical cues. Early evidence through cell-spreading stud-
ies showed that the degree of cell spreading and
intracellular tension are key factors in mediating the rate
of proliferation (Curtis and Seehar, 1978; Folkman and
Moscona, 1978). As a result of integrin binding, FAK be-
comes activated via phosphorylation (Kornberg et al.,
1992). This phosphorylation has been shown to be under

Figure 5. Schematic diagram showing that mechanical forces stimulate cells through the activation of mechanosensors, some of
which may be the receptors that respond to ligands. (A) Cells can be exposed to multiple types of forces, such as shear forces through
fluid flow over the cell surface, tensile/traction forces through the ECM, and internal cytoskeletally generated contractile forces (ac-
tomyosin contraction, microtubule polymerization and depolymerization, osmotic forces). Signalling pathways are then activated
through the sensors, leading to modulation of gene expression. Consequences of such mechanotransduction are modulations of pro-
tein expression and cellular functions such as proliferation and differentiation. Illustrated is a single cell attached to a complex ECM
(multicoloured sheet) through the focal adhesions (square and inset). (B) Focal adhesion, showing the balance of external (Fext) and
internal (Fcell) forces in driving stress at a mechanosensor. Depicted are actin stress fibres (purple) anchored into focal adhesions
(i.e. vinculin, talin, paxilin, focal adhesion kinase) that bind to the ECM through integrins (green). This balance of forces provides
the stress necessary for mechanical sensing
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regulation by cellular spreading, with increased cellular
spreading leading to higher levels of FAK phosphorylation.
Conversely unphosphorylated FAK activates p190RhoGAP,
an inhibitor of RhoA, leading to decreased actin polymeri-
zation and intracellular tension (McBeath et al., 2004).
Phosphorylation of FAK is known to activate the ERK
kinase pathway (ERK2) and the induction of cyclin D1, a
critical regulator of the G1–S cell cycle transition. In
support of this, research using RGD nanopatterned
surfaces with different spacing between the ligands found
that disrupted integrin clustering decreased stable focal
adhesion formation and cell spreading (Schlaepfer et al.,
1998). Studies have also found that the activation of differ-
ent integrins can have opposing effects, therefore indicat-
ing that the composition of the ECM plays a key role in
mediating cell-cycle progression. In particular, integrin
subunits α5 and α6, have been implicated in promoting cell
cycle progression, whilst α2β1 has been shown to decrease
proliferation in certain cell types (Lavoie et al., 1996; Wang
et al., 2011a, 2011b).

4.3. Integrins and stem cell division

Integrins and other cell adhesion molecules play an
important role in determining cell polarity, orientation
of the mitotic spindle and, ultimately, the plane of cell
division (Toledano and Jones, 2009; Marthiens et al.,
2010). During stem cell division, the plane of cell divi-
sion is thought to be an important factor in regulating
whether the stem cell undergoes symmetrical or asym-
metrical division. In a study by Thery and Bornens
(2006), the spatial distribution of the ECM was shown
to play a crucial role in determining the plane of cell
division. In a similar study, Toyoshima and Nishida
(2007) also used micropatterning to dictate the orien-
tation of the mitotic spindle. However, in this study
the authors also showed that when β1-integrin was
blocked, cells lost the ability to orientate their spindles,
highlighting a role for individual integrins in regulating
stem cell division. Kosodo et al. (2004) similarly found
that when integrin binding is blocked in neural stem
cells, this creates a shift in the plane of cell division,
resulting in a switch from asymmetrical to symmetrical
cell division.

Within the stem cell niche, however, the orientation of
cell division is important for dictating cell fate (Siller and
Doe, 2009; Yamashita 2009, 2010; Yamashita et al.,
2010). In the case of stem cells, as discussed previously,
cell division can result in either symmetrical or asymmet-
rical outcomes, whereby mechanical cues may also
dictate the plane of cell division, as demonstrated by
Fink et al. (2011). In vivo, this asymmetry may result in
the differential exposure of daughter cells to chemical
factors. Indeed, the role of asymmetrical exposure to
factors such as wnt3a was demonstrated by Habib et al.
(2013), who found that spatially restricted exposure to
wnt3a can result in asymmetrical outcomes for dividing
stem cells.

5. Mechanotransduction and the
primary cilium

The primary cilium is a microtubule-based organelle,
which forms as a compartment protruding from the cell
membrane into the extracellular space. It has been shown
to function as a mechanosensor, most notably in the
kidney, where fluid flow within the kidney bends the
cilium, allowing entry of Ca2+, and as a signalling hub
for key developmental pathways, such as hedgehog,
non-canonical wnt, PDGF and calcium signalling (Kiprilov
et al., 2008; Clement et al., 2009, 2013; Schneider et al.,
2010; Lancaster et al., 2011; Wann et al., 2012). Forma-
tion of the cilium is tightly coupled with the cell cycle,
with ciliogenesis occurring during G0–G1, and cilia disas-
sembly occurring at the onset of late G1–S phase
(Christensen et al., 2008). As the G1 cell-cycle phase is
known to play a critical role in mediating stem cell differ-
entiation, it is therefore not surprising that reducing the
rate of cilia disassembly, thereby delaying entry into S
phase, has been found to correlate with an increase stem
cell differentiation (Kim et al., 2011; Li et al., 2011). In
MSCs and other stem cells, the primary cilium has also re-
cently been shown to play a role in both
mechanotransduction and chemically induced differentia-
tion (Clement et al., 2009; Tummala et al., 2010; Hoey
et al., 2012). In addition, ciliogenesis has been shown to
be responsive to changes in cell shape-induced cytoskele-
tal changes. In a study using micropatterns of different
sizes designed to alter the degree of cell spreading, cilia
prevalence and length were found to decrease under in-
creasing cellular spreading (Pitaval et al., 2010). These
studies highlight an emerging role of the primary cilium
in multiple cellular processes and begin to provide us with
an understanding of the mechanisms which regulate its
structure and function.

6. Conclusions and further directions

6.1. Dynamic surfaces

With the development of new technologies, a more sophis-
ticated set of biomaterials are being created – those with
the ability to spatially and temporally alter the environment
of the cell in vitro. The development of dynamic surfaces is
an exciting step towards creating multifactorial environ-
ments that better mimic the changing chemistry, geometry,
mechanics or topography of the in vivo extracellular envi-
ronment. By combining techniques used in engineering
and chemistry, materials have been created that can:

• Alter substrate stiffness through changes in pH or hy-
drogel composition (Gillette et al., 2010; Yoshikawa
et al., 2011). Surface topography can be tuned using
thermally activated surfaces or oxidizable polymers,
and can be used to alter topography down to sub-
micrometre scales (Le et al., 2011; Ebara et al., 2012).

R. J. McMurray et al.

© 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd. J Tissue Eng Regen Med (2014)
DOI: 10.1002/term



• Switch surface chemistry, by revealing cell adhesion li-
gands using either photo- or electrosensitive protecting
groups (Yeo et al., 2001; Yeo and Mrksich, 2006;
Wirkner et al., 2011). In addition, creating a cleavable
linker enables the release or detachment of cell adhe-
sion ligands (Todd et al., 2007, 2009).

The use of such techniques will help create surfaces
that provide cells with appropriate cues in a temporal
manner to enable the study of stem cells in a dynamic
in vitro system – more akin to the dynamic in vivo niche.

7. Summary

We are at an exciting point of scientific endeavour
where stem cells are becoming better understood and
the possibility for their exploitation in regenerative
therapy is eagerly anticipated. We propose that bioma-
terials may play an vital role in accelerating our under-
standing of stem cells, through providing appropriate
in vitro control of stem cells without recourse to the
use of complex media containing cocktails of soluble

factors to drive differentiation or try to control growth.
Use of surface chemistry, nanoscale topography and
tuneable stiffness has been used to understand MSC
adhesion/differentiation requirements, and we now
move to, for example, dynamic surfaces able to turn
on stem cell functions on demand – as in the niche.
The techniques are also being applied to other stem
cell types that will further increase their relevance to
developing stem cell-regenerative therapies.
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