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Abstract 

In this paper a hybrid Genetic Algorithm – Support Vector Regression (GA-SVR) model in economic 

forecasting and macroeconomic variable selection is introduced. The proposed algorithm is applied to the 

task of forecasting the US inflation and unemployment. The GA-SVR genetically optimizes the SVR 

parameters and adapts to the optimal feature subset from a feature space of potential inputs. The feature 

space includes a wide pool of macroeconomic variables that might affect the two series under study. The 

forecasting performance of the GA-SVR is benchmarked with a random walk model, an Autoregressive 

Moving Average model, a Moving Average Convergence/Divergence model, a Multi-Layer Perceptron, a 

Recurrent Neural Network and a Genetic Programming algorithm. In terms of our results, GA-SVR 

outperforms all benchmark models and provides evidence on what macroeconomic variables can be 

relevant predictors of US inflation and unemployment in the specific period under study. 
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INTRODUCTION 

Developing highly accurate techniques for predicting the inflation and the unemployment is a crucial 

problem for economists and bankers. The forecasts for the unemployment and inflation play a crucial role 

in almost any monetary and policy decision process. As a result the empirical literature on forecasting 

macroeconomic variables is wealthy and extensive. Several statistical, technical and econometrical 

techniques have been applied to the problem with ambiguous results. Although researchers seem able to 

capture the pattern of the macroeconomic variables under normal market conditions, these models fail to 

provide accurate results during periods of recessions and economy shocks (Ager et al. (2009), Cogley et al. 

(2010) and Li (2012)). This can be explained by the fact that the relevant literature is dominated by linear 

models and/or models based on a fixed set of predictors. Inflation and unemployment though are affected 

by a number of different macroeconomic indicators and the underlying relation is likely to be changing 

depending on the state of the economy (D’Agostino et al., 2013).  

The novelty of our model lies in its ability to capture the asymmetries and nonlinearities in the given 

sample of predictors, select the optimal feature subsets and provide a single robust SVR forecast for the 

specific period and series under study. In that way, the hybrid Genetic Algorithm – Support Vector 

Regression (GA-SVR) sheds more light on the quest of nonlinear mapping of macroeconomic variables. 

From a technical point of view, our proposed model is superior to non-adaptive algorithms presented in the 

literature. It does not require analytic parameter calculation as Cherkassky and Ma (2004) propose, but also 

avoids time consuming optimization approaches (cross validation or grid search) that are used in similar 

applications (Lu et al.(2009) and Kim and Sohn (2010)). Additionally it is free from the data snooping bias, 

since all parameters of the GA-SVR model are optimized in a single optimization procedure.  

This study introduces the GA-SVR and applies it to the task of forecasting the US inflation and 

unemployment. The GA-SVR model will attempt to capture the complex and non-linear behavior that 

dominates the two series. As potential inputs, the proposed algorithm will use a pool of 110 potential 

predictors. This will increase the model’s flexibility and allow it to explore a large universe of potential 

relationships between the 110 predictors and the US inflation and unemployment. It is also worth noting 

that the proposed algorithm is fully adaptive something that excludes any bias from the practitioner. The 



selection of the proposed model’s inputs and parameters is based on a GA algorithm, while the pool of 

potential inputs is only limited by the data availability.  

The proposed methodology intends to contribute to the growing literature that studies the utility of 

technical analysis and computational intelligence techniques in forecasting. The technical approach 

suggests that market action discounts all available information, prices move in trends and history tends to 

repeat itself (Murphy, 1999). Computational intelligent techniques, like Neural Networks (NNs), Genetic 

Algorithms (GAs) and Support Vector Machines (SVMs), attempt to model human cognitive abilities, such 

as reasoning, learning and decision making, which makes them useful in forecasting applications (Kim 

(2006), Kim and Sohn (2010) and Huang (2012)). In this paper, a random walk model (RW), an 

Autoregressive Moving Average model (ARMA) and a Moving Average Convergence/Divergence model 

(MACD), a Multi-Layer Perceptron (MLP), a Recurrent Neural Network (RNN) and a Genetic 

Programming (GP) algorithm will be utilized as benchmarks. This benchmark selection serves the purpose 

of this study. Namely, it allows GA-SVR to compete with three traditional models used in technical 

analysis (RW, ARMA, MACD) and three common computational intelligent methods (MLP, RNN, GP).  

All models will be applied to the task of forecasting the US inflation and unemployment from January 

1974 to December 2012. The periods from January 1997 to December 2000, January 2001 to December 

2004, January 2005 to December 2008 and January 2009 to December 2012 will act as out-of-samples by 

rolling forward the estimation by four years. The optimal parameters of GA-SVR are recalculated in every 

exercise. From an econometric perspective the rolling forward estimation will add validity to the results of 

the forecasting exercise. From an economic perspective, the unique architecture of the GA-SVR model will 

allow to study if variables that are significant in forecasting the inflation and the unemployment in the pro-

crisis period (1997-2004) remain significant in crisis and after crisis period (2005-2012). The above 

selection of the out-of-sample periods allow us also to observe if the forecasting power of our models is 

reduced during the recession period, as it is repeatedly reported in the recent relevant literature.    

During the last decades the dynamics of US inflation have changed considerably. Inflation forecasters have 

implemented a wide variety of multivariate models, such as Cogley and Sargent (2005) and Cogley et al. 

(2010). These models attempt to outperform simple univariate models like the Atkeson-Ohanian’s (2001) 



random walk model or time varying models with unobserved components as presented by Stock and 

Watson (2007). Their success though is inconsistent and their inflation forecasts are unstable. A concise 

survey of the instability of these models is given by Stock and Watson (2009).  Stock and Watson (2003, 

2004) also propose that the best predictive performance is attained through simple averaging of inflation 

forecasts derived from a very large number of models. McAdam and McNelis (2005) perform an inflation 

forecasting exercise in US, Japan and Euro area, where GAs are combined with NNs in order to achieve 

optimal non-linear Phillips curve specifications. Based on their results, the authors conclude that the payoff 

of the NN strategy comes in periods of structural change and uncertainty. Ang et al. (2007) compare and 

combine the forecasting power of several linear and non-linear models with survey-based measures. Their 

study shows that the use of surveys’ information can lead to superior individual forecasts on the US 

infaltion. Inoue and Kilian (2008) apply the method of bootstrap forecast aggregation (bagging) to the task 

of forecasting the US CPI. The empirical evidence confirms the superiority of this method compared to the 

Bayesian model averaging or Bayesian shrinkage estimators used by other researchers (see amongst others 

Groen et al. (2010), and Stock and Watson (2012)). 

Forecasting unemployment rates is also a well documented case study in the literature (Rothman (1998), 

Montgomery et al. (1998)). Swanson and White (1998) forecast several macroeconomic time series, 

including US unemployment, with linear models and Neural Networks (NNs). In their approach, NNs 

present promising empirical evidence against the linear VAR models. Moshiri and Brown (2004) apply a 

back-propagation model and a generalized regression NN model to estimate post-war aggregate 

unemployment rates in the USA, Canada, UK, France and Japan. The out-of-sample results confirm the 

forecasting superiority of the NN approaches against traditional linear and non-linear autoregressive 

models. Smooth transition vector error-correction models are also used to forecast the unemployment rates, 

as in the non-Euro G7 countries’ study of Milas and Rothman (2008). The proposed model outperforms the 

linear autoregressive benchmark and improves significantly the forecasts of the US and UK unemployment 

rate during business cycle expansions. Wang (2010) combines several rival individual US unemployment 

forecasts with directed acyclical graphs. The results indicate that models that are not directly causally 

linked can be combined to project a more accurate composite forecast. Chua et al. (2012) present a latent 

variable approach to the same forecasting task. Their model exploits the time series properties of US 



unemployment, while satisfying the economic relationships specified by Okun’s law and the Phillips curve. 

The specification is advantageous since it provides an unemployment forecast consistent with both 

theories, but at the same time is less computational demanding than equivalent atheoretical models like 

VAR and BVAR. Finally, Olmedo (2013) performs a competition between non-linear models to forecast 

different European unemployment rate time series. The best results are provided by a vector autoregressive 

and baricentric predictor, but as the forecasting horizon lengthens the performance deteriorates.  

The rest of the paper is organized as follows. Section 2 describes the dataset used for this study, while a 

brief description of the benchmark models is given in Section 3. Section 4 summarizes the theoretical 

background needed for the complete understanding of our proposed methodology. In Section 5 follows the 

complete description of the hybrid GA-SVR model. The empirical results are presented in Sections 6. 

Finally, some concluding remarks are provided in Section 7.  

2. DATA DESCRIPTION 

This paper implements two forecasting exercises with monthly data over the period of January 1974 to 

December 2012. The first exercise attempts to forecast the percentage change in the US inflation. As a 

proxy for the US inflation, we use the US Consumer Price Index (CPI). The second one focuses on 

predicting the percentage change of the US unemployment (UNEMP). Figure 1 below presents the two 

series under study in levels. 

[Insert Figure 1] 

Following similar studies (Wright (2009) and Koop and Korobilis (2012)), we select eleven predictors that 

can explain the economic premises of inflation and unemployment or are found to be useful in forecasting 

them. The pool of our potential inputs includes the first ten autoregressive terms of these predictors. Thus, 

the feature space consists of hundred ten series of monthly percentage changes. All series are seasonally 

adjusted, where applicable. The sources of our data are the Federal Reserve Bank of St. Louis (FRED) and 

Bloomberg (BLOOM). Table 1 below summarizes the list of variables used in this application1.  

                                                                 
1 In this application we use monthly frequency data. This constrains us from including other relevant predictors that are available 
quarterly. Nonetheless, the GA-SVR uses the majority of the important macroeconomic indicators, as explored by landmark 
similar studies (i.e. Stock and Watson (2012))  



[Insert Table 1] 

 

3. BENCHMARK FORECASTING MODELS 

The proposed GA-SVR model is benchmarked with a Random Walk model (RW), an Autoregressive 

Moving Average model (ARMA), a Moving Average Convergence/Divergence Model (MACD), a Multi-

Layer Perceptron (MLP), a Recurrent Neural Network (RNN) and a Genetic Programming (GP) algorithm. 

This section provides a brief description of these models. 

3.1 Random Walk Model (RW) 

The random walk model (RW) is a process where the current value of a variable is calculated from the past 

value plus an error term. The error term follows the standard normal distribution. The specification of the 

model is: 

       1
ˆ ,t t tY Y e−= +  (0,1)te N                                            (1) 

Where t̂Y  is the forecasted inflation/unemployment for period t and 1tY − is the actual 

inflation/unemployment of period t-1. 

The RW is a non-stationary process with a constant mean, but not a constant variance.  

 

 
3.2 Auto-Regressive Moving Average Model (ARMA) 

An ARMA model embodies autoregressive and moving average components and can be specified as 

below: 

0 1 1 2 2 1 1 2 2
ˆ ... ...t t t p t p t t t q t qY Y Y Y w w wϕ ϕ ϕ ϕ ε ε ε ε− − − − − −= + + + + + − − − −               (2) 

Where: 

• t̂Y  is the forecasted inflation/unemployment at time t 

• Yt-1,Yt-2,…Yt-p  are the lagged actual inflation/unemployment values  



• φ0,φ1,…,φp  are the regression coefficients 

• εt  is the error term 

• εt-1,εt-2,…,εt-q  are the previous values of the error terms 

• w1, w2,…,wq are the error weights 

The ARMA models are selected using the correlogram and the information criteria in the in-sample period 

as a guide. The back-casting technique is used to obtain pre-sample estimates of the error terms (Box and 

Jenkins, 1976). The null hypotheses that all coefficients (except the constant) are not significantly different 

from zero and that the error terms are normally distributed are rejected at the 95% confidence interval. 

3.3 Moving Average Convergence/Divergence Model (MACD) 

A moving average model is defined as: 

( )1 2 1... /t t t t nM Y Y Y n− − − += + + +                           (3) 

Where:     

• Mt : moving average at time t 

• n: the number of terms in the moving average 

• Yt-1,…, Yt-n+1: the actual inflation/unemployment at periods t-1,…,t-n+1  

The MACD line derived by two moving average series with different lengths (short and long) is used to 

forecast the two series under study. The short and long terms used in the estimation of the moving averages 

are commonly determined based on the forecaster’s judgement and practical previous knowledge. In our 

case, the combinations that perform best over the in-sample sub-period are retained for out-of-sample 

evaluation.  

3.4 Neural Network Architectures (NNs) 

The Multi-Layer Perceptron (MLP) and the Recurrent Neural Network (RNN) are the two traditional NNs 

used as benchmarks for this forecasting application.  Both these architectures have at least three layers. The 

first layer is called the input layer (the number of its nodes corresponds to the number of explanatory 

variables). The last layer is called the output layer (the number of its nodes corresponds to the number of 

response variables). An intermediary layer of nodes, the hidden layer, separates the input from the output 



layer. Its number of nodes defines the amount of complexity the model is capable of fitting. In addition, the 

input and hidden layer contain an extra node called the bias node. This node has a fixed value of one and 

has the same function as the intercept in traditional regression models. Normally, each node of one layer 

has connections to all the other nodes of the next layer. The training of the network (which is the 

adjustment of its weights in the way that the network maps the input value of the training data to the 

corresponding output value) starts with randomly chosen weights and proceeds by applying a learning 

algorithm called backpropagation of errors (Shapiro (2000)). The iteration length is optimised by 

maximising a fitness function in the test dataset.  

Unlike MLPs, RNNs have an activation feedback which embodies short-term memory. In other words, the 

RNN architecture can provide more accurate outputs because the inputs are (potentially) taken from all 

previous values. Tenti (1996) notes that RNNs need more connections and memory than standard back-

propagation networks. However, RNNs can yield better results in comparison with simple MLPs due to the 

additional memory inputs. For more information on MLPs and RNNs see Sermpinis et al. (2013). 

There is no formal theory behind the selection of the inputs of NNs. For that reason, we conduct neural 

networks experiments and a sensitivity analysis on a pool of autoregressive terms of all available series in 

the in-sample dataset. The aim is to select as inputs those sets of variables that provide the best statistical 

performance for each network in the in-sample period. Based on the guidelines (Lisboa and Vellido (2000) 

and Zhang (2009)) we experiment with the first fifteen autoregressive terms of each forecasted series in all 

in-sample periods. More details about the design and training characteristics our NNs are included in 

Appendix A. 

3.5 Genetic Programming Algorithm (GP) 

GP algorithms are a class of Genetic Algorithms (GAs) and the intuition behind this technique is the 

Darwinian principle of reproduction and survival of the fittest. GP applies the Darwinian theory of 

evolution to a population of computer programs of varying sizes and shapes, which run in various 

environments in order to produce forecasts at a high level of accuracy (Chen, 2002). Dissimilar to NNs, GP 



creates an initial population of models and evolves it using genetic operators, in order to calculate the 

mathematical expression which best fits the specified data input in the system.  

Our GP application evolves tree-based structures that present models (sub-trees) of input – output. It 

utilizes formulas to evolve algebraic expressions that enable the analysis and optimization of results in a 

genetic tree structure. This structure consists of nodes, which are essentially functions that perform actions 

within this structure. The maximum tree depth is the maximum length of each model (of each tree 

structure) and it depends on the functions and terminals of each individual model. The design phase of our 

GP application focuses primarily on execution time optimization and then on limiting the ‘bloat effect’, a 

similar issue as overfitting in NNs. 

GP reproduces newer models replacing the weaker ones in the population according to their fitness. In our 

case, the fitness is measured by Mean Squared Error (MSE) of the forecasted value and the actual value of 

each month. Obviously the lowest MSE is considered as a criterion of better fitness. Then, the best models 

(tournament winners) are exposed to two genetic operators, known as mutation and crossover. This genetic 

procedure produces superior offsprings that will replace the worst models (tournament losers) and 

rearrange the initial population for the next iteration. This is constrained by the size of the models, namely 

the tournament size, and their goodness of fit. The iterations stop and the final forecast results are obtained, 

when our model reaches the critical value of the termination criterion. The termination criterion is in 

general arbitrarily chosen, but our choice is based on optimizing the statistical performance with the least 

possible bloat effect in the in-sample period.  For more details on the functionality aspects of GP and the 

genetic operators see Koza and Andre (1996). 

The figure below describes the structure of a typical GP algorithm. 

[Insert Figure 2] 

The parameters of our GP application are defined based on which model presents the best statistical 

performance in the in-sample sub-period and are presented in Appendix A.  

4. THEORETICAL BACKGROUND  



In this section follows a short theoretical background on Support Vector Regression (SVR), Genetic 

Algorithms (GAs) and the issues of parameter and feature subset selection.  

4.1 The ε-SVR and v-SVR 

Support Vector Machines (SVMs) are non-linear algorithms used in supervised learning frameworks in 

order to solve classification problems. SVM processes belong to the general category of kernel methods 

(Scholkopf and Smola (2002)). Their main advantage is that they can generate non-linear decision 

boundaries through linear classifiers. Another advantage is that the practitioner can apply kernel functions 

to data that their vector space is not fixed in terms of dimensions. The SVMs can be used in regression 

problems by implementing  the ε-sensitive loss function by Vapnik (1995). This function established SVRs 

as a robust technique for constructing data-driven and non-linear empirical regression models.  

If we consider the training data {(x1,y1), (x2,y2)…, (xn, yn)}, where , , 1...i ix X R y Y R i n∈ ⊆ ∈ ⊆ =  and n the 

total number of training samples, then the SVR function can be specified as:  

          ( ) ( )Tf x w x bϕ= +                                            (4) 

where w and b are the regression parameter vectors of the function and φ(x) is the non-linear function that 

maps the input data vector x into a feature space where the training data exhibit linearity (see figure 3).  

[Insert Figure 3] 

The ε-sensitive loss Lε function (see figure 3b) finds the predicted points that lie within the tube created by 

two slack variables *,i iξ ξ :  
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The goal is to solve the following argument: 
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The above quadratic optimization problem is transformed in a dual problem and its solution is based on the 

introduction of two Lagrange multipliers *,i ia a and mapping with a kernel function ( , )iK x x  : 

     
*

1
( ) ( ) ( , )

n

i i if x a a K x x b
i=

= − +∑  where *0 ,i ia a C≤ ≤                                  (7) 

The application of the kernel function transforms the original input space into one with more dimensions, 

where a linear decision border can be identified. Factor b is computed following the Karush-Kuhn-Tucker 

conditions. A detailed mathematical explanation of the above solution can be found in Vapnik (1995). 

Support Vectors (SVs) are called all the xi that contribute to equation (7), thus they lie outside the ε-tube, 

whereas non-SVs lie within the ε-tube2. Increasing ε leads to less SVs’ selection, whereas decreasing it 

results to more ‘flat’ estimates. The norm term 2w characterizes the complexity (flatness) of the model 

and the term *

1
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=

 
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
∑ is the training error, as specified by the slack variables. Consequently the 

introduction of the parameter C satisfies the need to trade model complexity for training error and vice 

versa (Cherkassky and Ma, 2004). In general, both terms cannot be minimal or close to zero at the same 

time. The SVR algorithm estimates the w and b of the linear function of equation (4) with the predefined ε 

and C, in order the resulting regression function to achieve good generalization ability. This result should 

not be too complex and at the same time avoid many training errors. If this balance is achieved, then the 

SVR offers a solution to the over-fitting problem. The parameter ε, though, takes nonnegative 

unconstrained values, which makes its optimal setting very challenging. 

The v-SVR algorithm can be used to make this task easier. This alternative SVR approach encompasses the 

ε parameter in the optimization process and controls it with a new parameter (0,1)v∈ . In v-SVR the 

optimization problem transforms to: 
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                   (8)  

The methodology remains the same as in ε-SVR and the solution takes a similar form: 

                                                                 
2 A SV is either a boundary vector ( [ ]* *( ) / , / , 0i i i ia a C n C n ξ ξ− ∈ − = = ) or an error vector ( * *, / , 0i i i ia a C n and ξ ξ= > ). 
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Based on the ‘v-trick’, as presented by Scholkopf et al. (1999), increasing ε leads to the proportional 

increase of the first term of *
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 
∑ , while its second term decreases proportionally to the 

fraction of points outside the ε-tube. So v can be considered as the upper bound on the fraction of errors. 

On the other hand, decreasing ε leads again to a proportional change of the first term, but also the second 

term’s change is proportional to the fraction of SVs. That means that ε will shrink as long as the fraction of 

SVs is smaller than v, therefore v is also the lower band in the fraction of SVs. For a more detailed 

mathematical analysis of the above solutions see Vapnik (1995).   

Although SVR has emerged as a highly effective technique for solving non-linear regression problems, 

designing such a model can be impeded by the complexity and sensitivity of selecting its parameters (C, ε 

or v and kernel function parameter). SVR’s performance depends on all parameters being set optimally. 

Numerous approaches for this optimization have been presented in literature, which can be summarized in 

the following trends: 

• Setting ε as a non-negative constant for convenience (ε=0 or equal to a very small value) (Trafalis 

and Ince (2000)). 

• Using data-driven approaches and standard parameterization of the SVR solution (Cherkassky and 

Ma, 2004). 

• Estimating the parameters with the cross-validation technique (Cao et al.(2003) and Duan et al. 

(2003)). 

• Controlling ε with v-SVR ( Scholkopf et al. (1999)). 

4.2 Feature Selection and Genetic Algorithms (GAs)  

Feature selection is an optimization problem that refers to the search over a space of possible feature 

subsets in order to find those that are optimal with respect to specific criteria. Such a problem requires a 

search strategy that picks the feature subsets and an evaluation method that tests their goodness of fit. 

Many searching strategies have been proposed in literature, but those who seem to attract more attention 



are the randomized searches, where probabilistic steps are applied (Sun et al., 2004). Genetic Algorithms 

(GAs) are commonly used in such cases (Siedlecki and Sklansky (1989))       

GAs, formerly introduced by Holland (1975), are search algorithms inspired by the principle of natural 

selection. They are useful and efficient if the search space is big and complicated or there is not any 

available mathematical analysis of the problem. A population of candidate solutions, called chromosomes, 

is optimized via a number of evolutionary cycles and genetic operations, such as crossovers or mutations. 

Chromosomes consist of genes, which are the optimizing parameters. At each iteration (generation), a 

fitness function is used to evaluate each chromosome, measuring the quality of the corresponding solution, 

and the fittest chromosomes are selected to survive. This evolutionary process is continued until some 

termination criteria are met. In general, GAs can deal with large search spaces and do not get trapped in 

local optimal solutions like other search algorithms. 

5. HYBRID GA-SVR MODEL 

In this section we present our hybrid Genetic Algorithm – Support Vector Regression (GA-SVR) model 

for optimal SVR parameter and macroeconomic variable selection. The proposed model genetically 

searches over a feature space (the pool of macroeconomic predictors as in Table 1) and then provides a 

single optimized SVR forecast for each series under study. In order to achieve this we use a simple GA 

where each chromosome comprises feature genes that encode the best feature subsets and parameter genes 

that encode the best choice of parameters.  

The lack of information on the noise of the training datasets makes the a priori ε-margin setting of ε-SVR a 

difficult task. In order to overcome this and decrease the computational demands of our methodology, we 

decide to implement the RBF v-SVR approach in our hybrid GA-SVR model (see Section 4.1). A RBF 

kernel is in general specified as: 

      2( , ) exp( ), 0γ γ= − − >i iK x x x x               (10) 

where γ represents the variance of the kernel function. Consequently, the parameters optimized by the GA 

are C, v and γ.   



The GA of our hybrid methodology uses the one-point crossover and the mutation operators. The one-

point crossover creates two offspring from every two parents. The parents and a crossover point cx are 

selected at random. The two offsprings are made by both concatenating the genes that precede cx in the first 

parent with those that follow (and include) cx in the second parent. The probability for selecting an 

individual as a parent for the crossover operator is called crossover probability and in our application is set 

to 0.85. Having a high crossover probability enables our model to keep some population for the next 

generation, hoping to create better new chromosomes from good parts of the old chromosomes. The 

offspring produced by the crossover operator replaces their parents in the population. On the other hand, 

the mutation operator places random values in randomly selected genes with a certain probability named as 

mutation probability.  This operator is very important for avoiding local optima and exploring a larger 

surface of the search space. This probability is set to 0.15 in order to prevent our algorithm from 

performing a random search. 

For the selection step of the GA, the roulette wheel selection process was used (Holland (1995)). In 

roulette wheel selection chromosomes are selected according to their fitness. The better the chromosomes 

are, the more chances to be selected they have. In our approach, elitism is used to raise the evolutionary 

pressure in better solutions and to accelerate the evolution. In that way, we assure that the best solution is 

copied without changes to the new population, so the best solution found can survive at the end of every 

generation. Similarly to the NNs, the GA-SVR model requires training and test subsets to validate the 

goodness of fit of each chromosome. The population of chromosomes is initialized in the training sub-

period. The optimal selection of chromosomes is achieved when their forecasts minimize the MSE in the 

test-sub period (the last four years of the in-sample). Then, the optimized parameters and selected 

predictors of the best solution are used to train the SVR and produce the final optimized forecast, which is 

evaluated over the out-of-sample period. In genetic algorithm modeling, though, fitness functions need to 

be increasing functions. Therefore, our algorithm is minimizing the MSE by maximizing the following 

function: 

      Fitness= 1/ (1+MSE)                                                                 (11)             



The size of the initial population is set to 400 chromosomes while the maximum number of generations is 

set to 5000. Our algorithm though terminates when the number of generations is 3000 on average. This 

number must be reached in combination with a termination method that stops the evolution, when the 

population is deemed as converged. The population is deemed as converged when the average fitness 

across the current population is less than 5% away from the best fitness of the current population. More 

specifically, when it is less than 5% the diversity of the population is very low and evolving it for more 

generations is unlikely to produce different and better individuals than the existing ones or the ones already 

examined by the algorithm in previous generations. The summary of our GA’s characteristics is presented 

in the following table. 

[Insert Table 2] 

The flowchart of the GA-SVR methodology is depicted in detail in figure 4: 

[Insert Figure 4] 

6. EMPIRICAL RESULTS 

The empirical results of the proposed methodology are presented in this section. Here the adaptive 

selection of the macroeconomic variables is described for each forecasting exercise. Then, the statistical 

evaluation of the optimized GA-SVR forecasts follows in regard to its benchmarks and a robustness test.   

6.1. Selection of Predictors 

The macroeconomic contribution of this paper is based on the fact that GA-SVR algorithm is able to 

genetically adapt in the most relevant predictors for the US inflation and unemployment. The selected 

variables for both forecasting exercises and all out-of-sample periods are presented Table 3. This selection 

corresponds to the chromosomes that provide the best forecasts of CPI and UNEMP.   

[Insert Table 3] 

Concerning the inflation exercise, the results show that the algorithm retains maximum seventeen time 

series from the overall one hundred ten as inputs. During the 1997-2000 and 2001-2004 those series are 

autoregressive terms up to the order of five of eight variables, the HOUSE, INDP, M1, EMPL, PCE, PI, 



WAGE and DJIA. For the 2005-2008 sub-period, the GA-SVR discards the HOUSE, EMPL, PI, DJIA 

variables and adds the TBILL. It seems that in this period, there is a structural break for inflation and the 

set of variables that have explanatory value has changed. In the last sub-period, the algorithm selects eight 

inputs (autoregressive terms of the INDP, M1, PCE and PI variables). We note that the second lag of M1 is 

always selected as input from our model. The different set of inputs in each sub-period reveals that 

inflation is difficult to predict and models with a constant or a limited set of independent variables will 

have no value in the long-run.  

In the case of unemployment, the GA-SVR selects more macroeconomic variables and respective lags than 

in the inflation exercise. This might indicate that forecasting the US unemployment is a more complex and 

demanding task that requires a larger set of independent variables than the US inflation. From the set of 

potential inputs, we note that the second lag of WAGE in always selected and that the first four 

autoregressive lags of IND are a popular choice from our algorithm. The set of inputs changes for each 

sub-period. This indicates that structural breaks dominate unemployment forecasting as the set of 

explanatory variables is constantly changing.   

INDP, M1 and PCE are the only common economic indicators in the four periods under study for both 

inflation and unemployment. In each out-of-sample, though our algorithm accepts different autoregressive 

lags of them as common inputs. For example, the first three autoregressive terms of INDP, the third of M1 

and the fourth of PCE are common predictors of inflation and unemployment during 1997-2000. In the 

period of 2001-2004 the algorithm selects the third and fourth lag of INDP, the second lag of M1 and the 

fourth lag of PCE for forecasting both series. Similarly during 2005-2008, the first two autoregressive 

terms of INDP, the third of M1 and the first of PCE qualify as potential predictors for both CPI and 

UNEMP. Finally, in 2009-2012 the first lag of INP and the second of M1 and PCE are kept in the inputs’ 

pool for each exercise. The exchange rates are found to be irrelevant for all the out-of-samples. The 

HOUSE variable is pooled during 1997- 2000 and 2001-2004, but discarded for the periods 2005-2008 and 

2009-2012 (during and after the US housing bubble burst). It is interesting to note that autoregressive terms 

of our potential inputs with order of six or higher have no value for our model. More specifically for the 



periods 2005-2008 and 2009-2012 the majority of the selected inputs are first and second autoregressive 

lags of the respective macroeconomic variables.  

From a technical point of view, the selection process of GA-SVR does not suffer from over-fitting since in 

both exercises and all out-of-sample periods the parameter γ is relatively small (see Table 3 note). Small 

values of γ are in general welcome because they result in smoother marginal decisions. The restrictiveness 

of the SVR ‘tube’ though depends on all three parameters and therefore it is difficult to assess if our model 

is more adaptive in the CPI or UNEMP forecasting exercise. In general, our algorithm requires more time 

(iterations3) to converge in UNEMP optimal chromosomes than CPI ones. 

6.2 Statistical Performance 

As it is standard in the literature, in order to evaluate statistically our forecasts, the Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Theil-U 

statistics are computed. The mathematical formulas of these statistics are presented in Appendix B. For all 

four statistical measures retained, the lower the output the better the forecasting accuracy of the model 

concerned. The in-sample statistical performances of our models for the CPI and UNEMP during all 

relevant periods are presented in Table 4 below. 

[Insert Table 4] 

From Table 4, we note that GA-SVR presents the best in-sample statistical performance for both series 

under study for all the statistical measures. The second best model is GP. It outperforms both NNs and the 

traditional strategies, but it is always inferior to the GA-SVR. Although the models perform differently 

during each period in both forecasting tasks, the ranking of our models remains the same throughout 1974-

2008. The worst performances are observed in the 1982-2004 and 1986-2008. Table 5 summarizes the 

statistical performances of the models in the relevant out-of-sample periods for CPI and UNEMP. 

[Insert Table 5] 

                                                                 
3 Iterations = Population * Generations 



From the results of Table 5, it is obvious that GA-SVR retains its forecasting superiority for the statistical 

measures applied in all four out-of-sample sub-periods. The statistical ranking of our models remains 

consistent with our in-sample results. Once more, the GP outperforms the MLP and RNN, while traditional 

models like RW, ARMA and MACD present the worst forecasts in term of statistical accuracy. The worst 

statistical results are attained in the 2005-2008 and 2009-2012 sub-periods. It seems the US subprime crisis 

increases the difficulty in this forecasting exercise.  Nonetheless, the performance of the GA-SVR seems 

robust in both periods of economic instability.  

In order to further verify the statistical superiority of our best proposed architecture, we calculate the 

Modified Diebold-Mariano (MDM) statistic for testing the equality of forecast accuracy, as proposed by 

Harvey et al. (1997). The MDM statistic is an extension of the Diebold-Mariano (1995) statistic (DM) and 

its formula is the following: 

( ) 1/21/2 11 2 1MDM T T k T k k DM− − = + − + −               (12) 

where T the number of the out-of-sample observations and k the number of the step-ahead forecasts.  

The use of MDM is common practice in forecasting because it is found to be robust in assessing the 

significance of observed differences between the performances of two forecasts (see Barhoumi et al. 

(2012) and Hassani et al. (2012)). MDM also overcomes the problem of over-sized DMs in moderate 

samples. The statistic is measured in each out-of-sample period and the MSE and the MAE are used as loss 

functions. The MDM test follows the Student’s t-distribution with f-1 degrees of freedom, where f is the 

number of forecasts. Table 6 below presents the values of the statistics, comparing the GA-SVR with its 

benchmarks. 

[Insert Table 6] 

From the above table it is obvious that the MDM null hypothesis of forecast encompassing is rejected for 

all comparisons and for both loss functions at the 1% confidence interval. The statistical superiority of the 



GA-SVR forecasts is also confirmed as the realizations of the MDM statistic are always negative4. GP is 

found to have the closest forecasts with the GA-SVR model and remains the second best model in 

statistical terms. From the MDM values it is safe to claim that there is no conclusive evidence of 

encompassing between the GA-SVR forecasts of inflation and unemployment and their benchmarks. 

Finally, the in-sample and out-of-sample results indicate that the models implementing genetic approaches, 

GP and GA-SVR, project in general more accurate forecasts in comparison with popular NN techniques 

(MLP, RNN) or tradition linear models (RW, ARMA, MACD).  

In general, the success of GA-SVR against all the benchmarks and especially the computational intelligent 

ones is promising. The modelling of MLP, RNN and GP, though, is not so advanced compared to the 

proposed hybrid methodology. From that aspect, there is space for future work that would set the 

performance standards of the benchmarks even higher. For example, GA-SVR could be included in a 

forecasting competition with other state-of-the-art NNs, such as Error Correction Neural Networks 

(ECNNs) or Historical Consistent Neural Network (HCNNs). These architectures are superior to the 

traditional RNNs and have the ability to handle missing information and be more adaptive to shocks 

(Zimmermann et al., 2012). Another extension of this work could be the statistical evaluation of the model 

on longer forecast horizons and in other countries than US. This could amplify the economic 

interpretability of the selected predictors and identify the policy implications of GA-SVR in a country per 

country case study.  

 

 

7. CONCLUDING REMARKS 

 

The motivation of this paper is to introduce a hybrid Genetic Algorithm – Support Vector Regression (GA-

SVR) model in economic forecasting and macroeconomic variable selection. The proposed algorithm is 

applied to the task of forecasting the US inflation and unemployment. The GA-SVR genetically optimizes 

                                                                 
4 The MDM test is applied to couples of forecasts (GA-SVR vs. another forecasting model). A negative MDM value indicates 
that the first forecast (GA-SVR) is more accurate than the second forecast. The lower the negative value, the more accurate are 
the GA-SVR forecasts.  



the SVR parameters and adapts to the optimal feature subset from a feature space of potential inputs. The 

feature space includes a wide pool of economic indicators that might affect the two series under study. The 

forecasting performance of the GA-SVR is benchmarked with a Random Walk model (RW), an 

Autoregressive Moving Average model (ARMA), a Moving Average Convergence/Divergence model 

(MACD), a Multi-Layer Perceptron (MLP), a Recurrent Neural Network (RNN) and a Genetic 

Programming (GP) algorithm. More specifically, the statistical performance of all models is investigated in 

four rolling samples during the period of 1974-2012.  

In terms of our results, the GA-SVR outperforms all benchmark models for both forecasting exercises. Our 

model is able to genetically adapt to a small number of relevant variables and project superior forecasts at 

the same time. This performance is consistent also in periods of economic turmoil, which proves that the 

genetic SVR selection of the predictors is both computationally and statistically efficient. With this 

variable selection process, GA-SVR attempts to provide evidence on what inputs can be important 

predictors of US inflation and unemployment in the specific periods under study. The autoregressive lags 

of the past quarter are found to be of great importance, while information going back more than a semester 

seems irrelevant. The in-sample and out-of-sample results show that the models implementing genetic 

approaches, GP and GA-SVR, project the most accurate forecasts and outperform their benchmarks. This 

superiority is further validated by the MDM test. In general, the two forecasting exercises of this paper 

attempt to shed more light on the difficult quest of nonlinear mapping of macroeconomic variables over 

different sample periods. 
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APPENDIX  

A. Technical Characteristics 

This appendix section includes the technical characteristics of the computational models used as 

benchmarks in this application. In the following table the design and training characteristics of the NNs are 

explained for each period. 

[Insert Table A.1] 



The selection of the NN’s inputs is based on a sensitivity analysis on the in-sample period. We divided the 

in-sample period in to two sub-periods, the training and the test sub-periods. The test sub-period is 

consisted by the last four years of the in-sample. We experimented with the characteristics and inputs of 

our NNs in the training sub-period and we selected the architecture that provided the best statistical 

performance in the test sub-period. No part of the out-of-sample period was involved in the NN 

parameterization in any forecasting exercise. This approach is common in NN modelling and avoids 

problems such as the over-fitting and the data-snooping (Lisboa and Vellido (2000) and Zhang (2009)).    

The parameter setting of the GP follows in table A.2. 

[Insert Table A.2] 

B. Statistical Performance Measures 

The statistical performance measures are calculated as shown in Table B.1 below. 

[Insert Table B.1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

FIGURES 

 

Figure 1: The historical monthly series of US CPI and Unemployment Rate in levels. 

 

 
* The symbol ‘?’ is the termination criterion which iterates or terminates the procedure of GP 

Figure 2: GP Architecture 



 
 

Figure 3: a) The f(x) curve of SVR and the ε-tube, b) plot of the ε-sensitive loss function and c) mapping procedure by φ(x) 

 



 

Figure 4: Hybrid GA-SVR flowchart 

 

 

 

 

 

 

 



TABLES 

 

No MNEMONIC DESCRIPTION SOURCE 

1 CPI US Consumer Price Index for All Urban Consumers: All Items (SA) FRED 

2 UNEMP US Civilian Unemployment Rate (SA) FRED 

3 JPY JPY/USD Exchange Rate (NSA) FRED 

4 GBP GBP/USD Exchange Rate (NSA) BLOOM 

5 HOUSE US Housing Starts Total: New Privately Owned Housing Units Started (SA) FRED 

6 INDP US Industrial Production Index (SA) FRED 

7 M1 US M1 Money Stock (SA) FRED 

8 EMPL US All Employees: Total nonfarm (SA) FRED 

9 PCE US Personal Consumption Expenditures (SA) FRED 

10 PI US Personal Income (SA) FRED 

11 TBILL US 3-Month Treasury Bill: Secondary Market Rate (NSA) FRED 

12 WAGE US Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing (SA) FRED 

13 DJIA Dow Jones Industrial Average (NSA) BLOOM 

Note: CPI and UNEMP2 are observed variables. The pool of predictors consists of the first ten autoregressive terms of variables 3-13 (110 series in total). 

FRED refers to the FRED database of the St. Louis Federal Reserve Bank, while BLOOM stands for Bloomberg. All series are in monthly percentage 
changes.SA and NSA means that the series is seasonally adjusted and not seasonally adjusted respectively. 

Table 1: List of all the variables 

Population Size 400 

Maximum Generations 5000 

Selection Type Roulette Wheel Selection 

Elitism Best member of every population is maintained in the next generation. 

Crossover Probability 0.85 

Mutation Probability 0.15 

Fitness Function 1/(1+MSE) 

 

Table 2: GA Characteristics and Parameters 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The bold predictors in the second column represent the commonly selected variables for both exercises regardless the out-
of-sample period. The bold values in the fourth and sixth column are the common predictors for both forecasting exercises in the 
respective out-of-sample sub-periods. * CPI: Population=60, Generations=440, C=61.5, γ=0.015, v=0.47, UNEMP: 
Population=200, Generations=500, C=143.8, γ=0.91, v=0.54. **CPI: Population=110, Generations=280, C=54.3, γ=0.03, 
v=0.55, UNEMP: Population=300, Generations=400, C=121.4, γ=0.75, v=0.63. *** CPI: Population=80, Generations=220, 
C=37.8, γ=0.042, v=0.31, UNEMP: Population=140, Generations=250, C=94.6, γ=0.88, v=0.77. **** CPI: Population=75, 
Generations=550, C=51.5, γ=0.025, v=0.59, UNEMP: Population=130, Generations=430, C=135.3, γ=0.56, v=0.37. 

      Table 3: The selected predictors for US inflation and unemployment (best CPI and UNEMP chromosome) 

 

 

 

O UT-O F-SAMPLE 
PERIO DS 

ALL 
PREDICTO RS 

CPI  
PREDICTO RS 

SELECTED 
LAGS 

UNEMP  
PREDICTO RS 

SELECTED 
LAGS 

 

01/1997 – 12/2000* 

JPY - - - - 
GBP - - - - 

HOUSE HOUSE 1,2 HOUSE 2,3,4 
INDP INDP 1,2,3 INDP 1,2,3,4 
M1 M1 2,3 M1 3,4 

EMPL EMPL 1,4 EMPL 2,3 
PCE PCE 4 PCE 4 

PI PI 3,4 PI 1,3,5 
TBILL -  TBILL 2,3 
WAGE WAGE 1,2,3 WAGE 2,4,5 
DJIA DJIA 5 DJIA 3 

TOTAL 8 16 9 21 
 

 

 

01/2001 – 12/2004** 

 

 

JPY - - - - 
GBP - - - - 

HOUSE HOUSE 2,3,4 HOUSE 1,2 
INDP INDP 3,4,5 INDP 1,2,3,4 
M1 M1 2 M1 2,3 

EMPL EMPL 1,3,4 EMPL 3 
PCE PCE 1,4 PCE 2,3,4 

PI PI 4 PI 4,5 
TBILL - - TBILL 1 
WAGE WAGE 2,3 WAGE 1,2,4 
DJIA DJIA 4,5 DJIA 2,5 

TOTAL 8 17 9 20 

 

01/2005 – 12/2008*** 

JPY - - - - 
GBP - - - - 

HOUSE - - - - 
INDP INDP 1,2 INDP 1,2,3,4 
M1 M1 2,3 M1 3 

EMPL - - EMPL 2,3 
PCE PCE 1,2 PCE 1,3 

PI - - PI 1,2 
TBILL TBILL 1,2 - - 
WAGE WAGE 1,2,3 WAGE 2,4 
DJIA - - - - 

TOTAL 5 11 6 13 

 

01/2009 –  12/2012**** 

JPY - - - - 
GBP - - - - 

HOUSE - - - - 
INDP INDP 1 INDP 1,2,3,4 
M1 M1 1,2 M1 2 

EMPL - - EMPL 1 
PCE PCE 1,2 PCE 2 

PI PI 1,2,3 - - 
TBILL - - - - 
WAGE - - WAGE 2,3 
DJIA - - - - 

TOTAL 4 8 5 9 



 IN-SAMPLE PERIODS  

 
C 
P 
I 

01/1974 – 12/1996 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0153 0.0151 0.0087 0.0058 0.0056 0.0051 0.0047 

MAPE 102.23% 101.86% 98.54% 62.67% 63.14% 59.79% 53.44% 
RMSE 0.0095 0.0091 0.0084 0.0069 0.0068 0.0061 0.0055 
Theil-U 0.8561 0.8456 0.6758 0.5881 0.5721 0.5377 0.5112 

U 
N 
E 
M 
P 

01/1974 – 12/1996 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0171 0.0168 0.0093 0.0062 0.0059 0.0055 0.0052 

MAPE 101.21% 98.67% 87.94% 62.89% 61.34% 57.51% 56.47% 
RMSE 0.0175 0.0169 0.0144 0.0124 0.0099 0.0092 0.0087 
Theil-U 1.2595 1.2568 0.9884 0.8197 0.8155 0.7823 0.7514 

 
C 
P 
I 

01/1978 – 12/2000 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0155 0.0154 0.0084 0.0055 0.0054 0.0052 0.0046 

MAPE 105.98% 102.15% 98.85% 63.03% 63.19% 58.99% 53.17% 
RMSE 0.0121 0.0102 0.0081 0.0068 0.0066 0.0063 0.0056 
Theil-U 0.8573 0.8511 0.6692 0.5775 0.5659 0.5412 0.5067 

U 
N 
E 
M 
P 

01/1978 – 12/2000 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0188 0.0187 0.0089 0.0063 0.0058 0.0054 0.0053 

MAPE 98.15% 97.88% 86.53% 63.27% 62.14% 58.71% 55.84% 
RMSE 0.0166 0.0158 0.0139 0.0116 0.0098 0.0094 0.0089 
Theil-U 1.1884 1.1825 0.9992 0.8341 0.8216 0.8013 0.7673 

 
C 
P 
I 

01/1982 – 12/2004 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0239 0.0233 0.0094 0.0074 0.0072 0.0069 0.0064 

MAPE 132.09% 131.84% 103.25% 69.88% 67.26% 64.21% 61.42% 
RMSE 0.0132 0.0129 0.0091 0.0076 0.0077 0.0072 0.0069 
Theil-U 0.9764 0.9715 0.8469 0.7198 0.7145 0.6755 0.6211 

U 
N 
E 
M 
P 

01/1982 – 12/2004 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0202 0.0196 0.0098 0.0081 0.0079 0.0075 0.0068 

MAPE 124.11% 123.27% 90.37% 73.89% 71.26% 68.55% 63.37% 
RMSE 0.0215 0.0189 0.0157 0.0101 0.0099 0.0096 0.0093 
Theil-U 1.3965 1.3947 1.2558 0.9377 0.9358 0.9122 0.8847 

 
C 
P 
I 

01/1986– 12/2008 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0191 0.0188 0.0092 0.0071 0.0069 0.0064 0.0061 

MAPE 118.64% 113.58% 99.56% 64.55% 63.17% 62.44% 59.83% 
RMSE 0.0129 0.0098 0.0085 0.0072 0.0072 0.0069 0.0065 
Theil-U 0.9322 0.9126 0.7941 0.6853 0.6751 0.6239 0.5845 

U 
N 
E 
M 
P 

01/1986 – 12/2008 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0112 0.0106 0.0088 0.0075 0.0073 0.0068 0.0064 

MAPE 102.87% 100.68% 84.57% 68.12% 67.89% 64.58% 60.29% 
RMSE 0.0175 0.0168 0.0135 0.0097 0.0096 0.0093 0.0091 
Theil-U 1.2801 1.2745 0.9957 0.9254 0.9136 0.8947 0.8667 

 

Table 4: Summary of In-Sample Statistical Performances  

 

 

 

 

 

 

 

 

 

 



 

 

Table 5: Summary of Out-of-Sample Statistical Performances 

PERIODS VARIABLES STATISTICS RW ARMA MACD MLP RNN GP 

01/1997 –12/2000 

 
CPI 

MDM1 -7.22 -7.19 -6.65 -4.54 -3.92 -3.15 
MDM2 -9.81 -9.45 -8.77 -7.19 -6.98 -5.19 

 
UNEMP 

MDM1 -5.21 -5.09 -4.91 -4.13 -4.08 -3.02 
MDM2 -7.71 -7.68 -7.43 -5.51 -4.98 -4.51 

01/2001 – 12/2004 

 
CPI 

MDM1 -7.07 -6.96 -6.53 -4.24 -3.97 -3.22 
MDM2 -9.34 -8.97 -8.58 -7.81 -7.12 -6.79 

 
UNEMP 

MDM1 -5.23 -5.03 -4.84 -4.19 -4.10 -3.26 
MDM2 -7.90 -7.82 -7.48 -5.40 -4.97 -4.87 

01/2005 – 12/2008 

 
CPI 

MDM1 -8.14 -8.05 -7.54 -7.19 -6.88 -6.34 
MDM2 -9.84 -9.80 -9.30 -8.95 -8.80 -8.62 

 
UNEMP 

MDM1 -9.25 -9.16 -8.73 -8.15 -7.51 -7.07 
MDM2 -10.37 -10.27 -9.81 -9.54 -9.17 -8.75 

01/2009 – 12/2012 

 
CPI 

MDM1 -6.46 -6.27 -5.92 -5.71 -5.48 -4.77 
MDM2 -7.95 -7.88 -7.71 -7.44 -7.32 -7.04 

 
UNEMP 

MDM1 -7.82 -7.66 -7.08 -6.77 -6.33 -6.09 
MDM2 -8.75 -8.54 -8.28 -7.83 -7.39 -7.25 

Note: MDM1and MDM2 are the statistics computed for the MSE and MAE loss function respectively. 
Table 6: Modified Diebold-Mariano statistics for MSE and MAE loss functions

 OUT-OF-SAMPLE 
PERIODS 

 

 
C 
P 
I 

01/1997 – 12/2000 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0165 0.0162 0.0091 0.0059 0.0059 0.0052 0.0049 

MAPE 104.25% 103.58% 100.54% 66.15% 66.86% 62.47% 57.34% 
RMSE 0.0098 0.0094 0.0086 0.0071 0.007 0.0065 0.0058 
Theil-U 0.8755 0.8632 0.6955 0.6013 0.5971 0.5521 0.5317 

U 
N 
E 
M 
P 

01/1997 – 12/2000 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0182 0.0178 0.0098 0.0065 0.0063 0.0059 0.0055 

MAPE 103.88% 100.12% 91.74% 65.38% 64.59% 61.13% 59.11% 
RMSE 0.0178 0.0174 0.015 0.0134 0.0107 0.0094 0.009 
Theil-U 1.2708 1.2647 1.0294 0.8465 0.8334 0.8037 0.7867 

 
C 
P 
I 

01/2001 – 12/2004 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0161 0.0158 0.0086 0.0061 0.0057 0.0055 0.0051 

MAPE 105.87% 105.19% 99.65% 65.11% 64.83% 61.35% 55.62% 
RMSE 0.0128 0.0116 0.0084 0.007 0.0068 0.0065 0.0059 
Theil-U 0.8914 0.8845 0.7259 0.6018 0.5845 0.5633 0.5297 

U 
N 
E 
M 
P 

01/2001 – 12/2004 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0264 0.0213 0.0092 0.0067 0.0061 0.0057 0.0055 

MAPE 102.67% 99.66% 89.45% 66.76% 64.88% 60.24% 56.84% 
RMSE 0.0167 0.0161 0.0142 0.0135 0.0102 0.0097 0.0092 
Theil-U 1.2298 1.2254 1.105 0.8656 0.8417 0.8229 0.7837 

 
C 
P 
I 

01/2005 – 12/2008 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0325 0.0311 0.0112 0.0078 0.0075 0.0071 0.0067 

MAPE 146.15% 144.21% 105.83% 72.57% 70.64% 67.41% 64.23% 
RMSE 0.01447 0.0135 0.0096 0.0079 0.0078 0.0075 0.0072 
Theil-U 1.0156 1.0051 0.8657 0.7403 0.7367 0.7147 0.6647 

U 
N 
E 
M 
P 

01/2005 – 12/2008 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0285 0.0215 0.0103 0.0084 0.0081 0.0078 0.0073 

MAPE 128.55% 125.64% 92.54% 75.21% 74.83% 71.75% 67.28% 
RMSE 0.0209 0.0197 0.0162 0.0129 0.0117 0.0099 0.0096 
Theil-U 1.4338 1.4269 1.2783 0.9531 0.9457 0.9314 0.9158 

 
C 
P 
I 

01/2009– 12/2012 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0214 0.0208 0.0097 0.0074 0.0071 0.0068 0.0064 

MAPE 118.27% 116.17% 102.68% 69.82% 68.93% 66.71% 62.67% 
RMSE 0.0116 0.0108 0.0088 0.0075 0.0074 0.0070 0.0068 
Theil-U 0.9455 0.9384 0.8211 0.7139 0.6957 0.6483 0.6144 

U 
N 
E 
M 
P 

01/2009– 12/2012 RW ARMA MACD  MLP RNN GP GA-SVR 
MAE 0.0119 0.0114 0.0092 0.0081 0.0078 0.0071 0.0067 

MAPE 108.84% 102.67% 88.98% 72.55% 71.39% 68.27% 64.17% 
RMSE 0.0194 0.0172 0.0145 0.0102 0.0099 0.0097 0.0093 
Theil-U 1.3274 1.3128 1.1296 0.9485 0.9318 0.9133 0.8926 



 

 

 

 

 

 

 

 

 

 

 

 

Table A1: Neural Network Design and Training Characteristics for all periods under study 

GENETIC PRO GRAMMING PARAMETERS 

Population Size  200 Fitness evaluation function  MSE 

Termination Criterion  75000 
Tournament 

 Size  
20 

Max. tree depth 12 Crossover trials 1 

Function Set 
+, -, *, /, ^, ^2, ^3, ^1/2, 

 ^1/3, Exp, If, sin, cos, tan 
Mutation Probability 0.8 

 

Table A.2: GP parameters setting 

 
PARAMETERS 01/1974 – 12/2000 01/1978 – 12/2004 01/1982-12/2008 01/1986/12/2012 

MLP RNN MLP RNN MLP RNN MLP RNN 

 
 
 

C 
P 
I 

Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent 
Learning rate 0.003 0.002 0.005 0.002 0.004 0.003 0.002 0.002 
Momentum 0.004 0.003 0.006 0.003 0.005 0.005 0.004 0.003 

Iteration steps 50000 45000 50000 40000 35000 25000 60000 40000 
Initialisation of weights N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 9 7 8 7 7 7 9 8 
Hidden nodes 6 5 6 6 4 3 5 6 
Output node 1 1 1 1 1 1 1 1 

 
 
 

U
N
E
M
P 

Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent Gradient descent 
Learning rate 0.002 0.003 0.002 0.002 0.004 0.002 0.003 0.002 
Momentum 0.005 0.005 0.004 0.003 0.006 0.005 0.005 0.004 

Iteration steps 35000 30000 35000 30000 35000 30000 35000 30000 
Initialisation of weights N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 7 6 8 6 9 6 8 7 
Hidden nodes 6 4 5 5 7 3 4 4 

Output node 1 1 1 1 1 1 1 1 



 

 

  

  

  

  

  

  

  

  

  

Table B.1: Statistical Performance Measures and Calculation 

 

 

STATISTICAL PERFOMANCE MEASURES DESCRIPTION 
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