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 10 

Abstract 11 

This paper examines numerically the heat transfer enhancement in a pipe 12 

partially filled with a porous medium under Local Thermal Non-Equilibrium 13 

(LTNE) condition. The flow inside the porous material is modelled using the 14 

Darcy-Brinkman-Forchheimer model. The effect of different parameters such as, 15 

inertia (F), Darcy number (Da), conductivity ratio, porosity and particle diameter 16 

on the validity of Local Thermal Equilibrium (LTE) are studied. The optimum 17 

porous thickness for heat transfer enhancement under varying F and with 18 

reasonable pressure drop is determined. The pipe wall is under constant wall 19 

temperature boundary condition. Two models are considered at the interface 20 

between the porous medium and the fluid. The differences between these 21 

models in predicting the temperature of the fluid and solid phases as well as the 22 

Nusselt (Nu) number for different pertinent parameters are discussed. In 23 

general, the two interface models result in similar trends of Nu number variation 24 

versus porous thickness ratio. However, considerably different values of Nu 25 

number are obtained from the two interface models. The effects of inertia term 26 

on the Nu number and pressure drop are further studied. For a given model and 27 

for Da<10-3, the Nu number is found independent of F. However, for Da>10-3 as F 28 

increases the computed Nu number increases. 29 

 30 

Key words: Heat transfer enhancement, porous media, inertia term, porous-fluid 31 

interface, local thermal non-equilibrium. 32 
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Fluid flow and forced convection heat transfer in porous media are of high academic and 1 

industrial significance [1]. These problems have a wide range of applications in natural and 2 

manmade systems. These include heat exchangers, cooling of electronic components, biological 3 

systems, geothermal engineering, solid matrix heat exchangers, enhanced oil recovery, thermal 4 

insulation, chemical reactors and other areas [1]. In some applications there is no need to 5 

completely fill the system with the porous material and a partial filling is sufficient. Partial 6 

filling has the important advantage of reducing the pressure drop in comparison to a system 7 

filled completely with porous medium [2, 3]. The general problem of forced convection in 8 

partially filled pipes and channels has received a decent attention in the literature. Poulikakos 9 

and Kazmierczak [4] analytically solved the problem of forced convection in channels partially 10 

filled with porous materials. They reported that there is an optimum value of porous thickness 11 

at which the Nusselt number reaches its minimum value [4]. Numerical studies of force 12 

convection in a pipe with a porous material inserted at the core of the pipe revealed that 13 

significant heat transfer enhancement can be achieved at the expense of a reasonable pressure 14 

drop [2, 5, 6]. The influences of porous insert configuration upon heat transfer have been 15 

further studied in a numerical investigation by Maerefat et al. [3]. It was shown that if the 16 

porous material is inserted at the core of the pipe, the heat transfer rate increases. However, 17 

when the porous material is attached to the internal wall of the pipe the Nusselt number is 18 

lower than that of a pipe without porous insert [3]. Study of forced convection in a partially 19 

filled channel under Local Thermal Equilibrium (LTE) revealed that the maximum value of 20 

Nusselt number occurs at the porous thickness to pipe radius ratio of 0.8 and Darcy number of 21 

10-3 [7]. It has been, further, shown that enhancement of heat transfer by porous material 22 

depends on the ratio of the effective thermal conductivity of the porous medium to that of the 23 

fluid [8]. Bhargavi et al. [9] studied the effects of porous material on heat transfer rate in a 24 

channel partially filled with porous materials under LTE condition. Their results showed that 25 

the change in the Nusselt numbers at the two walls was negative for small porous thickness. 26 

Numerical investigation of turbulent flow in a pipe partially filled with a porous material 27 

showed that for enhancement of heat transfer the optimum ratio of porous medium thickness to 28 

pipe diameter is 0.8 [10]. Ucar et al. [11] and Cekmer et al. [12] studied numerically and 29 

analytically the steady, laminar, and fully developed forced convection heat transfer in a parallel 30 

plate channel through LTE model under constant heat flux boundary conditions. A 31 

comprehensive review of the investigations on forced convection in partially filled porous 32 

channel can be found in the work of Ucar et al. [11]. They covered different aspects of the 33 

problem concerning dimensions, governing equations, outer surface thermal conditions and 34 

solution methods. In the work of  Cekmer et al. [12] the Nusselt number and pressure drop 35 
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increment ratios were used to define a performance of the porous-channel system. They argued 1 

that for a partially porous filled channel, the performance is highly influenced by Darcy number. 2 

Most of the references cited so far assumed LTE condition in their analyses. There are, in 3 

general, two different approaches to thermal energy transport in porous media. These include 4 

Local Thermal Equilibrium (LTE) and Local Thermal Non-Equilibrium (LTNE). The LTE model 5 

assumes that locally the solid phase temperature is equal to that of the fluid phase. This 6 

immediately defines the thermal boundary conditions between the two phases and eliminates 7 

the burden of finding and implementing them. It therefore significantly facilitates the heat 8 

transfer analysis. The LTNE model, however, requires additional information to account for the 9 

modes of energy communication between the two considered phases. The thermal boundary 10 

conditions should now be specified on the porous-fluid interface [13]. Different boundary 11 

conditions and the physics of the porous-fluid interface have been subjected to some 12 

investigations (e.g. [14] and [15]). Jamet and Chandesris [14] studied the physical nature of 13 

different parameters involved in the jump conditions at the interface of a porous-clear region. 14 

d’Hueppe et al. [15] studied the jump relations at the porous-clear region under the assumption 15 

of local thermal equilibrium condition. The interface models have been further included into 16 

LTNE analyses. Vafai and Thiyagaraja [16] analytically investigated the velocity and 17 

temperature fields at the interface region. They used the Brinkman-Forchheimer extended 18 

Darcy equation and considered three fundamental types of interface. These included the 19 

interfaces between two porous regions, a porous medium and a fluid layer and a porous 20 

medium and an impermeable medium. An exact solution for the fluid mechanics of the interface 21 

region between a porous medium and a fluid layer was put forward by Vafai and Kim [17]. This 22 

solution accounts for both boundary and inertial effects.  23 

Upon application of a heat flux to the outer surface of a porous medium, the applied heat is 24 

transferred to the solid and fluid parts. Amiri et al. [18] argued that the constant heat flux 25 

boundary condition could be viewed in two different ways. The first is to assume that heat 26 

division between the two phases is on the basis of their effective conductivities and the 27 

corresponding temperature gradients. The second approach is to assume that each of the 28 

individual phases at the interface receives an equal amount of the prescribed heat flux. In the 29 

study of Amiri et al. [18] good agreements were observed between the numerical results based 30 

on the second approach and the experimental data. Lee and Vafai [19] and Marafai and Vafai 31 

[20] used the first approach to obtain analytical solutions for the temperature profiles, the 32 

temperature difference between the two phases and the Nusselt number. Yang and Vafai [13] 33 

studied analytically the fully developed flow in a channel partially filled with a porous medium. 34 

These authors considered five forms of thermal conditions at the interface between a porous 35 

medium and a fluid under LTNE and proposed exact solutions for all of these conditions. They 36 
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further reported the restrictions on the validity of LTE in a channel partially filled with a porous 1 

material. Yang et al. [21] studied analytically the validity of LTE for the case of thermally fully 2 

developed flow in a tube filled with a porous medium under constant wall heat flux. They found 3 

that the local thermal equilibrium assumption may fail for the case of constant heat flux wall. 4 

Validity of LTE in a pipe partially filled with a porous material has been investigated under two 5 

different configurations [22]. It was found that LTE is not valid when the porous material is 6 

attached to the pipe wall. A comprehensive study was conducted by Alazmi and Vafai [23] who 7 

analysed the effect of different boundary conditions, under constant wall heat flux and LTNE 8 

condition. They studied six models based on the first approach and two models based on the 9 

second approach of Amiri et al. [18]. It was reported that depending on the application area 10 

either of the two models can be a representative boundary condition. Alazmi and Vafai [23] 11 

referred to the model based on the first approach as model A and that based on the second 12 

approach as model B. In keeping with these authors, the same terminology is used in this paper. 13 

Most recently Vafai and Yang [24] argued that heat flux bifurcations at the porous-clear region 14 

interface is such a fundamental issue that can open a new research direction. In a separate work 15 

Yang and Vafai [25] investigated heat flux bifurcation inside a porous medium in a channel 16 

partially filled with a porous material under LTNE condition. The effects of thermal dispersion 17 

and inertia were taken into account in their study. They subsequently determined the validity 18 

range of LTE condition. Previous studies on pipes partially filled with porous material under 19 

LTE, have shown that for Darcy numbers less than 10-3 the effect of inertia term on Nusselt 20 

number is negligible [2, 3, 26]. However, at high Darcy numbers the thermal field depends on 21 

the inertia term. These studies then considered only small Darcy numbers and omitted the 22 

inertia term in their simulations. No study, so far, has considered a pipe partially filled with 23 

porous material with high Darcy number to investigate the effect of inertia parameter on heat 24 

transfer enhancement. This lack of study extends to both LTE and LTNE models. Neither has 25 

been any investigation on the influence of interface models and pertinent parameters such as 26 

porosity, particle diameter and Forchheimer parameter upon the validity of LTE condition. 27 

The present work aims at filling these gaps through a series of numerical investigations. The 28 

problem includes forced convection flow in a pipe partially filled with a porous medium under 29 

LTNE condition. The pipe wall is subjected to the constant wall temperature. The Darcy- 30 

Brinkman-Forchheimer model is used for the flow transport while two-equation model is 31 

employed for energy transport in the porous medium. Two models are considered at the 32 

interface between the porous medium and the clear region to represent the flux bifurcation. The 33 

effects of porous thickness ratio and different pertinent parameters on the validity of LTE and 34 

Nusselt number are then analysed. These include Darcy number, inertia parameter, porosity, 35 
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particle diameter and solid-to-fluid conductivity ratio. The main emphasis of the present work is 1 

on: 2 

i. determination of porous material thickness up to which the local thermal equilibrium 3 

between the solid phase and fluid phase is valid as a function of different pertinent 4 

parameters (Rr, LTE ), 5 

ii. the influences of different models utilised at the interface of porous-fluid on the validity 6 

of LTE, 7 

iii. the effects of different parameters such as, Forchheimer term, Darcy number, 8 

conductivity ratio, porosity and particle diameter on the validity of LTE, 9 

iv. determination of porous thickness which maximises the Nusselt number for the two 10 

porous-fluid interface models (Rr, Nu ), 11 

v. the effect of pertinent parameters including Darcy number, porous thickness and inertia 12 

parameter on the disparities between the results obtained through various porous-fluid 13 

interfaces, 14 

vi. the role of inertia parameter in determining the optimum porous thickness for heat 15 

transfer enhancement by considering a reasonable pressure drop. 16 

The range of validity of LTE is determined for two fundamental models in terms of different 17 

physical parameters. This is of crucial importance since the inappropriate use of the interface 18 

conditions can result in significant errors in Nusselt number calculations [13]. 19 

 20 

2. Configuration of the problem 21 

Figure 1 schematically shows the problem under investigation. Porous material is placed 22 

along the centreline of a tube filling it either partially or completely. The fluid flow enters the 23 

tube with constant and uniform velocity and temperature. The wall temperature is constant and 24 

higher than the fluid temperature at the inlet. 25 

 26 
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Fig.1. Schematic of the problem. 

 1 

The radius of the porous material is Rp and that of the tube is R0. The fluid moves along the z- 2 

axis which is co-incident with the tube centreline and perpendicular to r- axis. Fluid enters the 3 

tube at the inlet temperature of 300 K (i.e. Tin = 300 K). The tube wall temperature is kept 4 

constant at Tw = 1000 K. The thermo-physical properties of the investigated fluid and solid 5 

phases are listed in table 1. The simulations were performed for air and porous material of AISI 6 

304. These were repeated for water and porous media of soda lime material to evaluate the 7 

influence of various thermal conductivity ratios. 8 

 9 

Fluid phase 

fluid Density f 

(kg.m-3) 

Specific heat Cp 

(J.kg-1.K-1) 

Conductivity kf×103 

(W.m-1.K-1) 

105×μ Viscosity 

(kg.m-1.s-1) 

air 1.1 1008 28 1.9 

water 989 4180 640 57.7 

Solid phase 

Solid Density ρs 

(kg.m-3) 

Specific heat capacity Cp 

(J.kg-1.K-1) 

Conductivity ks 

(W.m-1.K-1) 

AISI304 7900 485 15.2 

Soda lime 2225 835 1.4 

Table 1: Thermo-physical properties of the investigated fluids and solids 10 

 11 

3. Governing equations and boundary conditions 12 

A steady, two dimensional, laminar and incompressible flow is considered here. The viscous 13 

heat generation is ignored and there is no internal heat production. Radiation and natural 14 

convection are further ignored and the thermodynamic properties are assumed constant. Local 15 

thermal non-equilibrium condition between the solid and fluid is assumed through using two- 16 

energy equation. Under these conditions the governing equations are expressed in cylindrical 17 

coordinate [2, 3, 27]. This yields, 18 

continuity 19 
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energy equation for the fluid in the clear region (Rp<r<R0  (  1 
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momentum in z- direction in the porous region (0<r< Rp  (  2 
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momentum in r- direction in the porous region (0<r< Rp  (  3 
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energy equation for the fluid phase in the porous region (0<r< Rp  (  4 
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energy equation for the solid phase in the porous region (0<r< Rp  (  5 
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In the above equations u is the so-called superficial velocity and p is the intrinsic 6 

macroscopic pressure. Indices f and s respectively denote fluid and solid. and Cp are 7 

respectively viscosity, density and specific heat capacity of the fluid. K is the permeability and ε 8 

is the porosity of the porous media. The effective conductivities of the porous media and the 9 

fluid are respectively kse and kfe. These two are geometrical functions of the porous media and 10 

conductivity of solid (ks) and fluid (kf) and are expressed as follows, 11 
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Permeability of the porous media and the geometrical function can be written as [23] 12 

3 2

2
,

150(1 )

pd
K







 (10) 



8 
 

3
2

1.75
,

150
F


  (11) 

where dp is the diameter of the particles. Specific surface area appearing in the energy equations 1 

is expressed as 2 

6(1 )
,sf
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  (12) 

The following correlation is used for the fluid-to-solid heat transfer coefficient [23], 3 

  .ReP1.12
6.0

pr pfsf dkh   (13) 

Due to the symmetry of the problem only the upper half of the tube is considered. At r = 0 4 

symmetry causes the gradients of the axial velocity and temperature in r direction to be zero. At 5 

the entrance, z = 0, v = 0, T = Tin and u = uin while at the exit, z = L, the gradients of v, u and T in z 6 

direction are zero. In summary, the boundary conditions are [2, 3]: 7 
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The following models are used to match the conditions for heat transfer at the boundary 8 

between the porous medium and the fluid [13, 25, 28].  9 
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Model A: 

,

,interface























pp

ppp

RfRs

R

f

f

R

f

fe

R

s
se

TT

q
r

T
k

r

T
k

r

T
k

 

(15) 

and model B: 
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where qinterface is the heat flux at the interface, which represents the thermal energy 1 

transferred through the porous region. 2 

These two models state the continuity of heat flux at the interface of the porous region and 3 

the external fluid. In model A the heat flux, transferred from the external fluid to the porous 4 

media is distributed unevenly between the two phases. This distribution is based upon the 5 

effective conductivity of the two phases and their temperature gradient on the interface. 6 

However, in model B, each phase (solid and fluid) separately receives equal heat flux from the 7 

external fluid. 8 

Vafai and Kim [8] presented an exact solution for the fluid flow at the interface between a 9 

porous medium and a fluid layer. Their solution included inertia and boundary effects. In this 10 

study, the shear stress in the fluid and the porous medium were taken to be equal at the 11 

interface region. In the work of Vafai and Thiyagaraja [16] continuity of shear stress and heat 12 

flux were taken into account while employing the Forchheimer-Extended Darcy equation. The 13 

current work employs one of the models used in the Refs. [16, 29]. The following momentum 14 

boundary conditions apply at the interface between the solid phase and the external fluid [3, 26, 15 

29, 30], 16 

,
p pR R
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(16) 
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p p
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In Eq. (16) the shear stress and the velocity in the fluid and the porous medium were taken 17 

to be equal at the interface region [29]. In the above equation e is an effective viscosity of the 18 

porous medium. It is an artificial quantity associated with the Brinkman term in the momentum 19 

equation. Alazmi and Vafai [29] showed that significant changes of the effective viscosity (from 20 

f to 7.5f) have a minor effect on the velocity distribution. It was also found that changing the 21 

effective viscosity, even within such a wide range, has no effect on the temperature and Nusselt 22 

number [29]. Therefore, in the current study μe is set equal to μf . In fact, μe = μf is a good 23 
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approximation in the range of 0.7 < ε <1 and has been widely used in the literature [2, 3, 5, 25, 1 

26, 28]. 2 

Model A, model B and relation (16) express the continuity of heat and stress fluxes, and 3 

velocity on the interface between the solid phase and the external fluid. Relation (16) equates 4 

the shear stress in the porous media with that in the external fluid.  5 

The local Nusselt (Nu) number for constant wall temperature is defined as follows [23, 26, 31] 6 
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where the mean temperature is defined by  7 
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 9 

4. Numerical method 10 

To solve the conservation equations a controlled volume, finite-volume approach is utilised. The 11 

SIMPLE algorithm [32] was adopted to solve the flow field. The upwind first-order scheme was 12 

used to discretise the convective term and second order central difference scheme was used to 13 

discretise the diffusive term. To avoid checkerboard pressure oscillations, cell face pressure has 14 

been calculated using linear interpolation, which has the same accuracy as the central difference 15 

approximation. The algebraic equations were solved using a line-by-line technique. For the 16 

momentum and energy equations, the velocity components were under-relaxed by a factor of 17 

0.8. For most calculations 5000 iterations were sufficient to obtain a convergent solution in a 18 

100 × 60 grid. A non-uniform grid with a large concentration of nodes close to the boundaries 19 

was employed. Figure 2 depicts the computational domain. In comparison to z- direction, finer 20 

grids have been used  in r- direction. Very fine grids were used at the inlet of the pipe to capture 21 

properly the transient region of the pipe. 22 

 23 

 

 

 

 

Fig. 2. The computational domain of 100 × 60 grid. 
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 1 

In the current study the tube length for air flow is considered 1.0 m. This increases to 2.0 m 2 

for water flow and in either case the pipe diameter is 0.2 m. These pipe dimensions are much 3 

longer than the temperature and velocity developing lengths which are of the order of Xhdrodynamic 4 

 0.04DReD and Xthermal  0.04DReDPr, respectively [31]. Furthermore adding porous media 5 

partially into the pipe can reduce the developing length by 50% or more [2]. To ensure the 6 

independency of the Nusselt number upon the grid resolution, a typical case with Rr = 0.8, Da = 7 

10-3, F = 0, Re = 60 and based on model B was calculated. Different size meshes, 30  15, 50  30, 8 

80  40, 100  60 and 120  80 in z- and r-directions, respectively, were employed to test the 9 

numerical model. Figure 3 shows that increasing the grid points, results in the convergence of 10 

the computed Nusselt number. The results obtained for 100  60 and 120  80 are very much 11 

the same. Hence, the grid size of 100  60, in z- and r- directions, respectively, was used for all 12 

the computations in the present work. The convergence criterion was max (Tnew - Told) <10-8, 13 

where Tnew – Told is the temperature difference between two successive iterations. 14 

 15 

 

Fig. 3. Grid independency of Nusselt number versus dimensionless axial coordinate for Rr = 0.8, 

Da = 10-3, F = 0 and model B. 

 16 

The LTE version of the current code has been successfully used to study heat transfer and 17 

fluid flow in porous media containing pipes and channels under laminar and turbulent regimes 18 

[3, 33].    19 
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5. Results and discussion 1 

In the first part of this section model B is used to calculate an optimum thickness of the 2 

porous material. This is the maximum radius of the porous material which allows local thermal 3 

equilibrium (Rr, LTE). A parametric study is conducted. The varying parameters are Darcy 4 

number, inertia parameter, conductivity ratio, porosity and porous diameter. The effect of 5 

utilising different boundary conditions at the interface (i.e. models A and B) are then 6 

investigated. A non-dimensional temperature is defined as 
inw

w

TT

TT




  where Tw is the wall 7 

temperature and Tin is the fluid temperature at the inlet. Amiri and Vafai [34] examined the LTE 8 

condition by comparing the temperature distributions of the fluid and solid phases locally. They 9 

reported that the LTE assumption holds if s-f×100 is between 1% and 5%. Thus, in the 10 

current study the criterion for local thermal equilibrium condition is s-f×100 < 3% [34]. 11 

Using this criterion LTE holds when the difference between the dimensional temperatures of 12 

the fluid and solid phases is less than 0.2 K. Further, it was observed that the results are 13 

independent of the inlet temperature and the tube wall temperature. 14 

For validation purposes, the computed Nu number, based on the LTE model, is compared to 15 

the analytical solution of Kaviany [35]. This solution considers fully developed Nusselt number 16 

for laminar flow through a fully filled (Rr = 1) porous channel bounded by isothermal plates 17 

with no Forchheimer term. Figure 4 depicts a good agreement between the numerical results 18 

and the analytical solution. Further, the analytical solution predicts the fully developed Nusselt 19 

number in a pipe without porous material to be 3.660 [35]. The present simulation with Da = 10 20 

finds this value as 3.648. The excellent agreement between these two values is another 21 

validation for the numerical simulation.  22 

In addition, the computation was performed for dp=0.016 m, =0.9, ks/kf=542, F=0, Da=10-6, 23 

Rr=0.8 and model A. Under such parameters the temperature of the fluid and solid phases are 24 

the same. Therefore, Nusselt number was found to be Nu=22.35, which is very close to the 25 

Nusselt number for a pipe under LTE model, Nu=22.65 [2, 3]. Further, for the fully filled pipe 26 

under Rr=1, dp=0.016 m, =0.9, ks/kf=542, F=0, Da=10-6, and model A, LTNE is valid and the 27 

computed Nusselt number is Nu=6.31. Under these conditions the value of hsf in the 28 

computational code was manually set to a large number of 50 to resemble LTE condition. This 29 

resulted in obtaining Nusselt number of 5.78. This value is almost identical to the Nusselt 30 

number obtained under LTE condition, Nu=5.76 [2, 3]. 31 

 32 
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Fig. 4. Comparison of the present fully developed Nusselt number versus Darcy number for Rr = 

1, ks/kf = 542 and LTE model, with the analytical solution of Kaviany [35]. 

 1 

5.1. Critical radius of the porous material for validity of local thermal equilibrium 2 

In this section the maximum porous thickness below which the LTE condition holds, is found 3 

under model B applied at the interface. The fluid phase is air (see Table (1)) with thermal 4 

conductivity of kf = 0.028 W.m-1.K-1 and the solid matrix is selected to be AISA304 with thermal 5 

conductivity ks = 15.2 W.m-1.K-1. This yields the conductivity ratio of ks/kf = 542. Figures 5 and 6 6 

show the non-dimensional temperature of solid and fluid phases along the non-dimensional 7 

radial coordinate (Y= r/R0). In Figs. 5a-d Darcy number is 10-3. It is clear in these figures that the 8 

temperatures of the fluid and solid phases remain the same as the radius of the porous material 9 

increases up to Rr = 0.5. However, beyond this limit there is a significant disparity between the 10 

temperatures of the fluid and solid phases. These results indicate that for Darcy number of 10-3 11 

the local thermal equilibrium holds up to porous thickness ratio of Rr, LTE = 0.5.  12 
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(b) Rr = 0.5 

 

(a) Rr = 0.3 

 

  

 

(d) Rr = 1 

 

(c) Rr = 0.7 

 

Fig. 5. Effect of porous substrate thickness on the temperature difference between the solid and 

fluid phases, Da = 10-3, F = 0, ks/kf = 542, dp = 0.016 m and model B. 

 1 

Figures 6a-d show the non-dimensional temperature of solid and fluid phases for Darcy 2 

number of 10-6 and interface model of type B. It is seen in these figures that by increasing the 3 

radius of the porous material up to Rr = 0.8, temperature of the fluid and solid phase stay nearly 4 

the same. For the values of Rr exceeding 0.8, however, there is a temperature difference 5 

between the fluid and solid phases. Hence, for Darcy number of 10-6 the local thermal 6 

equilibrium holds up to Rr, LTE = 0.8. Although not shown here, the computations were repeated 7 

for a range of Da numbers. It was found that the maximum radius of the porous material for 8 

which the local thermal equilibrium exists (Rr, LTE) is inversely proportional to Darcy number. 9 

For Darcy numbers of 10-3, 10-4, 10-5 and 10-6 the values Rr, LTE are respectively 0.5, 0.7, 0.8 and 10 
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0.8. A comparison of Figs. 5 and 6 shows that at fixed porous thickness as Da number decreases 1 

the temperature difference between the two phases increases. This behaviour can be explained 2 

by considering the hydrodynamics of the problem. It has been previously shown that for low Da 3 

numbers the fluid velocity in the porous region decreases [2, 26]. Hence, the fluid and solid 4 

phases have enough time to exchange heat and approach thermal equilibrium. Subsequently, 5 

this results in the reduction of the temperature difference between the two phases. 6 

 7 

  

 

(b) Rr = 0.8 

 

 

(a) Rr = 0.6 

  

 

(d) Rr = 1 

 

(c) Rr = 0.9 

 

Fig. 6. Effect of porous substrate thickness on the temperature difference between the solid and 

fluid phases, Da = 10-6, F = 0, ks/kf = 542, dp = 0.016 m and model B. 

 8 

Increasing the radius of porous material increases the convective heat transfer outside the 9 

porous media [2, 26]. Hence, a higher heat flux is delivered to the interface. Further, the 10 

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

FLUID

SOLID

Y 

Θ 

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

FLUID

SOLID

Y 

Θ 

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

FLUID

SOLID

Y 

Θ 

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

FLUID

SOLID

Y 

Θ 



16 
 

conductivity ratio between the solid and fluid phases is large. Thus, the temperature difference 1 

between the two phases increases. Hence, increasing the porous thickness radius and the higher 2 

heat transfer to the porous medium are responsible for the temperature difference between the 3 

solid and fluid phases. On the other hand, through decreasing Darcy number penetration of the 4 

hot fluid into the porous medium decreases. Hence, to increase the temperature difference 5 

between the solid and fluid phases, the coefficient of convective heat transfer outside the porous 6 

media should increase. This, itself, is subjected to increasing the radius of porous material. 7 

According to Figs. 5d and 6d once the tube is fully filled with porous material the temperature 8 

difference between the two phases reaches its maximum value. It is further observed that under 9 

the fully filled condition (Rr = 1) the temperature difference between the solid and fluid phases 10 

is independent of Darcy number. Changes in the temperature difference between the solid and 11 

fluid phases are caused by the variation of fluid velocity inside the porous media. When the tube 12 

is fully filled by the porous material the fluid velocity inside the porous medium remains almost 13 

constant [2, 3, 13, 26] . Hence the rate of heat transfer between the solid and fluid phases inside 14 

the porous media is independent of Darcy number. The temperature difference between the two 15 

phases is then Darcy number independent. The present results are in keeping with the findings 16 

of the previous analytical investigations [26]. 17 

 18 

5.2. Effects of physical parameters 19 

This section investigates the influences of various physical parameters upon the validity of 20 

LTE. These include the inertia parameter, porosity, particle diameter and conductivity ratio. It 21 

should be noted that some important physical parameters depend directly on the porosity and 22 

particle diameter. These include fluid and solid effective conductivities, permeability and 23 

consequently the Darcy number and the specific surface area. Further, the particle diameter 24 

affects the permeability, specific surface area and fluid-to-solid heat transfer coefficient. Hence, 25 

changing the porosity or particle diameter changes the specific surface area asf and the fluid-to- 26 

solid heat transfer coefficient hsf. Modification of asf and hsf can alter the heat transfer rate 27 

between the fluid and solid in the porous medium. This has a dominant effect on the 28 

temperature difference between the fluid and solid phases. It follows that porosity and particle 29 

diameter can have a significant effect upon the fluid and solid temperatures.  30 

Figure 7 shows the effect of Forchheimer term on the temperature distribution in the solid 31 

and fluid phases. Computations are performed for different inertia parameter F and model B 32 

along with Darcy numbers of 10-2 and 10-6 and radius of porous material Rr of 0.8. It is observed 33 

in Fig. 7a that for a fixed Da number of 10-2 as the inertia increases, the general trend of 34 

temperature variations in the solid and fluid phases remains unchanged. However, the 35 

temperature difference between the two phases increases. In addition, it is seen that as the F 36 
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parameter increases the non-dimensional fluid temperature remains unchanged. However, the 1 

non-dimensional solid temperature decreases. Further, according to Fig. 7b at Darcy number of 2 

10-6 increasing the inertia term has no influence upon the temperature difference between the 3 

two phases. This is due to the channelling effect that occurs in Da<10-3 [2, 3]. For Da = 10−6, flow 4 

mainly channels between the porous medium and the pipe wall for Rr less than a critical radius 5 

[2, 3, 26]. Hence, the flow velocity inside the porous medium becomes negligible. Since most the 6 

fluid flows between the porous medium and the pipe wall, the Nusselt number should be similar 7 

to that of the corresponding annular flow. Thus for Da<10-3 the plug flow assumption is valid [2, 8 

3]. It is, therefore, concluded that inertia has a significant effect on the temperature difference 9 

between the two phases at the limit of low Darcy number.  10 

 11 

  

 

(a) Da = 10-2 

 

 

(b) Da = 10-6 

Fig. 7. Effect of inertia parameter on the temperature difference between the solid and fluid 

phases for Rr = 0.8, ks/kf = 542, dp = 0.016 m and model B. 

 12 

Figure 8 shows the effect of porosity on the temperature difference between the solid and 13 

fluid phases for Da = 10-3 and Rr = 0.9. For low porosity (ε = 0.5) the difference between the two 14 

phases is small and LTE is valid in this limit. As the porosity increases to ε = 0.9, the fluid and 15 

solid temperatures are slightly lower than those obtained at low porosity. Nonetheless, the 16 

general trend of temperature variations is almost fixed. At high porosity the temperature 17 

difference between the two phases increases significantly and LTE is not valid anymore. When 18 

the porosity decreases, the specific surface area (see eq. (12)) increases. Hence, the heat 19 

transfer rate between the fluid and solid increases. This results in the reduction of the 20 

temperature difference between the two phases. On the other hand, as ε decrease according to 21 

eq. (10) the permeability (K) of the porous region decreases. This reduces the value of Da = 22 
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K/R0
2. Based on the results presented in section 5.1, reduction of Da number diminishes the 1 

temperature difference between the two phases.  2 

 3 

 

Fig. 8. Effect of porosity on the temperature difference between the solid and fluid phases, Da = 

10-3, Rr = 0.9, F = 0, ks/kf = 542, dp = 0.016 m and model B. 

 4 

Figure 9 depicts the influence of particle diameter, dp, on the temperature difference between 5 

the fluid and solid phases for Da = 10-3 and porous thickness ratio of Rr = 0.9.  This figure  shows 6 

that as dp increases the values of non-dimensional temperature of fluid phase increases while 7 

that of the solid phase decreases. Moreover, for low dp the temperature difference between the 8 

fluid and solid phases is small and hence LTE is valid. As dp increases the temperature difference 9 

between the two phases increases and LTE becomes invalid. According to eq. (13) as dp 10 

decreases the value of fluid-to-solid heat transfer coefficient increases. Thus, the heat transfer 11 

rate between the two phases increases. This subsequently results in a low temperature 12 

difference between the two phases. 13 
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Fig. 9. Effect of particle diameter on the temperature profile for the solid and fluid phases, Da = 

10-3, Rr = 0.9, F = 0, ks/kf = 542 and model B. 

 1 

Different fluid and solid materials were used in the simulation to cover a wide range of 2 

conductivity ratios (see Table (1)). Figure 10 shows the results of varying the conductivity ratio 3 

on the temperature difference between the fluid and solid phases. Conductivity ratio of ks/kf ~ 2 4 

corresponds to the fluid phase of water and the solid matrix of soda lime and that of ks/kf ~ 542 5 

corresponds to the fluid phase of air and the solid phase of AISI304. Figure 10 shows that for 6 

low thermal conductivity ratio, even at high Da and high porous thickness ratio, the 7 

temperature difference between the two phases is almost zero. However, as the conductivity 8 

ratio increases the difference between the solid and fluid phases increases significantly. Hence, 9 

it is concluded that for low thermal conductivity ratios the LTE condition remains valid even for 10 

a pipe with large thickness of porous material. Low ratio of solid to fluid thermal conductivity, 11 

ks/kf indicates that the fluid phase and solid phase have the same thermal conductivity, i.e. kskf. 12 

Further, model B states that the two phases receive the same amount of heat flux at the 13 

interface. Thus, the two phases have similar temperature and LTE holds. As the conductivity 14 

ratio increases the temperature of the solid phase becomes much higher than the temperature 15 

of the fluid phase. Therefore, according to the definition of the dimensionless temperature, the 16 

value of  for the solid phase becomes lower than that of the fluid phase. 17 
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Fig. 10. Effect of conductivity ratio on the temperature difference between the solid and fluid 

phases, Da = 10-3, Rr = 0.9, dp = 0.016 m, F = 0 and model B. 

 1 

5.3. Effects of boundary conditions on the temperature distributions  2 

This section considers the influence of boundary conditions, models A and B (see eq. 15), on 3 

the temperature difference between the two phases at different Darcy numbers. Other 4 

parameters are set as F = 0, ks/kf = 542 and dp = 0.016. The effects of Darcy number and porous 5 

thickness ratio are subsequently analysed. Figures 11, 12 and 13 show the variations in the 6 

solid and fluid temperatures for the two boundary conditions of models A and B. Darcy numbers 7 

of 10-3, 10-5 and 10-6 and optimum porous material radii of 0.7, 0.8 and 0.8 corresponding to 8 

each Da number (see section 5.1) have been considered. For Da = 10-3 and Rr = 0.7, Fig. 11 9 

shows that at high Darcy numbers and even for large radii of porous material the two models 10 

lead to similar results. Application of both models in this figure results in a significant 11 

temperature difference between the two phases inside the porous media. Thus, LTE does not 12 

hold anywhere inside the porous medium. Nonetheless, at the interface the temperatures of the 13 

two phases are the same and hence LTE condition holds between the two phases at the porous- 14 

fluid interface. 15 
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 (b) Model B 

 

 

(a) Model A 

Fig. 11. Effect of different boundary conditions on the temperature difference between the solid 

and fluid phases for Da = 10-3, Rr = 0.7, ks/kf = 542 and dp = 0.016 m and F = 0. 

 1 

Figure 12 shows that as Darcy number decreases to 10-5 model B leads to a noticeable 2 

temperature difference between the two phases at the interface and LTE becomes invalid. 3 

However, under model A there is no temperature difference between the two phases at the 4 

interface (see eq. (15)) and LTE assumption is valid in this area. It is clear that at this value of Da 5 

number the outcomes of the two models start to diverge from each other.  6 

 7 

  

 

(b) Model B 

 

 

(a) Model A 

Fig. 12. Effect of different boundary conditions on the temperature difference between the solid 

and fluid phases for Da = 10-5, Rr = 0.8, ks/kf = 542 and dp = 0.016 m and F = 0. 
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 1 

Further reduction of Darcy number to 10-6, in Fig. 13, results in significant disparities 2 

between the outcomes of the two models at the porous-fluid interface. Model B shows no 3 

temperature difference between the two phases close to the core of the pipe. However, at the 4 

interface there exists a noticeable difference between the temperatures of the two phases and 5 

hence LTE is not valid. Conversely, model A represents LTE in the whole porous region from the 6 

core to the interface. 7 

 8 

  

 

(b) Model B 

 

 

(a) Model A 

Fig. 13. Effect of different boundary conditions on the temperature difference between the solid 

and fluid phases for Da = 10-6 and Rr = 0.8, ks/kf = 542 and dp = 0.016 m and F = 0. 

 9 

Figure 14 shows the fluid and solid phase temperature distributions calculated using models 10 

A and B at low Darcy number, Da = 10-6, and low porous thickness ratio of Rr = 0.6. Clearly, at 11 

this low porous thickness ratio the two models predict similar temperature distributions. 12 

 13 
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(b) Model B 

 

 
(a) Model A 

 
Fig. 14. Effect of different boundary conditions on the temperature difference between the solid 
and fluid phases for Da = 10-6 and Rr = 0.6, ks/kf = 542 and dp = 0.016 m and F = 0. 

 1 

Simulations were repeated for other Darcy numbers. It was found that for Da of 10-3, 10-4, 10- 2 

5 and 10-6 the threshold porous thickness up to that the two models generate similar results are 3 

0.8, 0.7, 0.6 and 0.6, respectively. Exceeding this threshold value results in significant disparities 4 

between the outcomes of the two models.  5 

Determination of the proper thermal boundary condition at the porous-fluid interface is still 6 

an open question [24]. Designating one model over the other is not a trivial task as some 7 

previous studies validated both of these primary models. Further, the mechanisms of splitting 8 

the heat flux between the two phases are not fully understood yet. It is expected that various 9 

effects might cause a set of experimental results to agree with either of the two models. These 10 

effects include the variable porosity, thermal dispersion and wall thickness. In a pipe fully filled 11 

with a porous material and under constant wall heat flux, when the wall has a finite thickness 12 

made of a high conductivity material, the two phases have the same wall temperature [19]. 13 

Therefore, for this class of applications, model A is preferable. On the other hand, model B is 14 

anticipated to be a representative boundary condition for the applications with high wall 15 

temperatures and high temperature gradients. Jiang and Ren [36] showed that in a fully filled 16 

channel when the thermal conductivities of fluid and solid phases were similar, the fluid and the 17 

solid phases were close to the local thermal equilibrium. However, when the thermal 18 

conductivity between the fluid and solid phases were different they obtained good agreement 19 

between model B and the experimental data [36]. In partially filled pipe, when the heat transfer 20 

between the fluid and solid phases at the interface is large enough and their temperatures are 21 

equal at the interface, model A is applicable. However, when the heat transfer between the fluid 22 

and solid phases at the interface is not strong enough the fluid and solid temperatures at the 23 

interface are not equal and model B is preferred. Furthermore, previous works have shown that 24 

depending on the thickness of the porous material and other pertinent parameters the fluid 25 

velocity in the clear region and at the interface changes [26]. This, in turn, changes heat transfer 26 

at the porous fluid interface. Thus, depending on different parameters such as porous thickness, 27 

thermal conductivity ratio, Darcy number and inertial term either of models A or B can be 28 

applicable. For instance, at the critical porous material thickness in which the velocity gradient 29 

in the clear region is maximum, the amount of heat transfer at the porous-fluid interface is 30 

maximum and hence model A is applicable. 31 

 32 
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5.4. Nusselt number 1 

This section investigates the dependence of Nusselt number upon the porous substrate 2 

thickness, Darcy number and inertia parameter. The aim is to further clarify the effects of the 3 

two models on the thermal behaviour of the porous flow. Figure 15 depicts the effect of porous 4 

substrate thickness on the value of the fully developed Nusselt number for different values of Da 5 

number, models A and B and two Forchheimer parameters. The Nusselt numbers are evaluated 6 

in the fully developed region at the axial location of Z = 9. It is noted that by varying 7 

Forchheimer parameters the general trend in the variation of Nu number versus Rr remains 8 

almost unchanged. In addition, the Nu number obtained for the two models are quite similar. 9 

Clearly, there is an optimum porous radius at which the Nu number is maximum. This is 10 

regarded as Rr, Nu. Figure 15 shows that for Rr less than Rr, Nu, as the porous substrate thickness 11 

increases Nu number increases. This is because increasing the porous layer thickness forces 12 

more fluid to escape to the clear region so the maximum velocity and the velocity gradient on 13 

the wall increases [2, 3, 26]. Consequently, a Nu number higher than the Nu number in a channel 14 

without porous material is achieved. However, increasing Rr to those exceeding the optimum 15 

thickness (Rr, Nu), reverses this trend. This is due to the fact that at large values of Rr the flow 16 

velocity and its gradient at the wall decrease [2, 3, 26]. Thus, the Nusselt number decreases. For 17 

models A and B and F = 0, the optimum porous thickness, Rr, Nu, takes the values of 0.6, 0.8 and 18 

0.95 for Darcy numbers of 10-2, 10-3 and 10-6, respectively. However, at F = 2 and under both 19 

models, for Darcy numbers of 10-2, 10-3 and 10-6 the values of Rr, Nu are respectively 0.8, 0.8 and 20 

0.95. Figure 15 shows that for high Darcy numbers, Rr, Nu is dependent on Forchheimer 21 

parameter. Nonetheless, this is not the case at low Darcy numbers. For Da<10−3 and Rr less than 22 

a critical radius, the flow mainly channels between the porous medium and the pipe wall [26]. 23 

Under these conditions the flow through the porous medium is negligible. Further increase in 24 

the porous thickness, to the values exceeding the optimum porous thickness, decreases the gap 25 

between the pipe walls and the porous region. This diverts the flow back into the porous region. 26 

Thus, the flow in the clear region diminishes and the Nusselt number decreases [26]. In 27 

addition, Fig. 15 shows that for high Da numbers the values of Nu number obtained through 28 

models A and B are essentially the same. However, as Da decreases the two models lead to 29 

different Nu numbers in which the Nu number obtained by model A is higher than that 30 

predicted by model B. For example, for Da = 10-6 and F = 2 the Nu number based on model A is 31 

about Nu ~ 80 while the corresponding Nu number obtained by model B is Nu ~ 56. 32 

 33 
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(a) F = 0 (b) F = 2 

Fig. 15. Nusselt number profile for the fully developed flow versus porous thickness ratio. 

 1 

In short, Fig. 15 demonstrates the followings. 2 

1-  For each value of F and for fixed Da, there is an optimum porous thickness (Rr, Nu) below 3 

which the two models result in similar Nu numbers. For Da = 10-2, 10-3, 10-4, 10-5 and 10- 4 

6 the optimum porous thicknesses for F = 0 are 0.4, 0.75, 0.8, 0.8 and 0.8 respectively. At 5 

F = 2 the corresponding optimum porous thicknesses are respectively 0.7, 0.8, 0.8 and 6 

0.8. For thicknesses greater than the critical thickness, the Nu number obtained using 7 

the two models are significantly different.  8 

2- The Nu number determined using model A found to be considerably higher than Nu 9 

number obtained by model B. It is therefore concluded that the value of Nusselt number 10 

depends on the interface model. 11 

3- For a given model and for Da<10-3, the Nu number is independent of F. The same applies 12 

to the temperature distribution (section 5.2). However, for Da>10-3 as F increases the 13 

obtained Nu number increases.  14 

4- The effects of F on Nu number for Da<10-3 are very similar under both models A and B. 15 

This implies that the influences of Forchheimer term on the Nusselt number under LTNE 16 

condition is independent of the thermal boundary condition at the porous-fluid 17 

interface.  18 

 19 

5.5. Pressure loss 20 

An important factor in heat transfer enhancement using porous materials is the pressure 21 

drop [2, 3]. The required pumping power can be inferred from the pressure loss along the duct. 22 

Figures 16a-b depict the non-dimensional pressure loss term (-dP/dZ) as a function of porous 23 

thickness ratio while Darcy numbers extending from 10-2 to 10-6 for (a) F = 0 and (b) F = 2. 24 
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Figure 16a shows that for F = 0 the variation of pressure drop at Da = 10-2 is different to the 1 

other Da numbers. However, for F = 2, Fig. 16b shows that the trend of pressure drop variation 2 

for Da = 10-2 is the same as the other Da numbers. In Fig. 16a for Da = 10-2 and F = 0, when the 3 

porous thickness increases from Rr = 0.8 to Rr = 1 the pressure drop increases smoothly. 4 

Whereas, for F = 2 as porous thickness increases a sharp increase in the pressure drop is 5 

observed. It is clear from these figures that pressure drop increases with increasing the porous 6 

thickness and reaches its maximum value when the pipe is fully filled with a porous medium, i.e. 7 

Rr = 1. 8 

 9 

  

 
(a) F = 0 

 

 
(b) F = 2 

 

Fig. 16. Dimensionless fully developed pressure drop versus porous thickness ratio, (a) F = 0 
and (b) F = 2. 
 10 

Comparing Fig. 16a and Fig. 16b reveals that for Da<10-3 and Rr<1 the inertia parameter has 11 

no significant effect upon the pressure drop. However, for Rr = 1, as F increases the pressure 12 

drop slightly increases. For example, for Da = 10-5 and Rr = 1 the dimensionless pressure drop in 13 

Fig. 16a for F = 0 is 1572 while this value in Fig. 16b for F = 2 is about 2187. On the other hand 14 

at F = 0 and F = 2 and Rr = 0.8 the pressure drop is about 11.5. It is further seen that for Da>10-3 15 

the inertia parameter has a strong effect on the pressure drop. This is such that as F increases 16 

the pressure drop increases significantly. Moreover, clearly as Rr increases the effect of inertia 17 

becomes more significant and reaches its maximum at Rr = 1.  18 

Figure 16a shows that for all Da numbers and Rr<0.4 the pressure drop is roughly 19 

independent of Darcy number. However, according to Fig. 16b for F = 2 and Rr<0.8 the pressure 20 

drop is independent of Darcy number. 21 

In short, a close inspection of Figs. 16a and 16b reveals the followings. 22 

- For Da<10-3 and Rr<1 the pressure drop is independent of the inertia parameter. 23 

- For Da<10-3 and Rr<1 as the inertia parameter increases the pressure drop increases 24 

slightly. 25 

- For F = 0 and Rr<0.4 the pressure drop is roughly independent of Darcy number. 26 
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- For F = 0, Da<10-3 and Rr<0.6 the pressure drop is independent of Darcy number.  1 

- For F = 2 and Rr<0.8 the pressure drop is independent of Darcy number. 2 

Previous works [2, 3, 5, 10, 26, 33] have shown that for Rr<0.6 the pressure drop is 3 

independent of Darcy number. The present investigation further showed that the porous 4 

thickness below which the pressure drop becomes independent of Darcy number is a function of 5 

inertia parameter. Further, for the cases of F = 0 and F = 2 and porous thickness ratio less than 6 

0.8, Darcy number has no significant effect upon the pressure drop.  7 

 8 

6. Conclusions 9 

Enhancement of forced convection heat transfer in a pipe partially filled with a porous 10 

material under constant wall temperature boundary condition was studied numerically. Darcy- 11 

Brinkman- Forchheimer model was utilised to model the flow in the porous medium. Energy 12 

equations for both solid phase and fluid phase in the porous medium were solved through LTNE 13 

model. The effects of several parameters upon the flow and thermal characteristics were 14 

studied. These included the effects of porous layer thickness, Darcy number (Da), inertia 15 

parameter (F) and solid-to-fluid thermal conductivity ratio on the validity of LTE. Two models 16 

of thermal boundary conditions (models A and B) at the porous-fluid interface were applied. In 17 

model A the heat flux transferred from the external fluid to the porous material is unevenly 18 

distributed between the two phases. The distribution is on the basis of their effective thermal 19 

conductivity and the temperature gradient on the interface between the porous medium and the 20 

clear region. Model B assumes that the solid and liquid phase receive identical heat flux from the 21 

external fluid. Through application of model B, an optimum radius of porous material was 22 

determined that up to which the local thermal equilibrium (LTE) holds (Rr, LTE). The results show 23 

that this thickness is inversely proportional to Da number. For Darcy numbers of 10-3, 10-4, 10-5 24 

and 10-6 the values of Rr, LTE are respectively 0.5, 0.7, 0.8 and 0.8. It was further observed that for 25 

varying Da and different radius of the porous materials, models A and B result in different solid 26 

and fluid phase temperatures. For Da of 10-3, 10-4, 10-5 and 10-6 the porous thickness at which 27 

the two models generate similar results are 0.8, 0.7, 0.6 and 0.6, respectively. The influence of F 28 

at high Da was found noticeable and increasing F could lead to the reduction of temperature 29 

difference between the two phases. Further, at low Darcy numbers, F appeared to have no 30 

influence on the temperature difference between the two phases. The impacts of Da number, 31 

inertia and porous thickness on the pressure drop and Nu number for the two models A and B 32 

were then discussed. The predicted Nu number using model B found to be higher than that 33 

obtained by model B. For a given model and for Da<10-3, the Nu number is independent of F. 34 

However, for Da>10-3 as F increases the obtained Nu number increases. It appeared that the 35 

effect of F on Nu number for Da<10-3 was nearly the same under both models A and B. 36 



28 
 

 1 

Acknowledgment 2 

The authors are thankful to Dr. W. P. Breugem of Delft University of Technology for his 3 

constructive comments during the preparation of this manuscript. 4 

 5 

Nomenclature 6 

a Specific surface area m2 

Cp Specific heat at constant pressure J/kg. K 

Da Darcy number  K/R0
2 

dp Particle diameter m 

F Inertia parameter   

h Fluid-to-solid heat transfer coefficient W/m2. K 

k Thermal conductivity W/m. K 

kfe Effective thermal conductivity of the fluid W/m. K 

kse Effective thermal conductivity of the solid W/m. K 

K Permeability m2 

L Pipe length m 

Nu Nusselt number  

p Pressure Pa 

P Dimensionless pressure  p/ρuin2 

Pr Prandtl number   

r Radial coordinate m 

R Dimensionless radial coordinate r/R0 

Rr, LTE 
Optimum porous thickness up to which the LTE condition 

validates  

Rr, Nu 
Optimum value of porous thickness which maximises the 

Nusselt number 

Re Reynolds number ρuinR0/μ 

Rep Particle Reynolds number ρuindp/μ 

Rp Porous substrate thickness m 

R0 Pipe radius m 

Rr Ratio of porous substrate thickness to the pipe radius Rp/R0 

T Temperature K 

Tm Mean temperature K 

u Velocity in z- direction m/s 

U Dimensionless axial velocity  u/uin 

Um Mean velocity m/s 

u  Velocity magnitude (u2+v2)1/2 
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v Velocity in r-direction m/s 

Y Dimensionless radial coordinate r/R0 

z Axial coordinate m 

Z 

 

Dimensionless axial coordinate z/R0 

Geek 

symbols 

 

  

 δ Binary flag  

ε Porosity  

Θ Dimensionless Temperature first configuration 
inw

w

TT

TT




 

 Viscosity kg/m. s 

ρ 

 

Density kg/m3 

Subscripts 

 

  

e Effective  

f Fluid  

in Inlet  

interface Interface between the porous medium and the clear region  

m Bulk  

p Porous medium  

s Solid  

w Wall  
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