
, 

 
 
 
 
 
 
 
 
 
Coveney, S. (2010) Land-cover class as a qualifier for quoted elevation 
error in aerial LiDAR. In: 9th International Symposium on Spatial 
Accuracy Assessment in Natural Resources and Environmental Sciences, 
20-23 July 2010, University of Leicester, UK. 
 
Copyright © 2010 The Author 
 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
Content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s) 
 

 
When referring to this work, full bibliographic details must be given 
 
 
 
http://eprints.gla.ac.uk/87712/ 
 
 
 
 Deposited on: 15 November 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296158525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Land-cover class as a qualifier for quoted elevation 
error in aerial LiDAR. 

 

Seamus Coveney
 

National Centre for Geocomputation, NUI Maynooth Ireland 

Telephone: (00353-1-7086455) 

Fax: (00353-1-7086456) 
Email: seamus.coveney@nuim.ie 

 

Introduction 

LiDAR derived Digital Elevation data are used widely in the Geosciences to model 

topographically dependent environmental processes. High accuracies are not required for 

all applications, but modelling elevation sensitive processes such as flood or erosion risk 

generally requires data that accurately represent the ground surface. LiDAR Digital 

Surface Model (DSM) data do provide very high accuracies relative to many other 

classes of Digital Elevation Model (DEM). However, even LiDAR is subject to some 

error, and quite significant elevation errors can occur whenever dense ground vegetation 

cover interferes with laser illumination of a bare ground surface (Flood, 2004). 

Bare-earth LiDAR DEMs generated by reference to first and last laser returns (Lim et 

al., 2003, Hall et al., 2005; Webster, 2006) and from full waveform digitisation 

(Nayegandhi et al., 2006, Wagner et al., 2008) do facilitate the removal of much of the 

error that derives from the presence of vegetation. However, the efficiency of these 

methods tends to be reduced in densely vegetated areas (Flood, 2004). As a consequence 

of this, quoted LiDAR error may fail to account for actual error in all cases in natural 

areas (Hodgson and Bresnahan, 2004). This may be particularly problematic of the data 

are to be used to model elevation-sensitive environmental processes such as flood risk. 

The accuracy of three spatially-coincident aerial LiDAR datasets is examined in a 

low-lying coastal area (figure 2b) to clarify the relationship between generic land cover 

classes and LiDAR elevation error. Ground validation data are captured using FastStatic 

and RTK GPS data capture. The number of validation points used, the GPS survey 

methods employed, and the land-cover classes (table 1) assessed are designed to surpass 

the minimum requirements of the American Society of Photogrammetry and Remote 

Sensing (ASPRS) guidelines for the validation of LIDAR error (Flood, 2004).  

 

Generic class Land cover type 

Natural Open terrain (sand, rock, soil, ploughed 

fields, lawns, golf courses). 

Natural Brush lands and low trees. 

Natural / semi-natural Tall weeds and crops. 

Semi-natural Forested areas fully covered by trees. 

Anthropogenic Urban areas with dense man-made structures. 

Table 1. Land-cover classes evaluated (source ASPRS, 2004). 

 



Three aerial LiDAR datasets are used in the study. These include the onshore 

component of the INFOMAR (Integrated Mapping For the Sustainable Development of 

Ireland’s Marine Resource) bathymetric LiDAR dataset, the Office of Public Works 

(OPW) coastal management LiDAR dataset and the Ordnance Survey Ireland (OSI) bare-

earth LiDAR DEM dataset (figure 1). 

 

Methods 

Absolute elevation error is quantified for each dataset in idealised control areas prior 

to assessing the influence of ground vegetation in order to isolate LiDAR measurement 

error from residual ground vegetation error. LiDAR measurement error is determined 

using FastStatic GPS in open paved areas residual vegetation error is measured using a 

combination of FastStatic GPS (for urban and forested areas) and RTK GPS in Open 

terrain, Brush lands and cropland / weeded areas. 

 

 

   
Figure 1. OSi, OPW and INFOMAR LiDAR Coverages for Ireland 

 

 

  
Figure 2(a) Three LiDAR overlap areas and (b) optimal overlap area 



Three potential study areas are considered where all three LIDAR datasets overlap 

(figure 2a) and an area in the vicinity of Oranmore town (figure 2b) in Galway bay is 

selected due to the large overlap of all three datasets and the variable land cover present 

in the area. Data validation is carried out using ArcInfo Geostatistical Analyst, generating 

2.5D kriging prediction surfaces for each LiDAR dataset, and using the GPS data to 

validate data error in the five land cover classes tested. 

 

Discussion 

LiDAR measurement error is found to be broadly in agreement with the statistics 

provided by data suppliers in all cases, confirming the reliability of each dataset in non-

vegetated areas. However, the magnitude of the errors associated with the presence or 

absence of vegetation in each of the landcover classes tested are found to vary in relation 

to vegetation canopy density and depth. Errors substantially larger than the global errors 

quoted by data suppliers were found in all three LiDAR datasets, highlighting the 

difficulties that may arise when LiDAR data are used to model elevation sensitive 

processes (such as coastal flood risk) in natural areas. 
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