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Abstract 31 

Background: Protein glycation is a key mechanism involved in chronic diseases 32 

development in both diabetic and non-diabetic individuals. About 12-18% of circulating 33 

proteins are glycated in vivo in normoglycaemic blood, but in-vitro studies have hitherto 34 

failed to demonstrate glucose-driven glycation below concentration of 30mM. 35 

 Methods: Bovine Serum Albumin (BSA), reduced BSA (mercaptalbumin), (both 40g/L) and 36 

human plasma were incubated with glucose concentrations 0-30 mM for 4 weeks at 37
o
C.  37 

All were tested pre-oxidized for 8 hours prior to glycation with 10nM H202, or continuously 38 

exposed to 10nM H2O2 throughout the incubation period. Fructosamine was measured 39 

(nitroblue tetrazolium method) at two and four weeks. 40 

Results: Oxidized BSA (both pre-oxidised and continuously exposed to H2O2) was more 41 

readily glycated than native BSA at all glucose concentrations (p=0.03). Moreover, only 42 

oxidized BSA was glycated at physiological glucose concentration (5 mM) compared to 43 

glucose-free control (glycation increased by 35% compared to native albumin p<0.05). Both 44 

5 and 10 mM glucose led to higher glycation when mercaptalbumin was oxidised than un-45 

oxidised (p<0.05). Fructosamine concentration in human plasma was also significantly higher 46 

when oxidized and exposed to 5 mM glucose, compared to non-oxidised plasma (p=0.03). 47 

The interaction between glucose concentration and oxidation was found to be significant in 48 

all protein models (p<0.05).   49 

Conclusion The current study has for the first time demonstrated albumin glycation in-vitro, 50 

using physiological concentrations of albumin, glucose and hydrogen peroxide, identifying 51 

low-grade oxidative stress as a key element early in the glycation process.  52 

 53 

Key-Words: oxidative stress, hydrogen peroxide, albumin, plasma, glucose, 54 

mercaptalbumin, glycation, glucose 55 

 56 

 57 
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Introduction 59 

 60 

Protein glycation is the non-enzymatic glycosylation reaction between reducing sugars and 61 

amine residues in proteins[1]. It is usually considered to be driven by elevated glucose 62 

concentrations. Products of this reaction include Advanced Glycation End-products (AGEs) 63 

which are stable and accumulate in the body where they may exert antigenic effects, and 64 

contribute to tissue damage such as atherogenesis[2-3]. One early-glycation product is 65 

glycated hemoglobin (HbA1c), used as a biomarker for the diagnosis of diabetes and 66 

monitoring of glucose control in diabetic individuals[4]. Monitoring, and minimizing, 67 

glycative damage in diabetic care is of high importance, as glycated proteins and AGEs are 68 

implicated in cataract, neuropathy, nephropathy as well as macrovascular diseases[5]. 69 

 70 

However, glycation also occurs in non-diabetic people, in whom up to 6 % of hemoglobin 71 

and 12-16% of serum albumin is glycated[6], without exposure to high glucose 72 

concentrations (fasting plasma glucose <6 mmol/L). Protein glycation heralds tissue damage 73 

and function loss, in the normal aging process and as part of the pathogenesis of various 74 

chronic diseases. Receptors for Advanced Glycation End-products (RAGE), found in most 75 

tissues, have potent immunomodulatory actions, promoting reactive oxygen species (ROS) 76 

production and inflammation. Elevated HbA1c can serve as a proxy for both pre-diabetes and 77 

metabolic syndrome, as shown in large longitudinal studies[7]. In both non-diabetic and 78 

diabetic subjects, HbA1c correlates with coronary heart disease (CHD) risk factors and 79 

predicts future CHD and strokes[8]. A recent study showed that among non-diabetic 80 

individuals who did not develop diabetes in the next 3.5 years, those with a higher yet 81 

physiological level of HbA1c had higher risk for CVD, in both men and women and after 82 

controlling for traditional risk factors[9]. 83 

 84 

The mechanisms leading to protein glycation in the non-diabetic state are not established. The 85 

very few in vitro studies which have used physiological concentrations are inconclusive as to 86 

whether glucose, alone, can successfully promote glycation[10-11]. In diabetic subjects, 87 

protein glycation is assumed to be mainly a mass action effect driven by high glucose 88 

concentration. However the full process of glycation in diabetes is in fact driven by two 89 

separate factors - the concentration of sugars in the initiation phase (mainly glucose, due to its 90 

high concentration in blood), and later the pro-oxidant status during Maillard reactions to 91 

generate stable AGEs[12]. We hypothesize that at physiological concentrations of glucose, 92 
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oxidation may have another role in initiating glycation, supporting earlier speculations from a 93 

cross-sectional study in non-diabetic individuals which showed inverse associations between 94 

protein glycation and dietary fruit and vegetable consumption, plasma vitamin C and plasma 95 

tocopherol[13]. Defining an early, preventable oxidative component to the overall glycation 96 

mechanism could be of importance in the management of pre-diabetes, when glucose 97 

metabolism is only mildly disrupted and glucose-centered clinical approaches might have 98 

little effect. 99 

 100 

The current study investigates the effect of introducing a mildly pro-oxidative state (hydrogen 101 

peroxide at a low physiological concentration of 10nM[14]) on the susceptibility of protein 102 

(albumin) to glycation, particularly at physiological and near-physiological glucose 103 

concentrations. Another common glycation driver, methylglyoxal, which causes glycative 104 

damage in a more oxidative fashion than glucose, was used in physiological concentration 105 

both alone and in combination with glucose, to explore possible synergistic effects.  106 

This oxidation-driven glycation hypothesis was also tested on reduced albumin 107 

(mercaptalbumin) on the assumption that commercially source native albumin would be 108 

already partly oxidized. This work was also extended to proteins in human plasma to extend 109 

the physiological relevance of our findings. 110 

 111 

 112 

Material and methods 113 

Impact of constant oxidation & pre-oxidation on BSA glycation 114 

Chemicals 115 

Bovine serum albumin (BSA), sodium azide, nitroblue tetrazolium, d-glucose, methylglyoxal, 116 

PBS, 1-deoxy-1-morpholinofructose (DMF), hydrogen peroxide, sulphuric acid, dithiothreitol 117 

and quinine were purchased from Sigma-Aldrich (Dorset, UK). SnakeSkin Dialysis Tubing, 118 

3.5K MWCO was purchased from Thermo Fisher Scientific (Nottinghamshire, UK). 119 

 120 

Glycation of pre-oxidized BSA 121 

BSA (80g/L) was incubated with H2O2 (10nM) for 8 hours at 37
o
C in PBS and was then 122 

dialyzed against PBS (8:1) for another 8 hours. The dialysate was discarded and replaced 123 

with fresh PBS three times during dialysis. 124 

 125 
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To measure the effect of protein pre-oxidation on the susceptibility of BSA to glycation, both 126 

native and pre-oxidized albumin (40g/L) were incubated in the presence of glucose (0, 5, 10, 127 

20 and 30mM) for 4 weeks. The combination of methylglyoxal (150nM) and glucose (0, 10 128 

or 20mM) was also studied in order to replicate glycoxidative conditions of albumin in the 129 

circulation. All incubations were repeated in 6 replicates. 130 

 131 

Albumin glycoxidation  132 

All incubations took place in PBS with sodium azide (0.2g/L) and a final volume of 1.5ml. 133 

To investigate the effect of continuous exposure to oxidative damage in the progress of the 134 

glycation reaction (glycoxidation) native BSA was incubated with glucose (0,5, 10, 20, or 135 

30mM) and combinations of methylglyoxal (150nM) plus glucose (0,10,20mM) for 4 weeks 136 

in the presence of H2O2 (10nM). Native BSA was also incubated under the same conditions 137 

without H2O2 (10nM) to serve as a reference. All incubations were repeated in 6 replicates. 138 

 139 

Comparison of the effect of constant glycation among BSA, mercaptalbumin & human 140 

plasma 141 

To enhance a concern over the oxidation status of the bovine serum albumin sold by Sigma-142 

Aldrich, the BSA used in the experiments was i) pre-treated with 1.5mM dithiothreitol (DTT) 143 

at 37
o
C for  15min and then DTT was removed by extensive dialysis against PBS for 10 144 

hours to create mercapralbumin and ii) BSA as bought from Sigma-Aldrich. 145 

 146 

In order to investigate the effect of hydrogen peroxide exposure in plasma proteins glycation, 147 

pooled plasma from 8 healthy, normal weight volunteers was collected in heparin tubes after 148 

an overnight fast.  149 

 150 

Protein glycoxidation  151 

All incubations took place in PBS with sodium azide (0.2g/L) and a final volume of 1.5ml. 152 

To investigate the effect of constant exposure to oxidative damage in the progress of the 153 

glycation reaction (glycoxidation) native BSA and native mercaptalbumin was incubated with 154 

glucose (0, 5, 10 or 20mM) for 4 weeks in the presence of H2O2 (10nM). Proteins were also 155 

incubated under the same conditions without H2O2 (10nM) to serve as a reference. 156 

 157 

The glucose concentration of 30mM was not employed as it is a highly supra-physiological 158 

concentration and the combinations of methylglyoxal plus glucose were also not employed. 159 
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All incubations were repeated in 5 replicates. 160 

 161 

Fructosamine measurement 162 

The NBT assay was modified in this experiment using a larger amount of sample (25 vs 10 163 

µL) which resulted in a smaller Coefficient of Variation. 164 

Fructosamine levels were measured at week 2 and 4 with the NBT assay, performed in 165 

microplates as described previously [15].  Briefly, samples (25µL) were added to of sodium 166 

carbonate buffer (100µL, 100mM, and pH 10.8) with Nitroblue Tetrazolium (0.25mM). 167 

Microplates were incubated for 15 min at 37
o
C and measured spectrophometrically against 168 

controls at 550nm after 10 and 15 min of incubation. The difference between the two 169 

readings was used to calculate concentrations. The fructosamine analog 1-deoxy-1-170 

morpholinofructose (DMF) was used as a standard. All fructosamine measurements were 171 

performed in duplicate. Standards and NBT reagent were made fresh every week and stored 172 

at -20
o
C and 4

o
C respectively. All samples were stored at -20

o
C. 173 

 174 

Statistical analysis 175 

All combinations of oxidative damage and glycation drivers were tested as five or six true 176 

replicates, according to the experiment. The independent sample t-test was used to assess the 177 

differences in glycation between native BSA and either of the oxidation set-ups. Difference in 178 

fructosamine production between glucose levels and glycation drivers were tested using a 179 

one-way ANOVA and Tukey’s post-hoc test. Differences between exposure to oxidation and 180 

no oxidation were studied in each protein system separately using one-way ANOVA and the 181 

ineraction between glucose levels and oxidation was studied using two-way ANOVA. 182 

Statistical analysis was performed using PASW 18. 183 

 184 

 185 

Results 186 

 187 

Effect of constant oxidation on BSA glycation 188 

Incubation of native BSA (40g/L) with glucose concentrations below 20mM did not lead to 189 

measurable levels of glycated BSA measured after 2 weeks, with or without 150nM 190 

methylglyoxal, compared to glucose-free control (Table 1). After 4 weeks, incubation with 191 

10mM glucose (with or without methylglyoxal) significantly promoted glycation in native 192 

BSA compared to glucose-free control. Exposure to a physiological concentration of 193 
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hydrogen peroxide (10nM), however, led to significantly higher glycated BSA (measured as 194 

fructosamine) at the lower glucose concentrations of 10mM after 2 weeks, and 5 mM after 4 195 

weeks incubation (both p<0.05 vs. glucose free control). 196 

 197 

Using constantly-oxidized BSA generated significantly more fructosamine than native BSA 198 

after 2 weeks of incubation with 5, 10 and 20mM glucose (increased by 23%, 36% and 35% 199 

respectively). Similar results were observed with methylglyoxal (150 nM) alone (19% 200 

increase in fructosamine), and with a combination of methylglyoxal (150 nM) plus glucose at 201 

concentrations of 10 and 20mM, with 35% and 26% increases in fructosamine respectively 202 

(Figure 1). Significantly greater glycation of constantly-oxidized BSA compared to native 203 

BSA was also observed after 4 weeks at all glucose concentrations, and with combinations of 204 

glucose (10 & 20mM) and methylglyoxal (150nM) (Figure 2). In particular, incubation of 205 

BSA with 5mM glucose and 10mM H2O2 led to a 35% higher fructosamine concentration 206 

compared to the non-oxidised control (p=0.04). Although incubating BSA in presence of 207 

methylglyoxal (150nM) alone did not lead to significantly increased glycation after neither  2 208 

nor 4 weeks (Table 1), combining methylglyoxal (150nM) and glucose (10mM) had a 209 

synergistic effect on glycation of constantly-oxidised BSA after 4 weeks (p=0.02 vs. glucose 210 

alone), as well as some suggestion of an effect on native BSA (p=0.08) (data not shown). 211 

 212 

The individual impacts of glucose concentration and oxidation, as well as their interaction, on 213 

glycation over periods of 2 and 4 weeks were investigated using a two-way ANOVA. 214 

Oxidation had a significant effect on glycation at both two and four weeks (p<0.001) There 215 

was strong evidence for an interaction between continuous-oxidation and glucose 216 

concentration in driving glycation after 2 weeks of incubation (p<0.001) with a non-217 

significant indication of an effect of this interaction on glycation after 4 weeks (p=0.058). 218 

While removing data relating to methylglyoxal and glucose incubations from the analysis did 219 

not change impact on the significance of the effect of oxidation on protein glycation (p 220 

<0.001 at both two and four weeks), the interaction between oxidation and glucose 221 

concentration significantly affected glycation after both two and four weeks (p=0.001 and 222 

p=0.01, respectively).  223 

 224 

Effect of pre-oxidation on BSA glycation 225 

Incubation of native and pre-oxidised BSA with glucose concentrations lower than 20mM for 226 

two weeks did not lead to significantly more fructosamine being produced than the glucose-227 
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free control. Nonetheless the pre-oxidation step led to significantly higher glycation, 228 

compared to native BSA, after two weeks at the lowest glucose concentration (5mM) 229 

(p=0.016). 230 

 231 

A 4-week incubation with 5mM glucose alone was sufficient to drive glycation of pre-232 

oxidized BSA (p=0.03 vs. glucose-free control), but not native (un-oxidized) BSA which 233 

required at least 10mM glucose (p=0.001, Table 1).  234 

 235 

Comparison of the effect of constant-oxidation on BSA and mercaptalbumin glycation 236 

Reduction of BSA to mercaptalbumin was employed in order to investigate whether 237 

commercially available BSA, possibly being oxidised to some extent, would be more or less 238 

prone to subtle oxidation driven glycation. For this reason, DTT-treated BSA was incubated 239 

with glucose (0-20mM) in presence or absence of 10nM H2O2.  240 

 241 

When mercaptalbumin was incubated with 5 and 10mM glucose under constant oxidation for 242 

two weeks, significantly higher fructosamine levels were observed compared to non-oxidised  243 

mercaptalbumin (p=0.03 & p=0.006; respectively). While incubation for two weeks with 244 

5mM glucose was sufficient to drive higher glycation in constantly-oxidized mercaptalbumin 245 

than glucose-free control (p<0.001), non-oxidised mercaptalbumin required incubation with 246 

10mM glucose to lead to higher glycation than the glucose-free control (p<0.001). No 247 

differences between oxidized and non-oxidised mercaptalbumin were observed at week 4 248 

(Figure 3). 249 

 250 

Two-way ANOVA, analysing the effect of oxidation at all glucose levels, showed that 251 

oxidized mercaptalbumin was subject to higher glycation than non-oxidised, at both weeks 252 

two and four (p=0.003 & p=0.035 respectively). The interaction between glucose and 253 

oxidation was not significantly affecting glycation in both weeks (p for interaction glucose × 254 

oxidation = 0.48 & 0.78 for week 2 and 4 respectively). 255 

 256 

When mercaptalbumin glycation was compared to BSA glycation. Mercaptalbumin was more 257 

prone to glycation than BSA in both the presence and absence of H2O2. In the absence of 258 

H2O2 mercaptalbumin had higher fructosamine concentration than BSA at 5 and 10mM 259 

glucose at two weeks (p=0.004 & p=0.002 respectively) and that was significant at week 4 260 

for 5mM glucose (p=0.005) and nearly significant for 10mM glucose (p=0.06). In the 261 
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presence of H2O2 mercaptalbumin was again more successfully glycated than BSA at 5&10 262 

mM glucose at week 2 (p<0.001, for both) and nearly significantly more at 20mM (p=0.057). 263 

At week 4 mercaptalbumin was significantly more glycated than BSA only at 5mM glucose 264 

(p=0.04) (data not shown). 265 

 266 

Employing two-way ANOVA showed that mercaptalbumin was more prone to glycation than 267 

BSA (p<0.001) and there was a significant positive interaction between oxidation and the 268 

type of protein employed, in favour of mercaptalbumin (p interaction protein-type x 269 

oxidation= 0.047) at week 2. Although the interaction between the protein type and oxidation 270 

was not documented at week 4 (p=0.33), glycation was still positively affected by using 271 

mercaptalbumin rather than BSA (p<0.001) (data not shown). 272 

 273 

Effect of constant-oxidation on human plasma glycation 274 

Protein glycation in human plasma was studied to explore the reactions studied previously in 275 

a more complex protein system with antioxidant mechanisms in place and closer to human 276 

physiology.  Plasma exposure to constant hydrogen peroxide (10nM) promoted glycation 277 

when incubated with 5mM glucose for 2 weeks, compared to non-oxidised plasma (p=0.03). 278 

Surprisingly, this effect of oxidation was no present after 4 weeks, and actually led to 279 

significant lower fructosamine concentration for incubations with 10mM glucose compared 280 

to non-oxidised plasma (p=0.001) (Figure 5).  281 

 282 

Two-way ANOVA suggested that oxidation had no impact on glycation in human plasma at 283 

week two but it had a significant negative impact at week four (p=0.01). The interaction 284 

glucose × oxidation was also significant (p<0.001) at week four, only.  285 

 286 

 287 

Discussion 288 

 289 

Protein glycation was first described as part of the Maillard reactions cascade, as a cause of 290 

food-spoiling. Although the same reactions have been identified in-vivo, and glycated 291 

proteins are probably causally associated with the tissue damage that occurs during aging, in 292 

diabetes and other chronic diseases[5], there are still gaps in the understanding of the exact 293 

mechanisms involved.  It is striking that 12-18% of circulating albumin, and up to 6% of 294 
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haemoglobin is glycated in apparently healthy non-diabetic people, amongst whom most 295 

heart disease occurs[6]. 296 

 297 

Perhaps surprisingly, this study is the first to demonstrate in vitro protein glycation at 298 

physiological glucose concentrations. The clear effect of including an oxidative agent 299 

(hydrogen peroxide at a low, physiologically relevant concentration [14]), supports the 300 

concept of oxidative stress as a key mechanism behind in-vivo glycation of albumin in 301 

normoglycaemic individuals. It is worth stressing that the concentration of hydrogen peroxide 302 

used was very low. Although the literature is still controversial over the exact concentration 303 

of hydrogen peroxide in plasma with values up to 35 μM being documented[16], even the 304 

supporters of the theory that hydrogen peroxide concentration is not important in plasma 305 

documented values of 250nM[17],which 25 times higher than the concentration equipped in 306 

the current study. Several factors might explain why previous studies have failed to achieve 307 

glycation in vitro under physiological conditions.  We used a physiological concentration of 308 

albumin, while previous studies have used lower (sub-physiological) concentrations (0.01-7 309 

g/L)[18-19], and/or high (supra-physiological) glucose concentrations (30mM-0.5M)[20-21]. 310 

Albumin glycation had previously been achieved in the presence of 15mM glucose alone at 5 311 

weeks or 30mM glucose alone at 4 weeks [22]. With physiological glucose concentrations, 312 

results have varied according to sample treatment and methods used to measure glycation. 313 

Bourdon et al. [10] reported that incubation of albumin for 4 weeks with 5mM glucose did 314 

not promote glycation, while later reporting contradictory findings (with, however, glycation 315 

only implied from qualitative results[11]).   316 

 317 

Similarly, while methylglyoxal is a potent glycative molecule in supra-physiological 318 

conditions[19], it did not show significant glycative activity in physiological concentrations.  319 

Our data suggest it might act synergistically with glucose to promote glycation at lower 320 

glucose concentrations (10mM), but we demonstrated that both glucose and methylglyoxal at 321 

physiological concentrations will glycate albumin if it is oxidised. 322 

 323 

In both the BSA and mercaptalbumin models, glycation of the protein was significantly 324 

higher than the glucose-free control when exposed to a physiological concentration of 325 

hydrogen peroxide for two weeks. Although the effect of pre-oxidation and continuous 326 

oxidation were very similar with a favour towards continuous oxidation, in so low hydrogen 327 

peroxide concentrations the continuous oxidation model is more likely to be of physiological 328 
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relevance Continuous exposure to hydrogen peroxide led to higher fructosamine 329 

concentrations at all glucose levels and oxidation was also shown to act synergistically with 330 

glucose, as the interaction between the two was found to be significant in our experiments.  331 

Hydrogen peroxide positively interacts with glucose in promoting glycation reactions. One 332 

has to keep in mind that the hydrogen peroxide exposure was weak in term of concentration 333 

in order to resemble physiological condition and hence it is likely to induce important but 334 

subtle effects. When human plasma was exposed to hydrogen peroxide, glycation was 335 

significantly higher with 5mM glucose after two weeks, compared to the non-oxidized 336 

control. The opposite was found when oxidised plasma was incubated with 10mM glucose 337 

for 4 weeks, but the lower fructosamine concentration of the oxidised plasma in that case 338 

could be attributed both to increased protein instability and/or glycation being driven to the 339 

production of AGEs (not detectable by the NBT method used) rather than early-glycation 340 

products as fructosamine. 341 

 342 

Constant oxidative stress is clearly damaging and relevant to diabetic and obese chronic pro-343 

oxidant states, however a dynamic balance between pro- and anti-oxidant factors is usually 344 

present in plasma and other body fluids.  The level of oxidative stress fluctuates during the 345 

day (e.g. higher post-prandially) and a variety of events can trigger short-term production of 346 

Reactive Oxygen Species. Our results suggest that episodes of relatively unopposed 347 

oxidation, e.g. from infection or inflammation, or smoking, could damage proteins to 348 

promote subsequent glycation, as we have demonstrated with the increased susceptibility of 349 

pre-oxidized albumin to glycation at a physiological glucose concentration. This mechanism 350 

could apply in vivo.   351 

 352 

Recognizing that, in physiological systems, protein glycation depends on oxidative damage 353 

as well as glucose concentration has implications for scientific understanding and potentially 354 

for clinical practice. The term ‘glycoxidation’, currently restricted to the latter stages of 355 

Maillard reactions, seems more appropriate than simply ‘glycation’ to describe the overall in 356 

vivo protein glycation process, and similar protocols to ours would be appropriate to study the 357 

phenomenon in vitro. The quest for normoglycaemia in diabetes management is important to 358 

delay vascular and other complications, but potentially hazardous interventions are entirely 359 

directed at glucose-lowering: using insulin or anti-diabetic drugs intensively to reduce 360 

glycation has been associated with increased risk of hypoglycemia, and of mortality [23]. If 361 

oxidative stress is also involved as a trigger for protein glycation and tissue damage, then 362 
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approaches aimed solely at glucose handling are insufficient, and reducing oxidative stress 363 

might be less hazardous.  This is not arguing for indiscriminate or high-dose antioxidant 364 

treatments.  Several trials have suggested worse outcomes from antioxidant vitamin 365 

supplementation[24], leading to understandable prejudice against their effectiveness and 366 

safety, but a recent meta-analysis of 66 randomised controlled trials indicates benefit from 367 

vitamin E supplementation for primary prevention (where there is some baseline 368 

insufficiency)[25], and vitamin E also contributes to secondary prevention[26], renewing 369 

interest in antioxidant interventions. Our results support findings from the cross-sectional 370 

study of Bates et al.[13], which led to the hypothesis that dietary antioxidants may reduce 371 

tissue glycation. Also evidence from in-vitro studies suggest that antioxidants are having a 372 

protective role in protein glycation[20, 27]. Exposure to oxygen radicals such as TBH and 373 

H2O2 significantly increased haemoglobin glycation in-vitro and pre-treatment with vitamin E 374 

blocked that effect[28]. Replenishment of the antioxidant defences of GSH-deficient red 375 

blood cells, on the other hand, protected them against increased haemoglobin glycation[29], 376 

both supporting the hypothesis of oxidative stress being involved in protein glycation. 377 

 378 

The present studies suggest some important avenues for future research, as well as changes to 379 

commonly-used experimental models.  It is important to question accepted patho-380 

physiological mechanisms if they cannot be demonstrated in vivo at physiological 381 

concentrations.  Our evidence that mild oxidation plays an early role in AGE production is 382 

novel and explains a gap in the literature.  Prior reduction of BSA might indeed increase the 383 

oxidation potential of the protein and hence strengthen the effect of oxidation on glycation, as 384 

shown by the two-way ANOVA analysis. While being designed to replicate physiological 385 

conditions and employing a large number of replicates (6 instead of the usual 3) to reduce 386 

random errors under physiological conditions, the current study does have limitations. 387 

Albumin, although the major circulating protein, may not be representative of other 388 

glycation-prone proteins, and the results cannot provide an exact mechanism linking 389 

oxidative damage to glycation. Using human plasma led to slightly different results than BSA 390 

and mercaptalbumin. No effect on glycation was seen from oxidation at glucose levels above 391 

10mM after two weeks of incubation; that could be attributed to the fact that plasma from 392 

healthy volunteers involves different proteins with different degrees of pro-oxidation and 393 

glycation and also a much more competent antioxidant system which would be expected to 394 

rapidly scavenge ROS. Glycated proteins already present in plasma could also affect the 395 

speed and general kinetics of the reaction. Possible mechanisms involve protein damage by 396 
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hydrogen peroxide and/or increased glucose autoxidation in the presence of hydrogen 397 

peroxide, both likely to increase the affinity of the molecules for the non-enzymatic sugar 398 

linkage. There may be selective oxidation of amino acids: for example, tryptophan, a main 399 

site for protein glycation, is an oxidation site for human albumin [30-31], suggesting that 400 

oxidized amino acids maybe more susceptible to further glycative damage.  401 

 402 

 403 

404 
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Conclusion 405 

Oxidative damage, although known to be important for the late stages of protein glycation, 406 

has not previously been linked with the early stage of the Maillard reaction. Our data suggest 407 

that oxidative damage, induced by a very low (physiological) concentration of hydrogen 408 

peroxide, plays a critical early role in fructosamine production.  Importantly, the effect is 409 

seen at physiological glucose concentrations, potentially opening an avenue for new 410 

preventive treatments. Our experiments highlight the importance of oxidative stress on 411 

protein glycation, as a promoter and even a necessary condition to achieve glycation in 412 

physiological glucose concentrations.  413 

 414 
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Figure 1. Fructosamine concentration (mM DMF equivalent) after two weeks incubation with glucose and 420 
constant exposure to oxidation from hydrogen peroxide (10 nM). Two-way ANOVA analysis showed a 421 
significant effect of oxidation to promote glycation. 422 

 423 
  424 
*p<0.05 native vs. constant oxidation for each given glucose concentration 425 
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Figure 2. Fructosamine concentration (mM DMF equivalent) after four weeks incubation with glucose and 428 
constant exposure to oxidation from hydrogen peroxide (10 nM). Two-way ANOVA analysis showed a 429 
significant effect of oxidation to promote glycation. 430 

 431 
 *p<0.05 native vs. constant oxidation for each given glucose concentration 432 
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Table 1.Fructosamine concentration after two weeks incubation of albumin with different glucose 436 
concentrations, between and within treatments (glucose / MGO exposure and oxidation) 437 
 438 
 Week 2  
Glucose levels 
(mM) 

Oxidation status 

 Native 
Mean (SD) 

H2O2 10nM 
Mean(SD) 

p-value  
Native 
Mean (SD) 

Pre-Oxidized 
Mean(SD) 

p-value 

0 0.26(0.04) 0.27(0.02) 0.669  0.26(0.01) 0.26(0.03) 0.807 
5 0.31(0.04) 0.38(0.02) 0.017  0.23(0.02) 0.29(0.05) 0.016 
10 0.35(0.02) 0.53(0.02)* 0.001  0.26(0.04) 0.28(0.03) 0.177 
20 0.51(0.05)* 0.69(0.07)* 0.002  0.57(0.06)* 0.57(0.04)* 0.940 
30 0.82(0.06)* 0.82(0.03)* 0.987  0.79(0.10)* 0.64(0.10)* 0.041 
0+MGO 0.26(0.02) 0.31(0.01) 0.015  0.19(0.02) 0.19(0.03) 0.510 
10+MGO 0.34(0.05) 0.46(0.03)* 0.001  0.62(0.07)* 0.48(0.05)* 0.002 
20+MGO 0.53(0.08)* 0.67(0.01)* 0.008  0.46(0.05)* 0.39(0.07)* 0.048 
Oxidised vs native#  0.43(0.19) 0.51(0.20) <0.001  0.42(0.21) 0.40(0.16) 0.005 

 Week 4  

0 0.37(0.03) 0.39(0.09) 0.767  0.20(0.02) 0.17(0.02) 0.021 
5 0.40(0.09) 0.54(0.06)* 0.015  0.26(0.02) 0.24(0.02)* 0.063 
10 0.55(0.04)* 0.68(0.06)* 0.003  0.31(0.02)* 0.31(0.02)* 0.825 
20 0.78(0.04)* 0.92(0.04)* <0.001  0.56(0.05)* 0.52(0.07)* 0.292 
30 0.95(0.08)* 1.17(0.10)* 0.002  0.62(0.05)* 0.64(0.03)* 0.844 
0+MGO 0.43(0.02) 0.40(0.04) 0.590  0.22(0.02) 0.17(0.01) 0.016 
10+MGO 0.70(0.03)* 0.84(0.09)* 0.010  0.52(0.01)* 0.46(0.03)* 0.028 
20+MGO 0.86(0.07)* 1.05(0.12)* 0.015   0.40(0.02)* 0.33(0.01)* <0.001 
Oxidised vs native# 0.64(0.22) 0.75(0.29) <0.001  0.38(0.16) 0.36(0.17) <0.001 

*p<0.05 vs. glucose 0mM, 
# 

two-way ANOVA analysis 439 

 440 

 441 

  442 
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 443 
Figure 3. Fructosamine concentration (mM DMF equivalent) after two and four weeks incubation with 444 
glucose and constant exposure to oxidation from hydrogen peroxide (10 nM) in mercaptalbumin. Two-445 
way ANOVA analysis showed a significant effect of oxidation to promote glycation. 446 
 447 
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Figure 4. Fructosamine concentration (mM DMF equivalent) after two and four weeks incubation with 456 
glucose and constant exposure to oxidation from hydrogen peroxide (10 nM) in human plasma. Two-457 
way ANOVA analysis showed a significant effect of oxidation to promote glycation. 458 
  459 
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