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Abstract 

Background 

Artemisinin-based combination therapy (ACT) for treating malaria has activity against 

immature gametocytes. In theory, this property may complement the effect of terminating 

otherwise lengthy malaria infections and reducing the parasite reservoir in the human 

population that can infect vector mosquitoes. However, this has never been verified at a 

population level in a setting with intense transmission, where chronically infectious 

asymptomatic carriers are common and cured patients are rapidly and repeatedly re-infected. 

Methods 

From 2001 to 2004, malaria vector densities were monitored using light traps in three 

Tanzanian districts. Mosquitoes were dissected to determine parous and oocyst rates. 

Plasmodium falciparum sporozoite rates were determined by ELISA. Sulphadoxine-

pyrimethamine (SP) monotherapy was used for treatment of uncomplicated malaria in the 

contiguous districts of Kilombero and Ulanga throughout this period. In Rufiji district, the 

standard drug was changed to artesunate co-administered with SP (AS + SP) in March 2003. 

The effects of this change in case management on malaria parasite infection in the vectors 

were analysed. 

Results 

Plasmodium falciparum entomological inoculation rates exceeded 300 infective bites per 

person per year at both sites over the whole period. The introduction of AS + SP in Rufiji was 

associated with increased oocyst prevalence (OR [95%CI] = 3.9 [2.9-5.3], p < 0.001), but had 

no consistent effect on sporozoite prevalence (OR [95%CI] = 0.9 [0.7-1.2], p = 0.5). The 

estimated infectiousness of the human population in Rufiji was very low prior to the change 

in drug policy. Emergence rates and parous rates of the vectors varied substantially 

throughout the study period, which affected estimates of infectiousness. The latter 

consequently cannot be explained by the change in drug policy. 

Conclusions 

In high perennial transmission settings, only a small proportion of infections in humans are 

symptomatic or treated, so case management with ACT may have little impact on overall 

infectiousness of the human population. Variations in infection levels in vectors largely 

depend on the age distribution of the mosquito population. Benefits of ACT in suppressing 



transmission are more likely to be evident where transmission is already low or effective 

vector control is widely implemented. 

Keywords 

Malaria, Artemisinin-based combination therapy, Transmission reduction, Malaria 

Background 

Currently, artemisinin-based combination therapy (ACT) is used as first-line treatment of 

uncomplicated malaria in most countries in sub-Saharan Africa. In addition to killing the 

asexual blood stages that cause disease and, therefore, terminating otherwise lengthy, 

persistently transmissible infections [1-3], artemisinins are gametocytocidal, killing the 

immature sexual stages of malaria parasites eventually responsible for infecting mosquitoes 

[4,5]. While non-gametocyctocidal drugs will also cure otherwise lengthy infections and 

reduce the period of infectiousness to mosquitoes, gametocytes will remain in the cured 

individual for some time, allowing for transmission. 

In principle, through their combined impacts upon both the short-term infectiousness of 

treated individuals, and perhaps more importantly [6], upon the long-term duration of 

infection and therefore infectiousness, ACT might reduce the reservoir of parasites in the 

human population that eventually infects mosquitoes. 

The provision of ACT for treatment of uncomplicated malaria has been associated with 

reduced malaria incidence in diverse settings with modest transmission intensity [4,7,8]. This 

implies that ACT may effectively reduce human-to-mosquito and consequently mosquito-to-

human transmission under normal conditions of programmatic use, as has been suggested in 

individually randomized, controlled trials evaluating the infectiousness of patients receiving 

ACT [9-11]. 

Determination of the proportion of humans harbouring gametocytes following ACT treatment 

may not accurately estimate human population infectiousness since infectiousness seems only 

loosely correlated to gametocyte density [12,13]. In malaria-endemic settings, humans can be 

infectious to mosquitoes even in the absence of patent gametocytaemia, regardless of 

treatment [1,14-16]. While human-to-mosquito feeding experiments with laboratory-reared 

mosquitoes are very useful, they do not capture parasite infection and selection dynamics in 

the context of their human host populations [17-20] and are not necessarily representative of 

the wild mosquito populations which have natural feeding biases influenced by host age and 

infection status [21-24]. Estimation of the human infectious reservoir therefore requires 

analysis of the infection status of wild-caught mosquitoes. 

A pre-post observational study with a contemporaneous comparison group was used to 

evaluate the impact of case management with ACT delivered through fixed health facilities in 

two sites in rural Tanzania with intense malaria transmission [25]. Both the intervention and 

comparison sites used sulphadoxine-pyrimethamine (SP) as first-line treatment of malaria in 

2001–2003. In March 2003, the ACT, artesunate co-administered with SP (AS + SP), was 

introduced as a first-line treatment of malaria in the intervention site while SP continued to be 

used for first-line treatment in the comparison site. To assess the impact of ACT introduction 

on malaria transmission, concurrent measures of oocyst and sporozoite prevalence in the 



mosquito-vector population in both the intervention and comparison districts, before and after 

the introduction of AS + SP, were carried out and used to directly determine the 

infectiousness of the human population to mosquitoes, and of mosquitoes to humans. 

Methods 

Study site 

This study was conducted in two rural sites in southeastern Tanzania. Rufiji District, the 

intervention site, is located at the mouth of the Rufiji River, extends across latitudes 7° 47′ 

and 8° 03′S and longitudes 38° 62′ and 39° 17′E with a population of about 202,001 

inhabitants [26,27]. Kilombero and Ulanga Districts, the comparison site, form the valley of 

the Kilombero River, one of the main tributaries of the Rufiji and are situated between 

latitudes 8°00'–8°35'S, longitudes 35°58'–36°48'E and have a combined population of 

514,891 inhabitants [27,28] (Figure 1). Both Rufiji and Kilombero-Ulanga Districts have 

achieved relatively high coverage of largely untreated bed nets [29,30] and are characterized 

by a hot climate with an erratic rainy season from November to May. In Rufiji, the average 

annual precipitation is 800–1,000 mm while Kilombero-Ulanga receives 1,200-1,800 mm. In 

both settings, malaria caused largely by Plasmodium falciparum [31] is one of the biggest 

health problems perceived by the local community and reported by the health services [32]. It 

is primarily transmitted by Anopheles gambiae, Anopheles arabiensis and Anopheles 

funestus. Transmission is intense and perennial despite marked seasonality in mosquito 

densities, which peak with the rains [31,33]. 

Figure 1 Map of the study districts. A: Rufiji; B: Kilombero; C: Ulanga 

Study design 

The detailed description of the study is reported elsewhere [25]. Briefly, a pre-post 

observational study with a non-randomized comparison site was conducted. Both sites used 

SP monotherapy as a first-line anti-malarial delivered through health facilities from 2001. In 

March 2003, the Council Health Management Team implemented AS + SP combination 

therapy as the first-line anti-malarial provided free of charge through all the fixed health 

facilities in Rufiji District, the intervention site. SP monotherapy continued to be the first-line 

anti-malarial in Kilombero-Ulanga, the comparison site, as well as in the rest of the country. 

Here, SP was available free of charge only to pregnant women and children under five years 

of age. 

Mosquito data collection 

In each site, anopheline indoor biting rates were determined by overnight trapping of host-

seeking mosquitoes using Centers for Disease Control and Prevention (CDC) light traps. The 

two sites used slightly different household selection procedures. Sampling in Kilombero-

Ulanga occurred from October 2001 to August 2004 and was based on repeated sampling 

every six months of 25 clusters of households selected by stratified random sampling, using 

the sub-village (kitongoji) as the first level and index household as the second level of 

randomization [29]. Trapping was carried out on 538 different nights, with an average of 4.9 

traps per night. The traps were clustered in houses around the index house, but out of sight of 

each other. 



In Rufiji, the period sampled included a 17-month pre-intervention period of October 2001 to 

February 2003 and a 19-month post-intervention period of March 2003 to September 2004. 

Individual households were randomly selected monthly from the same demographic 

surveillance sample frame used for surveys of human malaria infection [25]. Trapping was 

carried out on 850 distinct dates, with an average of 6.6 traps per night. 

Light traps were installed about 0.5 m above the floor, next to the foot of the bed of the 

selected person who slept under a mosquito net. No attempt was made to differentiate 

between treated and untreated nets in the field as this proved impractical during routine field 

surveys and insecticide treatment has only a minor effect on sampling efficiency [29,34]. On 

occasions when the selected individual for light trap sampling lacked a net, he or she was 

provided with an untreated net for the nights during which they participated. 

Once collected, mosquitoes were counted and sorted by species in the field. Where this was 

feasible, blood-fed female An. gambiae s.l. and An. funestus were held in a cup and fed on 

sugar water until the blood meal was digested, this period ranges from two to three days 

depending on temperature. Then, the mid-guts of these mosquitoes were dissected in normal 

saline and stained with 2% mercurochrome for examination of oocysts by light microscopy 

[35]. The remaining parts of the dissected mosquitoes as well as other undissected 

anophelines were routinely stored in Eppendorf tubes with a small quantity of silica gel. 

Mosquitoes were subsequently independently tested for circumsporozoite protein (CSP) by 

ELISA [36] in a central laboratory at Ifakara Health Institute. At each site, a different 

technician conducted the mosquito dissections and examinations for the presence of oocysts. 

Laboratory technicians performing the CSP ELISA were blinded to the oocyst status and 

source of the mosquitoes to avoid possible biases in the determination of sporozoite infection 

status. 

Ethical approval 

Ethical approval was obtained from the Medical Research Coordination Committee of the 

National Medical Research Coordination Committee of National Institute for Medical 

Research, Tanzania (Reference number NIMR/HQ/R.8a/VOL.VIII, dated April 2000). 

Data analysis 

The overall objective of the analysis was to determine the relationship between the 

introduction of ACT and the infectiousness of the human population, as reflected by infection 

prevalence in local vector populations. The outcome measures reflecting human-to-mosquito 

transmission were the infection status of individual mosquitoes, with the primary and 

secondary effects defined by the presence of oocysts or sporozoites, respectively, within the 

two study zones. The proportions of mosquitoes with oocysts and sporozoites (the oocyst and 

sporozoite rates, respectively) were estimated independently for groups of mosquitoes 

collected before and after the introduction of ACT in the intervention site. Multivariate 

logistic regression models with terms for study site (intervention versus comparison), period 

of mosquito collection (pre-intervention versus post-intervention), intervention (availability 

of ACT versus SP monotherapy), and species of mosquito (An. gambiae s.l. versus An. 

funestus), were used to assess the impact of the introduction of ACT on oocyst and sporozoite 

prevalence. Statistical significance was defined as a p-value ≤0.05. All statistical analyses 

were executed using SPSS 15.0 (SPSS Inc, Chicago, USA). 



To measure mosquito-to-human malaria transmission intensity, the entomological inoculation 

rate (EIR) was calculated by multiplying the arithmetic mean mosquito-biting rate per night 

by the mean sporozoite prevalence for that vector species. EIR was calculated separately for 

the pre- and post- intervention periods. The biting rate for each mosquito species was 

obtained by dividing the mean catch of females in CDC light traps by published estimates 

from the Kilombero Valley of the relative sensitivity of CDC light traps relative to human 

landing catches of 0.30 and 0.68 for An. gambiae s.l. and An. funestus, respectively [37]. 

Infectiousness of humans to mosquitoes depends on K , the proportion of mosquitoes that are 

infected at any given feed. This cannot be measured directly, because infected mosquitoes 

may have received their infections either at the latest, or at a previous feed. There are various 

algorithms for estimating K from field-caught mosquitoes. All of these require both a 

measure of the proportions of mosquitoes that are infected, and a measure of the age 

distribution of the vectors. For the present study, Kwas estimated from the proportions of 

host-seeking mosquitoes with oocysts and the proportion that were parous using the 

following equation [38,39]: 
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Where: M is the proportion of parous mosquitoes among those dissected and R is the 

proportion of dissected mosquitoes with oocysts (the immediate oocyst rate). The standard 

error of KO was determined as described previously [38]. 

Results 

In Rufiji, 11,883 An. gambiae s.l. and 13,434 An. funestus were sampled before ACT 

introduction, while 5,826 An. gambiae s.l. and 2,626 An. funestus were sampled after ACT 

introduction. In the comparison site: Kilombero-Ulanga, 50,694 An. gambiae s.l. and 9,615 

An. funestus were sampled before and 27,559 An. gambiae s.l. and 8,381 An. funestus after 

ACT introduction in Rufiji. The density of anophelines as well as the parous rate varied 

seasonally and strongly between years (Figures 2 and 3). Fewer mosquitoes were caught post 

the intervention in Rufiji, but both 2003 and 2004 were very dry years (Figure 4) and this was 

presumably the main factor affecting mosquito densities. 

Figure 2 Anopheles gambiae s.l. density (panels a and e), proportion parous (panels b 

and f), proportion with oocysts (panels c and f) and proportion with sporozoites (panels 

d and g) for Kilombero-Ulanga (panels a – d) and Rufiji (panels e – g) districts by 

month. Horizontal black lines represent observed values, grey bars represent 95% confidence 

intervals. Subsequent non-missing values are connected by thin black lines 

Figure 3 Anopheles funestus density (panels a and e), proportion parous (panels b and 

f), proportion with oocysts (panels c and f) and proportion with sporozoites (panels d 

and g) for Kilombero-Ulanga (panels a – d) and Rufiji (panels e – g) districts by month. 

Horizontal black lines represent observed values, grey bars represent 95% confidence 

intervals. Subsequent non-missing values are connected by thin black lines 



Figure 4 Temperature and rainfall for Rufiji for the period of 2002–2004.The bars 

represent the rainfall per month (left axis), the lines show the monthly maximum (solid line) 

and minimum temperature (broken line), right axis. Values are based on remote sensing. 

Rainfall data were obtained from the Africa Data Dissemination Service (ADDS) [53] and 

temperature data from the National Aeronautics and Space Administration [54] 

Oocyst prevalence in Rufiji increased substantially between the pre-intervention and post-

intervention period (χ
2 = 11.9, p <0.001 for An. gambiae, χ

2 = 11.1, p <0.001 for An. funestus) 

with an odds ratio (estimated from a multivariable logistic regression, allowing for site, 

species, and time period) of 3.9 [95%CI: 2.9-5.3] (Figure 5). However, the confidence 

intervals for both An. funestus and An. gambiae s.l. oocyst rates were wide (Figures 2 and 3 

respectively) because of the considerable inter-month variation. No significant changes 

(χ
2 = 0.01, p =0.9 for An. gambiae, χ

2 = 0.04, p = 0.8 for An. funestus) were observed in 

Kilombero-Ulanga (Table 1, Figures 2–4). Sporozoite prevalence also increased significantly 

in Rufiji for An. funestus (χ
2 = 37.3, p < 0.001), but not for An. gambiae s.l. (χ

2 = 0.02, p =0.9) 

so overall there was little effect (OR [95%CI] = 0.9[0.7-1.2], p = 0.51) (Table 2) while in 

Kilombero-Ulanga the sporozoite prevalence increased significantly for An. gambiae s.l. 

(χ
2 = 21.6, p <0.001), but not for An. funestus (χ

2 = 1.7, p =0.19). These formal statistical 

comparisons between pre- and post-intervention periods must be viewed cautiously in the 

context of the considerable seasonal and inter-annual variation in both mosquito densities, 

and in the numbers of mosquitoes that were analysed for each outcome. The age distribution 

of the mosquito populations, as indicated by the parous rates, also varied considerably over 

time, reflecting variations in both mosquito survival and recruitment rate to the vector 

populations. Environmental variation (Figure 4) is probably the main determinant of 

longitudinal patterns in mosquito bionomics. Because of the profound inter-annual 

differences we did not attempt to adjust these analyses for seasonality. 

Figure 5 Trends in mosquito infection prevalence. Observed trends of mosquito oocyst (A 

& B) and sporozoite (C & D) prevalence before and after the onset of an artesunate-based 

effectiveness trial, error bars correspond to 95% confidence interval. A comparison can be 

made for Anopheles gambiae s.l. (straight line and dark squares) and Anopheles funestus 

(dotted line, white squares). Panels E & F show the trends in malaria transmission. The 

shading on the graphs serves to indicate the transition from before and after the addition of 

AS to SP 

Table 1  Prevalence of mosquitoes infected with oocysts and sporozoites and 

entomological inoculation rate (EIR) in Rufiji and Kilombero-Ulanga Districts by 

Anopheline species and time period 

 Time period (Anti-malarial 

in use) 

Oocyst prevalence Sporozoite prevalence EIR 

  n/N % [95% CI] n/N % [95% CI]  

Rufiji       

An. funestus January 2002-February 2003 

(SP) 

9/1094 0.82 [0.29-1.36] 321/14861 0.022 [0.019-0.024] 108 

 March 2003- September 

2004 (AS + SP) 

11/330 3.33 [1.40-5.27] 99/2273 0.044 [0.035-0.052] 288 

An. gambiae s.l January 2002-February 2003 

(SP) 

4/475 0.84 [0.02-1.66] 291/8665 0.034 [0.030-0.037] 332 

 March 2003-September 2004 

(AS + SP) 

51/1195 4.27 [3.12-5.41] 215/6475 0.033 [0.029-0.038] 538 



Kilombero-

Ulanga 

      

An. funestus January 2002-February 2003 

(SP) 

31/2518 1.23 [0.80-1.66] 63/4353 0.014 [0.011-0.018] 45 

 March 2003- August 2004 

(SP) 

21/1806 1.16 [0.67-1.66] 117/6576 0.018 [0.015-0.021] 50 

An. gambiae s.l January 2002-February 2003 

(SP) 

40/4506 0.89 [0.61-1.16] 63/9333 0.007 [0.005-0.008] 267 

 March 2003- August 2004 

(SP) 

24/2765 0.87 [0.52-1.21] 128/9372 0.014 [0.011-0.016] 320 

EIR = Entomological inoculation rate expressed as infectious mosquito bites per person per 

year 

95% CI = 95% confidence interval 

SP = Sulphadoxine-pyrimethamine 

AS + SP = Artesunate co-administered with sulphadoxine-pyrimethamine 

Table 2  Factors associated oocyst and sporozoite prevalence in Anopheline vectors in 

Rufiji and Kilombero-Ulanga Districts, January 2002-July 2004 

Variable Oocyst prevalence Sporozoite prevalence 

 OR [95% CI] P value OR [95% CI] P value 

District     

Kilombero-Ulanga Referent Referent Referent Referent 

Rufiji 0.72 [0.38-1.37] 0.31 2.51 [2.22-2.84] <0.001 

Period     

January 2002-February 2003 Referent Referent Referent Referent 

March 2003-July 2004 1.09 [0.76-1.58] 0.63 1.44 [1.28-1.61] <0.001 

Anti-malarial in use     

SP Referent Referent Referent Referent 

AS + SP 3.91 [2.88-5.33] <0.001 0.92 [0.72-1.18] 0.51 

Anopheline species     

An. gambiae s.l Referent Referent Referent Referent 

An. funestus 1.19 [0.88-1.61] 0.26 0.96 [0.85-1.07] 0.45 

95% CI = 95% confidence interval 

SP = Sulphadoxine-pyrimethamine 

AS + SP = Artesunate co-administered with sulphadoxine-pyrimethamine 

Mosquito-to-human transmission, as estimated by the EIR, consistently exceeded 300 

infective bites per person per year in both sites throughout the study period (Table 1). During 

both the pre-intervention and post-intervention time periods, the intervention site had the 

highest proportion of sporozoite-positive mosquitoes and, therefore, the highest EIR. The 

estimated EIR for both An. gambiae s.l. and An. funestus in the intervention site was higher 

after ACT introduction than before. This coincided with a possible increase in human-to-

mosquito transmission implied by the observed increase in oocyst prevalence. In the absence 

of an increase in prevalence of sporozoites in An. gambiae s.l. it is impossible to draw any 

firm conclusions about effects on the infectious reservoir, which does not necessarily follow 

the EIR in endemic settings [39]. One clear conclusion though is that the introduction of ACT 

was not followed by signs of a decline in human-mosquito transmission. 



The estimates of infectiousness of the human population were summarized at the level of the 

time period (pre- or post-policy change), by site, and by vector species (Table 3). The values 

of KO were similar for both vector species, both sites and both time periods, with the 

exception of the pre-intervention values for Rufiji, which were very low. Much of the 

variation in sporozoite and oocyst prevalence can thus be attributed to variations in mosquito 

survival, which are accounted for by the term for the parous rate (M) in the formula for KO. 

Table 3  Oocyst-based estimates of human infectiousness (Ko) 

 Time Period (Anti-malarial in use) Ko [95%CI] 

Rufiji    

An funestus Jan-2002-Feb 2003 (SP) 0.011 [0.000 - 0.016] 

 March 2003-September 2004(AS + SP) 0.029 [0.013 - 0.054] 

An gambiae s.l. Jan-2002-Feb 2003 (SP) 0.006 [−0.009 - 0.013] 

 March 2003-September 2004 (AS + SP) 0.042 [0.028 - 0.057] 

Kilombero-Ulanga    

An funestus Jan-2002-Feb 2003 (SP) 0.034 [−0.001 - 0.025] 

 March 2003-August 2004 (SP) 0.019 [−0.001 - 0.021] 

An gambiae s.l. Jan-2002-Feb 2003 (SP) 0.032 [0.000 - 0.020] 

 March 2003-August 2004 (SP) 0.024 [−0.005 - 0.025] 

The values estimated for K in the literature are extremely variable [39] but few of them are as 

low as the values measured pre-intervention in Rufiji. The values for Kilombero-Ulanga do 

not show any indication of a trend over time, and are higher than the pre-intervention Rufiji 

ones, suggesting that the low values cannot be attributed to the use of SP as treatment. There 

is no indication that the post-policy change values for Rufiji reduced K below the Kilombero 

value. 

Discussion 

Despite numerous clinical studies demonstrating high cure rates and gametocytocidal effect 

of artemisinin derivatives [9,10,40,41], there is no evidence that this translates into any 

measurable impact on malaria transmission intensity at the population level in these 

Tanzanian sites. Although, the potential to reduce malaria transmission is widely cited, some 

mathematical models predict only a modest incremental impact of the routine use of ACT 

over non-gametocytocidal drugs in high transmission settings [19]. This observational study 

of the impact of routine delivery of ACT via health facilities provides some empirical support 

for this. Although, the parasitological study found a significant reduction in asexual 

parasitaemia prevalence following ACT introduction, this reduction was very modest (five 

percentage-points) and was not reflected in a measurable reduction of gametocytaemia 

prevalence in the human population [25] . In the present study, the most direct indicator of 

human-to-mosquito transmission, namely oocyst prevalence, was substantially higher after 

ACT introduction. It is unclear what caused this increase, particularly since the sporozoite 

prevalence did not increase at the same time (Table 2), only factors, in particular weather 

patterns (Figure 4) changed considerably between the two periods. Because environmental 

conditions and availability of mosquitoes for analysis varied erratically throughout the study 

period, it is not possible to formally separate inter-annual and seasonal variation from effects 

of the policy change, but the overall conclusion is that any ACT-related reductions in human-

to-mosquito or mosquito-to-human transmission in the mosquito population were small. 



Overall, these two large-scale, complementary studies of malaria parasite prevalence in both 

humans and mosquitoes did not detect any epidemiologically meaningful suppression of 

human population infectiousness following ACT introduction. However, mosquito population 

dynamics in Rufiji were clearly profoundly affected by variations in rainfall during the study 

period. Rainfall affects both the emergence rates of vectors, and probably (via effects on 

humidity) the survival of adult mosquitoes. This does not directly affect the infectiousness of 

the human population to mosquitoes, but has profound effects on malaria transmission as 

measured either by the EIR or the oocyst prevalence. The large variations in emergence rates 

and survival of mosquitoes very likely account for most of the variation in oocyst prevalence, 

though this cannot explain why infectiousness was so low during the first half of the study 

(prior to ACT) in Rufiji, or why the oocyst prevalence increased after ACT introduction, 

while sporozoite prevalence did not. Far fewer mosquitoes were examined for oocysts than 

sporozoites, and sampling variation thus contributes more to the oocyst data. 

The increase in oocyst prevalence thus seems very unlikely to be related to the change in drug 

policy. Nor is it likely that any substantive change in coverage of bed nets could have 

contributed to the observed difference in oocyst rates because net ownership and use 

remained relatively low and stable in Rufiji District until late 2005. There were no major 

changes in availability of nets in Kilombero-Ulanga during the study period [30]. 

Although an efficacious ACT with known gametocytocidal properties was deployed and 

achieved reasonable population level coverage with an estimated 0.6 to 2.2 AS + SP 

treatments per person per year, the majority of persons receiving treatment with ACT were 

symptomatic children. Thus, the asymptomatic, chronically infected, semi-immune older 

children and adults — who likely constituted the bulk of the reservoir of gametocytes [23] — 

were relatively untouched by the introduction of ACT for case management. There have even 

been suggestions of higher infectivity of gametocytes in asymptomatic carriers in comparison 

to symptomatic cases due to the large quantity of gametocytes in the former group [42]. In 

areas where the initial level of malaria transmission is relatively low, the ratio of 

symptomatic to asymptomatic infections is higher, and larger proportionate reductions in 

transmission may be likely following introduction of ACT [6,39,43]. Conversely, in areas of 

high transmission such as investigated here, ACT may have little impact on prevalence, 

human population infectiousness and consequent mosquito-to-human transmission because a 

greater proportion of infections are only mildly symptomatic. Furthermore, even in settings 

such as these where artemisinins are combined with complementary partner drugs, such as SP 

which have long-lasting prophylactic effects [19], ACT use may have little impact on overall 

transmission where it occurs at high intensities simply because individuals often become re-

infected within weeks of treatment [1]. 

ACT might only have a substantial effect on the infectious reservoir if most of the infections 

are actually being treated with this drug class. The delivery of ACT through public sector 

outlets in Rufiji rose steadily from 2003 to 2005 with a total of 450,000 doses being deployed 

for distribution to all registered health facilities by that time [44], corresponding to a mean 

consumption rate of 2.22 doses per person per year. Adherence among recipients has been 

estimated at 75% [45], which implies that this drug was delivered reasonably effectively. The 

proportion of care-seeking visits made to the health facilities that were fever-related rose 

from 31.8% in 2001 to 54.7% in 2004 [46], perhaps due to improved community perceptions, 

availability and affordability. Recent calls for accurately targeting ACT only to those with 

patent parasitaemia [47] may, paradoxically, further undercut the potential for case 

management alone to contribute to transmission reduction in highly endemic settings. 



While much emphasis has been placed upon the importance of the gametocytocidal properties 

of ACT, their most important contribution to lowering human population infectiousness is to 

terminate otherwise long-lasting infections with asexual stages, which intermittently but 

persistently generate gametocytes and can infect mosquitoes for over a year [19]. This is 

comparable to the effect of non-gametocytocidal blood schizonticides. Similarly, the impact 

of curative drugs upon onward transmission is probably primarily determined by the length of 

time successfully treated patients remain uninfected — and consequently non-infectious, 

rather than whether that drug kills the relatively short-lived gametocytes already present at 

the time of administration. Therefore, while an effective cure may reduce human population 

infectiousness in an area with little transmission, in parts of Africa where it is common to 

become re-infected within weeks or even days, even regular treatment of symptomatic 

infections [48,49] will likely have only a modest effect upon the proportion of people’s lives 

spent infected and, therefore, on the mean infection prevalence as described [25]. 

Conclusions 

Whilst it is disappointing that no obvious reduction of human infectiousness was evident after 

introduction of ACT for malaria case management in this first large-area trial in a region of 

intense transmission, perhaps this is not entirely surprising. Both rapid re-infection and semi-

immune, chronically infectious, asymptomatic carriers are common in such settings. The lack 

of any such secondary benefits in high transmission areas should not detract from the direct 

public health value of ACT as a means to treat uncomplicated malaria and prevent severe 

disease manifestations. As has already been outlined in both theory [19] and practice [8,11], 

effective chemotherapy with ACT has a vital role in reducing malaria morbidity and 

mortality. The contribution of chemotherapy to the control and elimination of transmission is 

likely to be most valuable in settings where transmission is either naturally low or where 

other approaches such as effective vector control have brought it down to more tractable 

levels. 

There is a need for entomological surveys in parallel to clinical surveillance as a routine 

component of large-scale trials of anti-malarial drugs or vaccines, but variations in space and 

time in entomological data should not ignored. Malaria parasite prevalence in vector 

populations may serve as a useful indicator of the population-wide effect of deployment of 

interventions that may have only previously been evaluated in individual participants in 

clinical trials. There is also a need for more cost-effective technologies and procedures for 

sampling vector mosquito populations across large areas [50,51] to enable accurate and 

precise measurement of their infection prevalence. 

Finally, although there was no demonstrable impact of introducing ACT free for routine case 

management without diagnostic confirmation, this should not discourage malaria control 

programmes and their development partners from rolling out interventions to enhance ACT 

coverage and improve targeting through existing diagnostic tests. Since the study was 

conceived, ACT and effective vector control through insecticide-treated bed nets have been 

scaled up broadly, coinciding with substantial reductions in malaria-related and all-cause 

child mortality in areas of highly endemic malaria transmission [52]. These findings suggest 

that untargeted ACT alone may have limited impact on transmission. Endemic countries and 

their development partners should continue to promote ACT and confirmed diagnosis, but 

may wish to reconsider their expectations of what effect this may have on malaria 

transmission. Scaling-up and sustaining effective case management along with proven vector 

control interventions remains the priority for these areas. 
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