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Abstract.

The FK506-binding proteins (FKBs) represent ubiquitous enzymes that catalyse the rate-limiting

peptidyl prolyl cis-trans isomerization step in protein folding. The nematode Caenorhabditis elegans

has eight FKBs, three of which (FKB-3, -4 and -5) have dual peptidyl prolyl cis-trans isomerase

(PPIase) domains, signal peptides and ER-retention signals. PPIase activity has been detected for

recombinant FKB-3. Both FKB-3 and -5 are expressed in the exoskeleton-synthesising hypodermis

with transcript peaks that correspond to the molting and collagen synthesis cycles. FKB-4 is

expressed at a low level throughout development. No phenotypes were observed in deletion mutants

in each of the secretory pathway FKBs. Combined triple and fkb-4/-5 double deletion mutants were

found to arrest at 12°C, but developed normally at 15-25°C. This cold-sensitive larval lethal effect

was not maternally-derived, occurred during embryogenesis and could be rescued following the

transgenic introduction of a wild type copy of either fkb-4 or fkb-5. The temperature-sensitive defects

also affected molting, cuticle collagen expression, hypodermal seam cell morphology and the

structural integrity of the cuticular extracellular matrix. This study establishes that the secretory

pathway FK506-binding PPIase enzymes are essential for normal nematode development, collagen

biogenesis and the formation of an intact exoskeleton under adverse physiological conditions.
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Introduction

The FK506 binding proteins (FKBPs or FKBs) belong to a group of proteins that have

peptidyl prolyl cis-trans isomerase (PPIase; EC 5.2.1.8) activity, and together with the cyclophilins

(CYPs or CYNs) are collectively called the immunophilins. FKBs and CYPs are structurally

unrelated and have high affinities for the structurally distinct immunosuppressive drugs FK506 and

cyclosporin A, respectively (Bell et al., 2006). In addition, there is no link between PPIase activity

and the immunosuppressive action of these compounds. The immunophilins have a widespread

distribution in nature being found in bacteria, plants and man. However, the endogenous

physiological functions are poorly understood but include possible roles in protein translation,

folding, assembly and trafficking (Pemberton and Kay, 2005; Bell et al., 2006). These enzymes

stabilise the cis-trans transition state, accelerate the isomerization event and therefore promote

protein folding and assembly of multi-protein complexes.

The collective roles of the FKBs and CYPs have been addressed following the generation of

single and multiple mutants in the budding yeast Sacchromyces cerevisiae. No overt phenotypes were

observed, indicating that they are dispensable for normal development in this simple unicellular

organism (Dolinski et al., 1997). The examination of immunophilin function in multicellular

organisms has likewise been relatively uninformative raising the possibility of redundancy of

function and the possible non-essential nature of these genes. In relation to PPIase activity, this is

supported by the fact that proline isomeration will proceed in the absence of a PPIase catalyst, albeit

at a slow rate, particularly at lower temperatures (Kofron et al., 1991; Wang and Heitman, 2005). The

major exception to the lack of associated phenotype for an immunophilin mutant has been described

for the ninaA cyclophilin gene of Drosophilia. This gene product is involved in rhodopsin folding

and mutations result in protein misfolding leading to blindness (Schneuwly et al., 1989; Stamnes et

al., 1991).

Cis-trans isomerization of peptidyl prolyl bonds has been established as being a slow rate-

limiting step in the folding of numerous proteins, in the particular proline-rich collagens (Bächinger,

1987; Steinmann et al., 1991) and tropoelastin (Patterson et al., 2000). Nematode worms are encased

in a collagen-rich exoskeleton called the cuticle that is synthesized in its entirety five times during

normal development. The model organism Caenorhabditis elegans has been proposed as an excellent

model system to dissect extracellular matrix (ECM) formation (Kramer, 1997) and to study the

enzymes and chaperones involved in its biogenesis and deposition (Page and Winter, 2003).
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Collagens represent essential structural proteins in all multicellular animals and are characterized by

the repeat motif Gly-X-Y, where X and Y are commonly proline and hydroxyproline respectively.

The cuticle collagens represent a large multigene family that encodes small proline-rich collagens

with interrupted triple helical regions. The collagens are synthesized in waves of expression that

correspond to the molting cycle, a process that permits growth and defines the separate larval and

adult forms and their distinct cuticles. The completely sequenced C. elegans genome encodes eight

separate FKB genes, five of which are involved in the secretory pathway (Bell et al., 2006). Of these

isoforms, FKB-3, -4 and -5 have dual PPIase domains, a signal peptide and an ER-retention signal

sequence. Here we examine the individual and collective functional significance of these FKBs in

Caenorhabditis elegans. The collective phenotypes together with the shared temporal and spatial

expression patterns confirms that an essential role is played by these enzymes in the folding of the

nematode collagens and the biogenesis of the ECM.

Materials and Methods

Deletion mutants- The fkb-3(tm348) homozygous viable deletion allele was isolated by Dr. Shohei

Mitani, National Bioresource Project for the Nematode, using UV/TMP as a mutagen. A 1487 base

pair deletion in C05C8.3 (fkb-3) on chromosome V, from -1128 to +360 relative to ATG start of fkb-

3 gene was created, that removed the promoter region plus all of the first exon of fkb-3.  This is

predicted to be a null mutant.   The strain TP8 was made by outcrossing five times with wild type N2

nematodes using the following primers: tm348F1, 5' gacgaatgatgatcgaagttag 3'; tm348F2, 5'

tcatggaatggaaattgcaatg 3'; tm348R1, 5' tcatcagtgatccacttggctc 3'. The fkb-4(ka4) homozygous viable

deletion mutant in ZC455.10 on chromosome V was isolated using the mutagen UV/TMP following

published protocols (Barstead, 1999) (deletion screen primers are available on request). The deletion

region was cloned and sequenced revealing a 527bp deletion in fkb-4 extending from +247 to +772

relative to ATG, removing the majority of exons 2 and 3. The strain TP65 was generated following

backcrossing four times to N2 using the following primers; Fkb-4BCF1, cgaaccacttgtttcctg 3'; Fkb-

4BCF2, 5' gatcagattcacaagattgaag 3'; Fkb-4BCR1, 5' catttacctatatgcggttgg 3'. An additional

homozygous viable deletion mutant, named fkb- 4(ok240), was obtained from the international C.

elegans Gene Knockout Consortium. The deletion site was cloned and sequenced using primers ILS

5' tcgaagaaaagacgagcacc 3' and ok240F1 5' caggaatcacagcgtcgata 3' and found to extend from -1478

to +48 relative to the ATG start of fkb-4. The strain RB1213 was then backcrossed 4x with N2 using
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the following primers; ok240F1; ok240R1, 5' catagcctctctatccattccag 3'; ok240R2, 5'

gagcctctatactatcagac 3'. A fkb-5(tm475) homozygous viable deletion allele isolated and obtained from

Dr. Shohei Mitani. The allele tm475 is a 446 bp deletion on chromosome I covering C50F2.6 (fkb-5)

removing 237 bp of the fkb-5 sequence, starting in the last intron and completely removing all 180 bp

of the exon 4 and 209 bp of downstream sequence. tm475 is a predicted to be a null allele due to the

removal of the C-terminal ER-retention motif from the FKB-5 protein. The strain TP9 was made by

backcrossing four times with wild type N2, using the following primers; tm475F1, 5'

ggatgttatagacgttctaac 3'; tm475R1, 5' ttgcatctggaagtgtcg 3'; tm475R2, 5' gatccgtctagtgat 3'. All

additional nematodes strains used in these studies were obtained from the C. elegans Genetics Centre.

Maintenance and manipulation of nematodes- Nematode strains were maintained following

standard culture methods (Brenner, 1974). L1 cultures were synchronised following bleach treatment

of gravid hermaphrodites and single worm PCR was performed as described previously (Barstead,

1999). The combined mutant strains TP73 [fkb-4(ka4)V; fkb-5(tm475)I], TP81 [fkb-3(tm348) fkb-

4(ok240)V], TP86 [fkb-4(ok240)V; fkb-5(tm475)I] and TP83 [fkb-3(tm348) fkb-4(ok240)V; fkb-

5(tm475)I] were made by performing standard genetic crosses with the relevant strains. Strains were

genotyped for the deletion alleles using a multiplex single worm PCR strategy.

The cold-sensitive assays were performed by moving L4 larvae or young adults grown at 15-

20°C to 12°C and observing the development of their progeny. In addition, L1 larvae were

temperature shifted in a similar manner and observed.

The cuticle integrity assays were performed on strains maintained at 12°C and 20°C by

picking groups of 10 L1 larvae into 100µl of the test solutions (M9 balanced salts, distilled water and

1% mercaptoethanol in distilled water) in a 96-well microtitre plate. After 10 minutes the larvae were

viewed under a dissecting microscope and scored for cuticle integrity, as assessed by cuticle rupture

and release of internal body contents.

Construction of C. elegans fkb-3, fkb-4 and fkb-5 promoter reporter gene fusion; spatial

analysis- The fkb-3, -4 and -5 reporter gene plasmids were constructed using the C. elegans lacZ

promoterless reporter gene expression vector pPD95.03 or pPD96.04 (Addgene). Reporter gene

constructs comprised 1.5-2 kb of the potential upstream regulatory region and part of the first exon

(or part of the first and second exons in the case of fkb-4 construct 2) fused in a translationally in-

frame context to the lacZ reporter gene. Constructs were generated from genomic DNA template by

PCR with the following primers: fkb-3 construct (from –2017 to +5 relative to the ATG),
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fkb3pF(HindIII) 5' gcgcaagcttgaactgttctcaagggaagatggg 3' and  fkb-3pR (BamHI) 5'

gcgggatccagcatttttgtgctggttcggtttag 3'; fkb-4 construct 1 (from –1966 to + 23 relative to the ATG),

fkb4p1F(XbaI) 5' gatctagatacgggtgtccatatacagaac 3' and fkb4p1R (BamHI) 5'

gccggatccgtggttcgatataaaaacttcatttg 3'; fkb-4 construct 2 (from –1269 to + 284 relative to the ATG),

fkb4p2R (SalI) 5' gcggtcgacgaggctcatatgatcaggatagtg 3' and fkb4p2R (BamHI) 5'

gcgggatcctcgctctcatctattgacgatg 3'; fkb-5 construct (from –1716 to + 86 relative to the ATG), fkb-

5pF(PstI) 5' gcgctgcagttccaacaagctcatctggtcctg 3' and fkb-5pR (BamHI) 5'

gcgggatccccatcctcatccttccattgaagc 3'. The resulting clones were digested with the appropriate

combination of restriction enzymes and ligated into similarly digested pPD95.03 or pPD96.04. For

each construct, nematode transformation was performed by microinjection of plasmid DNA into the

gonad syncitium using standard methods as described (Mello and Fire, 1995). Each construct was

independently injected at 15 µg/ml (also at 100 µg/ml for fkb-4 construct 2) along with the following

phenotypic markers (at 100 µg/ml); rol-6 into a wild type background or unc-76 rescue plasmid into

an unc-76 (DR96) mutant background. Transformed nematodes were identified either by the mutant

roller phenotype or a rescued Unc-76 phenotype and at least three transgenic lines were established

for each construct. The semi-stable transmitting lines were fixed and stained for β-galactosidase

activity using standard methods (Fire, 1992).  Sensitive staining procedures using ten-fold higher

substrate concentrations were applied to the fkb-4 lines that were negative using the standard method.

Transgenic rescue of cold-sensitive lethal mutants-  Rescue of TP86 (fkb-4; fkb-5) and TP83

(fkb-3; fkb-4; fkb-5) deletion mutants with transgenic fkb-4 or fkb-5 was performed by microinjection.

The fkb-4 rescue clone was generated by PCR on N2 genomic DNA with primers Fkb-4 NPF and

Fkb-4 Resc R 5' cactttcaaggcgagttacgttc 3' using Pfu DNA polymerase (Stratagene). The 3562 bp

product was cloned into pCR2.1TOPO.  For the fkb-5 clone, the primers Fkb-5 PF and Tm475 R1

generated a 3226 bp product that was likewise cloned into pCR2.1TOPO. All injections were carried

out at 10 µg/ml rescue construct plus 5 µg/ml dpy-7::GFP and 135 µg/ml pBluescript SKM

(Stratagene). Transgenic lines were established by expression of co-injected GFP marker, maintained

at the permissive temperature of 20°C then 5 to 10 transgenic animals were shifted to 12°C. Controls

including the original strains TP86 and TP83 were also shifted and assessed microscopically.

Temporal analysis by semi-quantitative RT-PCR- The semi-quantitative RT-PCR method

including the generation of synchronous nematode cultures for staged mRNA and subsequent cDNA

synthesis are described in detail elsewhere (Johnstone and Barry, 1996). The gene combinations (fkb-
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3, -4 and -5 in combination with the control gene ama-1) were amplified from the cDNA samples

representing staged mRNA that corresponded to two hourly intervals during post-embryonic

development.  The primers used were as follows: fkb-3, fkb3rtF 5' ggagtctggagatcaattggag 3' and

fkb3rtR 5' gagctctggtggaataacaac 3'; fkb-4, fkb4rtF 5' tgagaagggagttgaaattgga 3' and fkb4rtR 5'

tctccttcacacattccatcc 3'; fkb-5, fkb5rtF 5' gccgaggagcaaaagcttcaatgg 3' and fkbrtR 5'

ttacaactcgtcgcgttggatgagc 3'; ama-1, ama1F 5' ttccaagcgccgctgcgcattgtctc 3' and ama1R 5'

cagaatttccagcactcgaggagcgga 3'. The PCR reactions were electrophoresed, Southern blotted and

probed with fkb-3, fkb-4 or -5 PCR products labelled with  [α-32P]dCTP using random priming

(Prime-ItII Random Primer Labelling Kit, Stratagene), in combination with similarly labelled ama-1

PCR products. The blots were autoradiographed using a Typhoon imager (Molecular Dynamics), and

bands representing the respective genes were quantified using ImageQuant 5.1 software (Molecular

Dynamics). The relative abundance of the individual fkb genes were determined by comparing the

signal to ama-1. At least three sets of PCR reactions with subsequent quantifications were performed

in order to accurately determine the relative abundance of the individual fkb genes to ama-1.

Recombinant protein expression and PPIase assay on FKB-3- fkb-3 was cloned from wild

type C. elegans mixed stage cDNA by PCR using the following primers: FKB3F 5'

ccggaattccgcaaatgaccgttcatggacc 3' and FKB3R 5' cctctagactagagttcctcttttcctggtc 3', digested with

Eco RI and Xba I and ligated into similarly cut pMalc2 vector (New England Biolabs) prior to

transformation into XL1 expression cell lines.  Maltose binding fusion proteins were produced

following the manufacturer’s instructions and then digested with factor-Xa (New England Biolabs).

The affinity purified recombinant FKB-3 was assayed for PPIase activity following published

protocols (Kofron et al., 1991; Page et al., 1996). This assay determines the rate of conversion of cis

to trans of a proline-containing peptide substrate N-succinyl-Ala-Leu-Pro-Phe-p-nitroanilide

(Bachem). The kinetic parameters (kcat, Km and kcat /Km) were calculated using spreadsheet software

(Microsoft Excel).

Immunocytochemistry of C. elegans embryos, larvae and adults - DPY-7 and MH27, the

respective collagen and seam cell boundary specific monoclonal antibodies were applied to freeze-

cracked embryos, L1 larvae and adults of the various strains described according to published method

(Rogalski et al., 1993). Briefly, the washed samples were freeze cracked on poly L-lysine slides,

blocked in 3% BSA, washed, and the anti-DPY-7 (McMahon et al., 2003) or anti-MH27 monoclonal

antibodies (Francis and Waterston, 1991) added at 1/50 dilutions. Following incubation, the slides
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were washed and the anti-mouse conjugate secondary antibody Alexa Fluor 488 (Molecular probes)

was applied at 1/100 dilution. Following incubation, the slides were washed and viewed by

microscopy.

Microscopy-   All samples were viewed either via DIC or epifluorescence on a Zeiss

Axioskop 2 microscope and images were taken with a Zeiss MrS digital camera.

Results

The secretory pathway associated FK506-binding proteins of C. elegans. Examination of the

completed genome sequence of C. elegans has uncovered eight distinct FK506-binding protein-

encoding genes, termed fkb-1 to -8 (Bell, 2006 #424). Of this family of proteins, FKB-3, -4 and -5

were found to possess both secretory signal peptides as assessed by SignalP (expasy.ch) and have C-

terminal endoplasmic reticulum retention signals; RDEL or KEEL (Figure 1 A). In addition, these

FKBs encode proteins of 27-29 kDa that have two consecutive FK506 peptidyl prolyl isomerase

domains separated by a 25-27 amino acid linker sequences.  The three FKBs also share a high level

of amino acid identity; 54% between FKB-3 and -4; 59% between FKB-3 and -5, 66% between FKB-

4 and -5. From the aforementioned features, fkb-3, -4 and -5 were expected to encode secretory

pathway catalysts and so were functionally characterized individually and in combination.

FKB-3 recombinant protein has peptidyl prolyl cis-trans isomerase activity. FKB-3 was

cloned and expressed as a maltose binding protein fusion, cleaved by factor-Xa and examine for

PPIase activity against a synthetic Leu-Pro containing synthetic substrate following standard PPIase

assay conditions (Kofron et al., 1991; Page et al., 1996). This recombinant protein can actively

convert Leu-Pro cis to Leu-Pro trans and thereby release the p-nitroanalide chromophore. The

activity was calculated as; 

kcat 110 ± 34 s-1, Km 581 ± 88 mM, and kcat / Km 0.189 ± 0.039 × 106 M-1 s-1, and this is comparable to

previously  published data for bovine FKB

(kcat 344 ± 26 s-1, Km 520 ± 85 mM, and kcat / Km 0.66 ± 0.12 × 106 M-1 s-1)(Kofron et al., 1991).

FKB-3 and FKB-5 are expressed in the collagen synthesizing hypodermis. The putative

promoter regions of the fkb genes fkb-3, -4 and -5 were cloned into β-galactosidase reporter

constructs in an attempt to elucidate their spatial expression patterns (regions depicted in Figure 1 B).

These vectors contain a multi-intron reporter gene to enhance expression and a SV40 nuclear

localization signal that aids the identification of the cells expressing the transgene. All three
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constructs included the translational start of the first exon and produced transgenic lines following

gonadal injection. A predominantly hypodermal cell expression pattern was displayed in the fkb-3

and -5 lines. The hypodermis is the collagen synthesising tissue, which in turn performs many

essential functions in the nematode, the most important of which being the synthesis and secretion of

the cuticular exoskeleton. All lifecycle stages examined from mid- embryo through larval to adult

stage displayed this hypodermal expression pattern (Figure 2). Both fkb-3 and fkb-5 share very

similar expression patterns that included the lateral seam cells, tail and head hypodermal cells (Figure

2). The observed expression pattern was consistent between the transgenic markers applied, namely

hypodermal rol-6 and neuronal Unc-76 rescue. Transgenic lines derived from the fkb-4 injection

failed to produce a detectable expression pattern following β-galactosidase staining.  A second

construct was therefore assessed that included the first intron and part of the second exon of fkb-4,

but again no detectable expression pattern was observed following the increased concentration of the

injection construct or by applying sensitive staining methods. These observations indicated that the

fkb-4 promoter regions examined generated transgenic expression that was at a level below the

sensitivity of this reporter assay.

The temporal expression pattern of the secreted FKBs is consistent with a role in collagen

biogenesis.  Semi-quantitative RT-PCR was carried out to determine the expression profile of the

secreted FKBs throughout the nematode’s post-embryonic lifecycle.  The signal of the individual

transcripts were measured at two hour time-points throughout larval and early adult development and

were standardized by comparing them to the abundance of the constitutively expressed gene ama-1,

encoding the large RNA polymerase subunit (Bird and Riddle, 1989). These experiments were

repeated in triplicate and standard deviations were plotted for each fkb gene (Figure 3). It is apparent

from this study that fkb-3 and fkb-5 in addition to sharing a spatial expression pattern also share a

similar temporal expression pattern, with both transcripts having peaks of abundance that occur at the

inter-molt period for each larval stage and drop off during the actual molt and in the adult stage

(Figure 3). fkb-5 has a higher overall abundance than fkb-3 that peaks two hours prior to fkb-3 in the

earliest larval stages, namely the first and second larval stages (Figure 3). This oscillating abundance

coincides with cuticle collagen synthesis and has been observed previously for numerous cuticle

collagen genes including, sqt-1, sqt-3 and dpy-13 (Johnstone and Barry, 1996) and their biosynthetic

enzymes, including dpy-18, phy-2 and pdi-2 (Winter and Page, 2000). The fkb-4 transcript was

detectable by RT-PCR but at a level lower than either fkb-3 or -5 (Figure 3). A steady-state but low
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level of expression was observed in all larval stages and in the early adult stage but became

undetectable in the mature adult stage.

FKB deletion mutant analysis reveals a combined cold-sensitive lethal effect.  Deletion

mutants in fkb-3, fkb-4 and fkb-5 were screened for or were obtained from the ongoing genome-wide

deletion mutant consortia. The positions of the deletions were sequenced and mapped (regions

depicted in Figure 1B). Double and triple fkb deletion mutants were made by standard genetic

crosses, which were confirmed by single worm PCR (result not shown). The progeny of single and

combined mutants were assessed for growth and morphology defects at a range of temperatures from

12°C to 25°C (Table 1).  Wild type, N2 strain nematode grow slowly but develop otherwise normally

at 12°C.  All single mutant strains were phenotypically wild type at all temperatures tested (Table 1).

In addition, the fkb-3; fkb-4 double (TP81) and fkb-3; fkb-5 doubles (TP60) were wild type at all

temperatures examined. TP60 did however generate an extremely low level of Dumpy (Dpy, short

and fat) mutants, but only at 12°C. The two independent fkb-4(ka4); fkb-5(tm475) and fkb-4(ok240);

fkb-5(tm475) double mutant strains (TP73 and TP86, respectively) displayed a complete larval lethal

phenotype at 12°C but remained wild type at 15°C to 25°C (Figure 4). The fkb-3; fkb-4; fkb-5 triple

mutant (TP83) likewise displayed a completely penetrant larval lethal phenotype at 12°C (Table 1,

Figure 4). The TP73, TP86 and TP83 mutants all grew slowly at 12°C and failed to proceed beyond

the first larval stage (Figure 4). The mutant L1 larvae were shorter and slightly dumpier than the wild

type worms and many also exhibited a “baggy” cuticle molt defect (Figure 4, E and F).  The double

(TP86) and triple (TP83) mutants also produced a range of very severe body morphology defects at

12°C, both in the unhatched and newly hatched L1 larvae, including severe Dpy and coiled

phenotypes (Figure 7, C and E; Figure 8, A and C).

The basis of this synthetic cold-sensitive lethal phenotype was examined in more detail by

further characterizing the TP83 triple and TP86 double mutant strains.  A maternal contribution to

this effect was ruled out following the examination of TP83, TP86 and TP73 embryos derived from

hermaphrodite mothers grown at 20°C, then hatched and maintained on plates at 12°C, as all strains

remained larval lethal.  However, when embryogenesis was completed at 15 or 20°C and the hatched

L1s were transferred to 12°C, the TP83 and TP86 mutant strains were no longer larval lethal (Figure

5).  These mutants could now develop to adulthood, however the larval and adult stages developed

slowly and were smaller in size compared to identically treated wild type worms (compare Figure 5

A with C and E, and 5 B with D and F). This result confirmed that the cold-sensitive lethal effect was
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occurring during embryogenesis, presumably during the synthesis of the first larval cuticle. The

ability of the TP83 triple mutant strain to enter and recover from the arrested dauer larval stage at

20oC was also examined and found to be comparable to wild type.

Complementation of the cold-sensitive larval lethal phenotype by fkb-4 or fkb-5. The triple

mutant strain TP83 and the combined fkb-4; fkb-5 double (TP86) were transformed with either a wild

type copy of the fkb-4 or the fkb-5 gene in combination with a dpy-7::gfp transformation marker.

Semi-stable transgenic lines were established and L4 stage larvae were transferred to plates at the

non-permissive temperature and their progeny were assessed for viability. Both fkb-4 and fkb-5 were

able to fully rescue the cold-sensitive larval lethal phenotype at 12°C, with rescued nematodes

developing normally through larval to egg-laying adult stages (Figure 6). An upstream region of the

adjacent C. elegans gene C50F2.5 was also removed by the fkb-5 allele tm475 and a large section of

ZC455.9 coding sequence is likewise deleted by fkb-4(ok240). The involvement of these genes was

excluded following transgenic rescue, as both constructs would not have reintroduced functional

copies of the adjacent genes (Figure 1 B).

Analysis of the additional secretory FKBs.   The remaining secretory pathway FKBs namely,

FKB-1 and FKB-7 were analysed to determine if they were expressed in the same tissue and if they

can interact with fkb-3, -4 and -5 through reporter/promoter construct examination and via RNA

interference studies, respectively. fkb-1 encodes a small 13 kDa single-domain FKB that found to be

expressed exclusively in the gut , whereas fkb-7 represents a 35 kDa single domain FKB that is

expressed in the nervous system (data not show). RNA interference performed at 15°C and 20°C with

either fkb-1 or fkb-7 in the fkb-triple mutant background produced no additional effects (data not

shown).

Cuticle collagen and underlying seam cell disruption in cold-sensitive mutants. The cuticle

and the underlying hypodermis of the double and triple mutants were examined following

immunolocalization of cuticle collagen-specific antibody (DPY-7) and a seam cell boundary-specific

antibody (MH27) at the non-permissive temperature.  In wild type embryos the DPY-7 antibody is

retained within the cell in a perinuclear ER-associated location prior to elongation. Once the first

larval cuticle is laid down at elongation the DPY-7 epitope is then arranged in regular rings

corresponding to the circumferential folds of the cuticle (McMahon et al., 2003). This annular ring

localization is found in all larval and adult stage cuticles (Figure 7 J). The pre-elongated embryos of

the triple (Figure 7 B) and double mutants (not shown) display the wild-type DPY-7 perinuclear
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localization. Following elongation the expression pattern of DPY-7 becomes extremely patchy and

severely disrupted prior to (Figure 7 D) and following hatching (Figure 7 F and H).  The severity of

DPY-7 disruption correlates to the severity of the morphological disruption noted in these L1 mutants

(compare Figure 7, H and F). The antibody MH27 is associated with the apical epithelial cell gap

junctions and provides an excellent marker for the hypodermal seam cells that are arranged in a

regular fashion along opposing lateral sides of the wild type nematode (Figure 8 H). MH27

expression is extremely disrupted and patchy in newly hatched triple and double mutants (Figure 8 B

and D) and in the arrested L1 larvae grown at 12°C (Figure 8 F). As described for DPY-7, there is a

direct correlation between the severity of morphological disruption and associated MH27 disruption.

The above observations indicate that the combined fkb deletions are having affects on both the cuticle

structure and the underlying hypodermis at the non-permissive temperature.

The triple mutant TP83 affects the structural integrity of the cuticle and is temperature

dependant. The L1 first stage larvae from the triple mutant strain were maintained at both the

permissive (20°C) and the non-permissive (12°C) temperatures, then placed in various osmotic or

reducing solutions before being assessed for the associated effects on cuticle integrity (Table 2). Wild

type L1 nematodes were completely unaffected following a 10 minute exposure to isotonic buffer

(M9 salt solution), distilled water or mild reducing conditions (1% β-mercaptoethanol). Likewise,

TP83 triple mutants were unaffected in the isotonic M9 buffer at either temperature. Exposure to

osmotic stress, in the form of distilled water resulted in 20% and 26% of the nematodes bursting at

20°C and 12°C, respectively. The mild reducing conditions of 1% mercaptoethanol for 10 minutes,

had a significant effect at 20°C causing 18% of the worms to explode.  A more dramatic affect was

however observed at 12°C, as more than half (62%) of the larvae exploded and extruded their internal

contents (Table 2).

Discussion

There are eight genes which encode FK506-binding proteins in the C. elegans genome (Bell

et al., 2006), three of which encode 28 to 29 kDa secretory proteins with dual PPIase domains and

endoplasmic reticulum retention signals.  The proteins, FKB-3 and FKB-5 are spatially expressed in

the collagen synthesizing hypodermal tissue positioning them in the correct subcellular compartment

for involvement in collagen biogenesis. No spatial expression pattern has so far been defined for fkb-

4, however the promoter region selected for these studies was also used to successfully rescue the
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cold-sensitive triple mutant, indicating that it is sufficient to generate expression but at a level

undetectable in the reporter assays.  The genetic interactions described between fkb-4 and -5 suggests

that fkb-4 must also be expressed in the hypodermis. The temporal expression pattern confirmed that

fkb-4 is expressed at a low level while fkb-3 and fkb-5 are expressed in cycles of abundance that

correspond to the cuticle collagen synthesis cycle. Previous experiments have indicated that fkb-3, -4

and -5 are differentially expressed between wild type and daf-2, dauer mutant background and

confirmed that fkb-4 was expressed at an extremely low level (Yu and Larsen, 2001).  In addition to

the secreted fkbs, a number of cuticle collagen genes were also differentially regulated by daf-2 (Yu

and Larsen, 2001).

As would be predicted, we have demonstrated that one of the secreted FKBs has potent

PPIase activity against a synthetic substrate that was comparable to FK506-binding proteins from

other species (Kofron et al., 1991). FKB-4 and -5 would be expected to be similarly active.  The

functional significance of these gene products with respect to folding the cuticle collagens and the

formation of a proper cuticle was established following the examination of combined deletion

mutants. A combination of all three genes or of fkb-4 and fkb-5 together led to a subtle synthetic

phenotype, namely a cold-sensitive lethal phenotype. Deletion mutant embryos reared at 12°C

hatched successfully but failed to complete larval development. In addition, the mutant larvae

exhibited irregular cuticle collagen expression, their underlying hypodermis was disrupted and their

cuticles were structurally weakened, being more liable to explode when exposed to mild reducing

conditions. In contrast, nematodes developed normally at the permissive temperatures of 15-25°C,

exhibited normal collagen localization and, following exposure to reducing agents, displayed only a

slight weakening of the cuticle. Accordingly, mutant nematodes exposed to the non-permissive

temperature during their larval development are viable and predominantly wild type in appearance.

The free-living nematode C. elegans is found in anthropogenic locations throughout the

world, being commonly isolated from gardens and compost heaps where it feeds on the associated

microorganism-rich organic material. In these locations the predominant form is the dauer or arrested

development larval stage, with mature adult stages requiring ideal environmental conditions namely

food, temperature and available oxygen (Kiontke and Sudhaus, 2006). Numerous experimentally-

derived, temperature-sensitive mutants have been characterised in C. elegans, the majority of which

are restricted at 25°C, with cold-sensitive mutants being relatively rare. Other cold-sensitive mutants

however do include the wrt-1 hedgehog related signalling gene, that when mutated results in
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embryonic and larval death in conjunction with morphological and molt defects (Hao et al., 2006). It

may be hypothesised that the secretory pathway fkb genes are relatively redundant and dispensable at

normal physiological temperatures (15-22°C) but are absolutely required at sub-physiological

temperatures. This most probably relates to the role that FKBs play in the rate-limiting isomerisation

of proline bonds, in particular the proline-rich cuticle collagens that are abundantly synthesized in

repeated waves that correspond to the molting cycle. It is well established that proline isomerisation

and proper protein folding occurs in the absence of these catalysts due to thermal isomerization

(Bächinger, 1987 #10; Kofron, 1991 #518; Wang, 2005 #522} and therefore removing the thermal

isomerization by decreasing the physiological temperature necessitates the requirement for the PPIase

activity of the FKBs. In corroboration of this, a recent study has identified a FKBP member from the

psychrotophic bacteria Shewanella spp that is overexpressed at 4°C compared to 20°C, and it has

been hypothesized to be involved in cold adaptation, aiding the proper folding of proteins at low

temperatures (Suzuki et al., 2004).

The specific function of secretory pathway FKBs in development was previously challenged

following combined cyp and fkb knockout experiments in yeast (Dolinski et al., 1997). The combined

immunophilin yeast knockout was viable and the authors therefore concluded that each CYP and

FK506-binding protein interacts with a unique set of proteins and performs a distinct but non-

essential function (Dolinski et al., 1997). In metazoans this may not necessarily be the case, and there

are several examples where secreted CYPs are involved in specific functions. The best characterized

example being the specific folding of the photoreceptor rhodopsin by the ninaA cyclophilin in

Drosphila melonogaster (Schneuwly et al., 1989; Stamnes et al., 1991). In addition, the secreted

vertebrate cyclophilin B isoform has been established as assisting the proper folding and exit of type I

procollagen from the ER (Smith et al., 1995). Cyclophilin has also been shown to accelerate the in

vitro refolding of type III vertebrate collagens (Bächinger, 1987) and the inhibitor cyclosporin A

effectively decreases the in vivo folding of type I procollagens (Steinmann et al., 1991), presumably

through prolyl isomerase inhibition. In addition to having a high proline-content, the non-globular

collagens fold in a progressive fashion requiring each proline cis-trans isomerisation to be completed

before triple helix formation can proceed (Bächinger, 1987).  The FKB family are by comparison less

well characterized than the CYPs. FKBP65 however, represents a secretory pathway FKB that is

located in the ER and is involved in ECM formation via its association with tropoelastin (Patterson et
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al., 2000) and in addition, this PPIase has also been shown to assist in the folding of vertebrate type

III collagen (Zeng et al., 1998).

It can be envisaged that under normal physiological temperatures nematodes develop in a

conventional manner, synthesizing waves of cuticle collagens that are in turn secreted and assembled

into a complex ECM in the presence but not the dependence of active PPIase enzymes. Under

conditions of cold stress however these enzymes are essential, being required to chaperone or indeed

fold the collagens that must be expressed in the correct temporal, spatial, quantitative and qualitative

fashion to allow the proper folding, secretion and assembly of the nematode cuticle components. The

cuticle collagens represent 1% of the entire genome of C. elegans, comprising more than 170 genes

(Page and Winter, 2003). There is enormous complexity in the expression and association of these

collagens that is only just beginning to be uncovered. Individual cuticle collagens can be stage-

specific and indeed there can also be additional complexity in individual collagen expression within

each larval stage. It is predicted that the evolutionary conserved, ubiquitous PPIase enzymes may

perform essential overlapping functions in multicellular animals including the chaperoning and

catalysis of protein folding events, particularly collagen biogenesis in the natural environment.
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Figure Legends

Figure 1. A. Amino acid alignment of FKB-3, -4 and -5 via Clustal W. The position of the dual

PPIase domains are indicated by arrowheads; black for FKB-3, grey for FKB-4 and white for FKB-5;

ER retention signals are highlighted in bold. B. Schematic representation of the gene structure of C.

elegans FKB encoding genes fkb-3, -4 and -5. Black boxes depict coding exons with arrows

indicating the translational orientation of the gene. Adjacent, non-related genes are depicted by open

boxes. Solid lines labelled (P) represent the promoter regions use in reporter construct and (Res) are

the rescue constructs. The positions and lengths of the associated deletions are depicted by shaded

boxes.

Figure 2. Spatial expression pattern of the most abundant ER resident FKBs. Nuclear localized

message depicted following β-galactosidase staining of lacZ::promotor expressing transgenic

nematodes. A. L1 stage larva expressing fkb-3::lacZ transgene in the hypodermal cell nuclei. B.

Adult stage hermaphrodite expressing fkb-3::lacZ transgene in the hypodermal cell nuclei. C.  L1

stage larva expressing fkb-5::lacZ transgene in the hypodermal cell nuclei. D. Adult stage

hermaphrodite expressing fkb-5::lacZ transgene in the hypodermal cell nuclei.

Figure 3. Semi-quantitative RT-PCR examination of temporal expression pattern of fkb-3, fkb-4 and

fkb-5 throughout the post-embryonic lifecycle of C. elegans.  Relative transcript levels were assessed

in triplicate by comparing the abundance of the test gene compared to that of the constitutively

expressed RNA polymerase gene ama-1. cDNA samples represent two hour intervals proceeding the

initiation of feeding in starved  L1 larvae.   L1 to L4 depict larval stages.
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Figure 4. Morphological comparison of combined fkb deletion mutants to wild type nematodes

grown at 12ºC for their entire lifecycle. A. Depicts adult stage wild type (N2) hermaphrodite raised at

12°C (size is 970µm). B. L1 stage N2 larvae raised at 12°C (sizes are 250 and 280µm). C. TP83 (fkb-

3/fkb-4/fkb-5 triple mutant) arrested L1 raised at 12°C (size 190µm). D. TP81 (fkb-3/fkb-4 double)

viable L2 raised at 12°C. E. High magnification image of TP83 (fkb-3/fkb-4/fkb-5 triple) arrested L1

larvae raised at 12°C (size 200µm). F. High magnification image of TP86 (fkb-4/fkb-5 double)

arrested L1 larvae raised at 12°C (size 230µm). Scale bar in A is 100µm; B, C and D are 50µm; E

and F are 20µm.

Figure 5. Morphological comparison of combined fkb deletion mutants to wild type nematodes

grown at the non-permissive (12ºC) temperature during their post-embryonic lifecycle. All

nematodes were exposed to non-permissive temperature as L1 larvae. A. Depicts a typical L4 stage

wild type (N2) raised at 12°C for 5 days (size is 860µm). B. Adult N2 raised at 12°C for 7 days (size

1200µm). C. TP83 (fkb-3/fkb-4/fkb-5 triple mutant) L3 raised at 12°C for 5 days (size 370µm). D.

TP83 (fkb-3/fkb-4/fkb-5 triple mutant) adult raised at 12°C for 7 days (size 900µm).  E. TP86 (fkb-

4/fkb-5 double mutant) L3 raised at 12°C for 5 days (size 350µm). F. TP86 (fkb-4/fkb-5 double

mutant) adult raised at 12°C for 7 days (size 860µm). Scale bars represent 100µm.

Figure 6. Rescue of cold-sensitive larval lethal phenotype of TP83 (fkb-3/ fkb-4/fkb-5) triple mutants

raised at non-permissive temperature (12°C).  A. Depicts a DIC image of TP83 mutant rescued

following injection of a wild type copy of fkb-4 gene. B. U.V image of A, depicting co-expression of

dpy-7::GFP transformation plasmid.   C. Depicts a DIC image of TP83 (fkb-3/ fkb-4/fkb-5 triple

mutant) rescued following injection of a wild type copy of fkb-5 gene. D. U.V image of C, depicting

co-expression of dpy-7::GFP transformation plasmid. All Images taken at identical magnification and

depict adult hermaphrodites.

Figure 7. Cuticle collagen expression in multiple fkb mutants maintained at 12°C as assessed through

DPY-7 expression pattern.  A. TP83 (fkb-3/fkb-4/fkb-5 triple mutant) pre-elongate embryo depicting

normal morphology via DIC. B. Epifluorescence image of A revealing normal ER-restricted DPY-7

hypodermal expression pattern.  C. TP86 (fkb-4/fkb-5 double mutant) elongated embryo exhibiting
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abnormal DIC morphology. D. Epifluorescence image of C depicting associated aberrant and patchy

DPY-7 expression. E. Newly hatched TP83 L1 larvae depicting the severe Dpy phenotype, DIC

image. F. Epifluorescence image of E depicting severely disrupted DPY-7 expression. G. Mutant

phenotype of TP86 L1 larvae visualised by DIC. H. Epifluorescence image of G depicting disrupted

DPY-7 hypodermal expression pattern. I. DIC image of wild type adult cuticle, visualised by DIC. J.

Epifluorescence image of I depicting the wild type annular pattern of DPY-7 expression in the adult

cuticle.  A- H scale bar represents 50µm; I and J are 20µm.

Figure 8. Examination of hypodermal seam cell morphology in multiple fkb mutants maintained at

12°C, as assessed through MH27 antibody expression pattern.  A. TP83 (fkb-3/fkb-4/fkb-5 triple

mutant) elongate embryo at hatching displaying severe Dpy and coiling phenotypes, viewed by DIC.

B. Epifluorescence image of A revealing associated severe disruption to the seam cells.  C. TP86

(fkb-4/fkb-5 double mutant) newly hatched severely mutant L1, viewed by DIC. D. Epifluorecence

image of C depicting aberrant MH27 expression pattern and disrupted irregular seam cells. E. TP86

L1 larvae depicting Dpy phenotype as assessed by DIC. F. Epifluorescence image of E depicting

disrupted MH27 antibody expression pattern. G. DIC image of wild type L1. H. Epifluorescence

image of G depicting the wild type regular expression pattern of MH27 in the hypodermis.  All

images taken at identical magnification, scale bars represent 50µm.
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Table 1. Temperature-dependant phenotypes of single and combined fkb mutants.

Strain Genotype 12oC 15oC 20oC 25oC

TP8 fkb-3(tm348)V w.t. w.t. w.t. w.t.

RB1213 fkb-4(ok240)V w.t. w.t. w.t. w.t.

TP65 fkb-4(ka4)V w.t. w.t. w.t. w.t.

TP9 fkb-5(tm475)I w.t. w.t. w.t. w.t.

TP81 fkb-3(tm348) fkb-4(ok240)V w.t. w.t. w.t. w.t.

TP60 fkb-3(tm348)V; fkb-5(tm475)I w.t.a w.t. w.t. w.t.

TP73 fkb-4(ka4)V; fkb-5(tm475)I Mutant w.t. w.t. w.t.

TP86 fkb-4(ok240)V; fkb-5(tm475)I Mutant w.t. w.t. w.t.

TP83 fkb-3(tm348); fkb-4(ok240)V;

fkb-5(tm475)I

Mutant w.t. w.t. w.t.

a Low level of slight Dpy phenotype observed. W.t., wild type.
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Table 2. Effects of osmotic stress on wild type and triple fkb mutants.

 Number of ruptured L1 larvae

Strain Temp. Genotype M9 dH2O   1% βme

N2 20°C wild type 0/41 0/40 0/38

TP83 20°C fkb-3Δ fkb-4Δ; fkb-5Δ 0/40 8/39 7/38

N2 12°C wild type 0/38 0/40 0/37

TP83 12°C fkb-3Δ fkb-4Δ; fkb-5Δ 0/45 12/46 28/45

M9, isotonic salt solution. βme, β-mercaptoethanol reducing solution.
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Figure 1A

FKB-3    1 --ANDRSWTTDEGVKIEIIKKIGDSKCKIKSESGDQLEQFYKLSDKEGKVIGSNFGQKPY
FKB-4    1 ---NDKSWKEDDGLEITITSSIDESECEIKSAGGDVVDQYYKLTDEKGVEIGSNFGKKPY
FKB-5    1 AEEQKLQWKDEDGLEIKIIRPIKAEKCPIKSQDGDVLDQWYKLSDKDGKEIGSNFNKKPY

FKB-3   59 TFTLGKGEVIHGMEIAMEGMCVGEQRKVIIPPEQGFDEDGDEVEG--KGETLYYFVELKS
FKB-4   58 TFTLGRNQVIPGMDRAMRGMCIGEIRKVVIPPKLGFAKDSTG-------QPLYYTVQLVN
FKB-5   61 TFTLGKGQVIPGMERAMTGMCKGEKRKVVIPGNLGFGDKGRERDNIKEDQTLYYTVQLVD

FKB-3  117 IFRPKPGAKWITDEGVHIHITHEVEG-CTEKAQAGDTLHQQYTLNLEDGSFIDSSWSRNR
FKB-4  111 LFRANPGERWVTEEGIQIDQIHKIEADKCKKAEAGDKIYQQYVLRLEDNTLVDSSYSRNA
FKB-5  121 LFRAVPGEKWTTDEGIVIEQTHKIDEDKCKKSKSGDTIHQQYVLHLEDGTFVDSSFSRNA

FKB-3  176 PFIFKMGSGQVIKGMDIAMEGMCQGEKRKVVIPPELAYGENGRPPAIPGNSYLHFDLSLE
FKB-4  171 PFVFRLRNREVIDGMDIAMDGMCEGERRRVVIPSEYGYGSQGSPPEIPGGARLFFEIVLE
FKB-5  181 PFIFKLNNNEVIKGMDIAMTGMCEGERRQVVIPSDFGYGDDGRAPAIPGKARLYFDITLE

FKB-3  236 KLVRPGKEEL
FKB-4  231 KLVK--RDEL
FKB-5  241 KLIQ--RDEL
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