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Abstract

We examine the stability of free convective boundary layer �ow over a vertical heated
�at plate with respect to two�dimensional wave disturbances� In particular we determine
the e�ect of the overall external geometry on the stability criterion� The �uid domain
is taken to be bounded by two semi�in	nite �at plates forming a wedge of angle �� The
vertical plate is held at a uniform hot temperature while the other is either insulated
or is held at the ambient temperature of the �uid� The basic �ow used in the analysis
is a two�term boundary�layer approximation using the method of matched asymptotic
expansions� A modi	ed version of the Keller�box method is used to solve the linearised
wave�disturbance equations numerically� The neutral curves have been delineated for
di�erent values of wedge angle� �� where the working �uids are water and air� We
	nd that the critical distance from the leading edge beyond which disturbances grow is
strongly dependent on �� and this suggests that the external geometry of the �uid domain
exerts a considerable in�uence on stability criteria�

Keywords� Free convection� Boundary layer� Wave instability� Higher order e�ects

�� Introduction�

There is a very large literature associated with the analysis of thermal boundary layer

instabilities� A comprehensive review of the wider topic of thermal boundary layer �ows

was reviewed by Gebhart 
��� For the vertical free convection boundary layer the basic �ow

arises from the presence of buoyancy forces� but the primary instability is well�known to

be hydrodynamic in origin� Thus this boundary layer shares some stability characteristics

with the Blasius boundary layer and is subject to a primary mode of instability in the

form of two�dimensional waves travelling in the streamwise direction �see Nachtsheim


��� Heiber 
 Gebhart 
��� Haaland 
 Sparrow 
��� Godaux 
 Gebhart 
�� and Szewczyk


���� The experimental work undertaken by Szewczyk 
�� also demonstates that there is
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a three�dimensional secondary instability mechanism which occurs further downstream�

to date there are no theoretical studies of this particular aspect�

Most of the earlier theoretical studies of the linear stability characteristics of boundary

layer �ows use the parallel �ow approximation� In these analyses the basic �ow is assumed

either to be parallel� or� more generally� su�ciently slowly varying in the streamwise

direction that such variations may be ignored� However� Haaland and Sparrow 
����

allowed for the nonparallelism which is inherent in free convective �ows by incorporating

x�dependent terms in their disturbance equations� which are the equivalent to the Orr�

Somerfeld equations� In 
��� they conclude that such nonparallel e�ects serve to increase

the neutral distance relative to that obtained by Nachtsheim 
�� who used parallel �ow

theory�

All of the above authors used the leading order boundary layer �ow as the basic �ow

whose stability was considered� Strictly speaking� the leading order boundary layer �ow

forms part of an asymptotic theory which is valid in the asymptotic limit of large distances

from the leading edge� However� it remains fairly accurate at moderate distances from

the leading edge� In the present paper we use a more accurate representation of the

�ow in the boundary layer by determining the in�uence on the boundary layer of the

�ow which is induced in the region external to the boundary layer� The analysis of

the interaction of the boundary layer �ow and the external region can only be made by

invoking the boundary layer approximation and subsequent application of the method

of matched asymptotic expansions� Again this means that the distance from the leading

edge �x� should be asymptotically large� but the result of the ensuing stability analysis

yields a 	nite value of x� Thus corrections to the leading boundary layer �ow are not

necessarily vanishingly small when using higher order boundary layer theory to describe

the basic �ow at the marginally stable value of x�

Such a technique has been used recently by Storesletten and Rees 
�� who considered the

the onset of instabilities in the form of streamwise vortices which occur in the thermal

boundary layer induced by a heated inclined surface embedded in a saturated porous

medium� Those authors discovered that stability criteria are very highly dependent on

the �ow 	eld which is external to the boundary layer�

In the present paper we extend the technique of 
�� by applying the method of analysis

of Storesletten and Rees 
�� to the problem of the wave instability of thermal boundary

layer �ow of a clear �uid from a vertical surface� As in 
�� we assume that the �uid is

bounded by two semi�in	nite �at plates� One of these is the vertical heated surface while

the other is either insulated or at the ambient temperature of the medium� The surfaces

form a wedge of angle �� and the basic �ow is obtained using the method of matched

asymptotic expansions� Although the leading order boundary �ow is independent of ��

further terms are functions of �� The full disturbance equations are reduced to ordinary
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Nomenclature

A� constant
d natural lengthscale
F� G� H disturbances
F�� H� leading order boundary layer solutions
F�� H� 	rst order boundary layer solutions
g gravitational acceleration
k wavenumber
P dynamic pressure
Pr Prandtl number
r nondimensional radial distance from origin
�r radial distance from origin
t nondimensional time
�t time
T temperature of the �uid
u� v nondimensional �uid velocities in the x� y directions
�u� �v �uid velocities in the �x� �y directions
U natural velocity scale
x� y nondimensional Cartesian coordinates
�x� �y Cartesian coordinates

Greek symbols

� wedge angle
� coe�cient of thermal expansion
� scaled wedge angle
�T temperature scale
� small value
� similarity variable
� scaled temperature
� thermal di�usivity
	 complex exponential growth rate

 �uid viscosity
� density of �uid
� angular coordinate

 streamfunction
� streamfunction in outer region
� vorticity

Superscripts and subscripts

B basic �ow
c critical
D disturbance
I imaginary part
n normal derivative
R real part
w wall or heated surface
� ambient conditions
� derivatives with respect to �
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di�erential form in the usual way and are solved numerically to determine how the shape

of the overall �uid domain a�ects the stability criterion�

�� Governing equations�

We consider the two�dimensional free convective boundary layer �ow from a vertical

semi�in	nite heated plate as shown in Fig� �� Apart from the �uid Prandtl number� the

only other parameter is the wedge angle� �� A Cartesian frame of reference is chosen�

where the x�axis is aligned vertically with the heated surface and the y�axis is perpen�

dicular to this�

The system of equations which describe the free convection from a vertical plate is

taken to be the Navier�Stokes and energy equations� For unsteady two dimensional �ow

subject to the Boussinesq approximation this system is written in the dimensional form

�u�x � �v�y � �� ���

�u�t � �u�u�x � �v�u�y � �
�

�
P�x � 
��u�xx � �u�yy� � g��T � T��� ���

�v�t � �u�v�x � �v�v�y � �
�

�
P�y � 
��v�xx � �v�yy�� ���

T�t � �uT�x � �vT�y � ��T�xx � T�yy�� ���

Here �u and �v are the velocity components in the �x and �y�directions� respectively� �t is

time� P is the dynamic pressure� T is the temperature� g is the gravitational acceleration

in the negative �x�direction� � is the density of the �uid� 
 is the kinematic viscosity� � is

the di�usivity and � is the coe�cient of thermal expansion�

The boundary conditions for Eqs� ������� for the case of an isothermal plate are�

�u � �v � �� T � Tw at �y � �� �x � � ���

�u � �v � �� and either Tn � � or T � T� on the second surface� ���

and

T � T� as �r � ��x� � �y����� ��� ���

where Tw is the temperature of the plate and T� is the ambient temperature of the �uid

with Tw � T�� and n as a subscript denotes the normal derivative� Eqs� ������� may be

nondimensionalized using the following transformations�

��x� �y� � d�x� y�� �t � �d�U�t� ��u� �v� � U�u� v� T � T� � �Tw � T���� ���

where the natural length and velocity scales� d and U � are given by�

d �

�

�

g��T

����

� U � �g�
�T ���� � ���
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A further simplication is a�orded by the introduction of a streamfunction� 
� according

to u � 
y and v � �
x� Eqs� ������� now become

r�
 � r�
t � 
yr
�
x � 
xr

�
y � �y� ����

�

Pr
r�� � �t � 
y�x � 
x�y� ����

where Pr � 
�� is the Prandtl number� The corresponding boundary conditions may be

written as follows


y � 
 � �� � � � at y � �� x � � 
i�e� � � �� ����


 � 
n � �� and either �n � � or � � � on � � �� ����

and

�� � as r � �x� � y����� ��� ����

�� Basic �ow analysis�

In this section we determine the two�term solution of the undisturbed basic boundary

layer �ow using the method of matched asymptotic expansions� The basic �ow� which we

denote by the subscript B� is steady and two�dimensional and it satis	es the equations

r�
B � �B ����

r��B �
�
B
�y

��B
�x

�
�
B
�x

��B
�y

�
��B
�y

����

�

Pr
r��B �

�
B
�y

��B
�x

�
�
B
�x

��B
�y

����

where 
B is the basic �ow streamfunction and �B denotes the basic vorticity� as de	ned

by ����� Eqs� ��������� are to be solved subject to the boundary layer approximation�

Therefore we introduce the following expansions for the streamfunction and temperature

in the boundary layer region�


B � x���F���� � F���� � � � � � � � ����

�B � H���� � x����H���� � � � � � � � ����

where the similarity variable � is given by

� � y�x���� ����

and we apply the boundary layer approximation wherein we assume that x � y� The

equations for the zeroth order terms� F� and H�� correspond to the classical problem�

F ���� � �
�F�F

��

� �
�
�F

�

�F
�

� �H� � �� ����
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H ��

� � �
�
Pr F�H

�

� � �� ����

subject to

F���� � F ����� � ��H���� � �� F ����� � H���� � �� ����

Given that solutions to Eq� ���� decay exponentially to zero� the region outside the

boundary layer is isothermal and we may ignore the temperature 	eld in this potential

�ow region� If we denote by � the outer�region streamfunction� then we may expand it

according to

�B � r�������� � ����� � � � � ����

where the polar coordinates� r and �� are de	ned as

x � r cos�� y � r sin�� ����

If F���� is denoted by A� then� as shown by Yang 
 Jerger 
��� �� satis	es

r��� � �� ����

subject to

���� � �� � A�� ���� � �� � �� ����

where the inhomogeneous boundary condition represents an asymptotic matching of v

with the boundary layer solution� The solution of Eq� ���� can be written as

�� � �A�

sin �
�
��� ��

sin �
��

� ����

We note� for later reference� that this solution is singular when � � ����� On expanding

Eq� ���� around � � � and rewriting the result in terms of the similarity variable� �� it

follows that the behaviour of �� in the matching region is given by

�� � A�

�
�� �

��x
���� cot �

��� � � �
�
� ����

The second term in ���� provides the matching condition for the second streamfunction

term in the boundary layer expansion� �����

As shown by Yang 
 Jerger 
��� the equations for F� and H�� the 	rst order boundary

layer terms� are

F ���� � �
�F�F

��

� �
�
�F

�

�F
�

� �H� � � ����

H ��

� � �
�Pr �F�H��

� � � ����

subject to

F���� � F ����� � �� H���� � �� F ����� � ��
�A� cot

�
��� H���� � � ����
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where the inhomogeneous boundary condition represents a matching with the O�x�����

term in Eq� ����� Numerical integration of Eqs� ��������� at Pr � ��� results in the values

F ��� ��� � ��������� H �

���� � �� A� � ������� ����

where

F���� � �
�
�
cot �

�
�
h
��A� �A�

i
as � ��� ����

The corresponding values for air �Pr � ���� are

F ��� ��� � ��������� H �

���� � �� A� � ��������� ����

We note that

H� � � ����

may be derived analytically from equation ����� and therefore there is no correction to

the temperature 	eld at this order�

�� Linear stability analysis�

In this section we develop the linear stability equations for the basic �ow given above

by substituting


�x� y� t� � 
B�x� y� � � 
D�x� y� t� ����

��x� y� t� � �B�x� y� � � �D�x� y� t�� ����

into Eqs� ���� and ����� It is important to note that the asymptotic theory of the last

section is being used to obtain what is hoped to be a closer approximation to the basic

�ow that is provided by the leading order boundary layer solution� On taking j�j 	 �

and linearising we obtain the following system of linearised disturbance equations in

streamfunction�vorticity form�

r�
D � �D ����

r��D �
��D
�t

�
�
B
�y

��D
�x

�
�
D
�y

��B
�x

�
�
B
�x

��D
�y

�
�
D
�x

��B
�y

�
��D
�y

����

�

Pr
r��D �

��D
�t

�
�
B
�y

��D
�x

�
�
D
�y

��B
�x

�
�
B
�x

��D
�y

�
�
D
�x

��B
�y

����

where �B � 
Byy represents the vorticity corresponding to the basic �ow� The appro�

priate boundary conditions to solve the disturbance equations are


Dy � 
D � �� �D � � at y � �� x � � ����


Dy � �� �D � � �� � as y ��� ����
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We now impose the parallel �ow approximation where we assume that the disturbances

have solutions of the form�

�
�
D
�D
�D

�
A �

�
� F �y�
G�y�
H�y�

�
A e�ikx��t	 ����

where the amplitudes F �y�� G�y�� and H�y� are the complex functions of y� Here k is

a real positive quantity and represents the wave number of the disturbance� and 	 �

	R � i	I is the complex temporal growth rate� Neutral stability corresponds to 	R � �

and the computed value of 	I is related to the wavespeed of the disturbance which is

�	I�k� The neutral stability condition 	R � � leads to a relation between k and x in

the form of a curve in the �k� x� plane and which is referred to as the neutral curve�

Eq� ���� may now be substituted into Eqs� ���������� and on changing the variable

from y to �� the disturbance equations take the forms�

F �� � k�x���F � x���G ����

G���
�
B
�x

x���G��
h
k��i	I�ik

�
B
�y

i
x���G �

��B
�x

x���F ��ik
��B
�y

x���F�x���H � ����

H ���Pr
�
B
�x

x���H ��
h
k�� iP r	I � ikPr

�
B
�y

i
x���H � Pr

h��B
�x

x���F �� ikx���
��B
�y

F
i

����

where primes represent derivatives with respect to �� The boundary conditions to be

satis	ed by the disturbances are that

F � � F � H � � at � � � and F�G�H � � as ���� ����

As this homogeneous system forms an eigenvalue problem for x and 	I in terms of the

wavenumber� k� an additional �complex� normalisation condition at � � � is required to

solve the disturbance equations and it is taken to be

H � � �� ����

This extra boundary condition means that we may solve Eqs� ��������� and determine

the eigenvalues� x and 	I � A suitably modi	ed version of the Keller�box method is used

to solve this ordinary di�erential eigensystem and it is discussed in the next section�

�� Numerical method�

In this section the numerical solutions of the basic �ow Eqs� ���������� and ��������� and

the disturbance Eqs� ��������� are discussed� The equations for the basic �ow were solved

using a standard shooting method which employs Newton�Raphson iteration techniques�
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In this method the ordinary di�erential Eqs� ����� ����� ���� and ���� are written as a 	rst

order system of ordinary di�erential equations and a �th order Runge�Kutta method was

employed to solve them� These solutions are accurate to at least six signi	cant 	gures�

When solving the disturbance equations it was observed that the vorticity� G� and

temperature function� H� both decay to zero very quickly as � increases� but that the

streamfunction� F � does not� Therefore we introduced the alternative boundary condition

F � � kx���F � � as ��� ����

which allows the streamfunction to exhibit the appropriate decay rate well before the

streamfunction attains small values� Thus we were able to solve the problem on a smaller

computational domain than would otherwise be necessary� All these disturbance equa�

tions are in the complex form� and after resolution into their real and imaginary parts we

have six second order ordinary linear di�erential equations together with two eigenvalues�

Due to the sti�ness of the eigensystem �especially for large values of kx���� the Runge�

Kutta method was abandoned in favour of a direct method� Thus a modi	ed version of

the Keller�box code was employed to solve the disturbance equations� For this type of

method it is not necessary always to insist that the governing equations are reduced to

	rst order form� and the present code solves the six second order di�erential equations

using straightforward second order accurate central di�erence approximations� When

the di�erence equations are suitably arranged the presence of two eigenvalues� x and

	I causes the Jacobian matrix of Newton�Raphson iteration scheme� which is a central

part of the Keller box methodology� to have two extra rows and columns over and above

its usual block tridiagonal structure� Therefore the block�Thomas algorithm had to be

modi	ed to account for this structural change� very similar schemes were used by Lewis

et al 
��� and Shu and Wilkes 
����

�� Numerical results�

We present 	rst the stability calculations for water for which we take Pr � ���� The

detailed stability results in the form of x�k neutral curves are shown in Figs� � and �

where the di�erent curves correspond to di�erent values of the wedge angle� Here we

see that there are very substantial variations in the shapes of the curves and that the

minimum value of x also varies considerably as � varies� In these 	gures we use a scaled

value of � de	ned according to

� �
���

�
� ����

Figure � shows curves corresponding to the range � � � � � �i�e� � � � � �
���� or�

equivalently� �� � � � �� �i�e� �
�� � � � ���� Those corresponding to the intermediate

range� � � � � �� �i�e� �
�� � � � �

��� are displayed in Fig� �� We note that the curve
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which corresponds to taking only the leading order boundary layer �ow as the basic �ow

is obtained when cot ���� � �� i�e� when � � ���� and �� �or � � �� ���� Conversely�

the asymptotic analysis for the basic �ow breaks down when cot ���� is in	nite� that is�

for � � �� �
�
� or � � �� ���

When the wedge angle is � � �
�
� �� � �� the neutral stabiility curve is unimodal

and displays the usual characteristic for boundary layer �ows of having a maximum

wavenumber for which instability may be expected� As the wedge angle decreases from

this value towards zero the curve rises and the critical distance increases� The reason for

this may be understood in terms of the e�ect of the second term in the basic vertical

velocity which is negative� and increasingly so as � decreases� If� crudely speaking� we

were to assume that instability takes place when the maximum streamwise velocity within

the boundary layer attains a certain threshold value� then the decrease in this velocity

due to the second term in the basic �ow boundary layer analysis means that a greater

distance from the leading edge is required before instability can take place�

On the other hand� when � increases from �
��� the second term in the boundary layer

�ow increases the upwards velocity making the �ow more susceptible to instability� This

is seen quite clearly in Fig� �� where the neutral curve is also found to attain a more

complicated bimodal form� In this case� as � � �
��� the singular case mentioned above

for which the asymptotic expansion breaks down� the critical value of x approaches zero�

The results from Figs� � and � are summarised in Fig� � in which is displayed the

variation with � of both the local extrema of the neutral curves� We see that there is very

little variation of the critical value of x over most of this range� thereby lending con	dence

to analyses based only on the leading order boundary layer �ow� However� anomalous

results occur in the region fairly close to � � �
�� due to the incipient breakdown of the

asymptotic analysis� It highly likely that a much more accurate representation of the

basic �ow will be required for such cases� and this may very well need to involve a full

solution of the elliptic governing equations�

Equivalent results for the case of air� for which Pr � ���� are shown in Figs� � to ��

Again the neutral curve corresponding to the leading order boundary layer �ow is given

by the case � � � in Fig� �� and the curve is unimodal� As � decreases towards zero

the neutral values of x increase in general� but the detailed evolution is complicated by

the fact that the neutral curve becomes bimodal� When � is close to � the left hand

minimum corresponds to the smaller minimum� whereas the right hand one assumes this

dominance as � decreases�

Fig� � shows that the neutral values of x decrease towards zero as � increases towards

��� in this regard the behaviour is identical to that shown in Fig� �� However� the curves

assume increasingly bizarre shapes as � increases�



Paul� Rees � Wilson Stability of free convection boundary layers ��

The overall variation in the extrema of the neutral curves with � is given in Fig� �� In

the ranges � � � � � and �� � � � �� �i�e� �
��

� ��� � 

��

and ��
��

� ��� � ��
��
� there is

very little variation in the critical value of x� But outside of these ranges there is a very

strong variation suggesting that the thermal boundary layer �ow of air is particularly

sensitive to the external geometry�

	� Discussion and conclusions�

Over much of the range of wedge angles the criterion for the onset of wave convection in

water does not vary greatly from that found when using only the leading order basic �ow�

However� when the wedge angle is close to ���� �or to �� the results become unreliable

due to the fact that the second term in the asymptotic expansion becomes unbounded

and the asymptotic expansion ceases to be uniformly valid� For wedge angles less than

this critical value� the �ow is increased in strength relative to the leading order �ow

and instability is enhanced� whereas the opposite e�ect is found at wedge angles slightly

greater than ����� For air the neutral distance is much more sensitive to changes in �

than for water�

The equivalent analysis for vortex instabilities in convective boundary layers in porous

media was undertaken by Storesletten 
 Rees 
�� who also found a very substantial

variation in the critical distance with wedge angle� In that context higher order terms in

the basic �ow become in	nite only as �� ��� However� the conclusion there is that the

variation in the value of xc with � is too great for the theory to be deemed reliable� This

is due to the fact that the basic �ow is not su�ciently well�represented by the three�term

asymptotic expansion used in 
���

More generally it is very likely to be true that the position of onset of convection

depends on the shape of the bounding region of the �uid� To support this contention

we cite the experimental studies of Yan and Tao 
��� and Yan and Zhang 
���� These

authors consider an air�	lled tall rectangular domain� and they obtain the respective

critical Grashof numbers� �� and ��� which are equivalent to xc � �� and �� here� These

values are smaller than most of those depicted in Fig� �� One possible explanation of this

might lie with a comment made by Brooker et al 
��� that self�sustaining oscillations have

been observed in di�erentially heated cavities� In such situations a disturbance placed

near the base of the hot vertical surface decays at 	rst� but then begins to grow once

it is past the neutral location� Thereafter it decays after turning the corner at the top

of the cavity� continues to decay on beginning the descent of the cold vertical surface�

but then grows as it did on ascending teh ht surface� Finally it decays once more as it

passes along the lower surface and 	nally enters the hot boundary layer again in order

to repeat the cycle� Therefore at critical conditions a neutrally stable feedback loop is

established� This is� of course� an entirely di�erent mechanism by which the shape of the
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domain a�ects the stability criterion� but it nevertheless shows that consideration must

be given to conditions which are external to the boundary layer�

For the present �ow� then� we would recommend �i� that the stability characteristics

should be studied using a more accurate basic �ow and �ii� that the role played by

the overall domain chosen to represent the �uid dynamical situation be emphasized�

Both of these recommendations involve the computation of a steady elliptic system of

partial di�erential equations for the basic �ow which is of equal di�culty to a detailed

unsteady simulation of the full equations� and therefore a direct fully numerical approach

should be adopted� Such work has been undertaken by the present authors for a thermal

boundary layer in a completely unbounded �uid� and is in the process of being prepared

for publication �Paul et al 
��������
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Schematic diagram of the �ow con	guration showing
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Evolution of the critical points on the neutral curves
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local maximum while m denotes a local minimum�
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