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Extending the Functional Equivalence of Radial 
Basis Function Networks and Fuzzy Inference Systems 

Kenneth J. Hunt, Roland Haas, and Roderick Murray-Smith 

Abstract-We establish the functional equivalence of a general- 11. RBF NETWORKS 
ized class of Gaussian radial basis function (RBF’s) networks and 

an existing result which applies to the standard Gaussian RBF 
network and a restricted form of the TakagiSugeno fuzzy system. 
The more general framework allows the removal of some of the 
restrictive conditions of the previous result. 

the full Takagi-Sugeno model of fuzzy inference. This gener&es In Section we describe the generalized RBF network. 
The conditions under which it reduces to the standard network 
are given in Section 11-B. The main features of the generalized 
RBF network are: 

1) Each processing unit in the network receives as input 

I. INTRODUCTION 
E consider the functional equivalence of radial basis 
function (RBF) networks and a class of fuzzy inference 

systems. The structure of the “standard” RBF network is 
described in Broomhead and Lowe [ 11 and Moody and Darken 
[2] .  The class of fuzzy systems we consider is based on the 
model of Takagi and Sugeno [3], and we will refer to this as 
the TS-model of fuzzy inference. The conditions under which 
the standard Gaussian RBF network and a restricted form of 
the TS-model of fuzzy inference are functionally equivalent 
were established by Jang and Sun [4]. 

Our aim in this paper is to generalize the Jang-Sun result 
by removing some of the restrictions on the class of RBF 
networks and fuzzy systems to which the result applies. We 
achieve this aim by defining a generalized class of RBF 
networks. Briefly, the expanded class of RBF networks admits 
the use of local models in network output links, has ellipsoidal 
basis functions, and can directly omit redundant elements of 
the input vector. We also show how the equivalence result 
applies to a wider class of fuzzy systems; we discuss how 
a large class of fuzzy systems can be transformed to the 
TS-model. 

Local model networks were introduced by Jones et al. 
[5 ]  and further developed by Johansen and Foss [6]; their 
relation to fuzzy systems was discussed in Foss and Johansen 
[7]. The functional equivalence of the TS-model and spline- 
based networks has been considered by Hunt et al. [8]. The 
practical relevance of the functional equivalence result is 
that the leaning algorithm of one paradigm can be used to 
train models expressed in the other paradigm. An important 
aspect is the ability to use fuzzy a priori knowledge to 
prestructure a network. The equivalence also allows models 
of one paradigm to be interpreted in the language of the other. 
Finally, implementation can be done in either form. 
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possibly only a subset of the complete network input 
vector (see (1) and the example in Section IV-D). This 
means that irrelevant elements of the input vector can 
be easily left out of a RBF unit. This is important as not 
all elements of the input vector need necessarily appear 
in the premise of the corresponding fuzzy if-then rule. 

2) The output links of the network consist of local, possibly 
nonlinear, models which process the network input vec- 
tor [these are defined by the functions &(2) in (l)].‘ The 
standard RBF network has constant weights connecting 
to the output unit. This extends the applicability of the 
standard TS-model of fuzzy inference which effectively 
has linear local models in the consequent of each fuzzy 
if-then rule. 

3) The Gaussian processing units in the network have dif- 
fering widths in each dimension of the input vector. This 
results in ellipsoidal basis functions and effectively “de- 
couples” the corresponding basis functions in different 
dimensions. As a result the shapes of the corresponding 
membership functions in different dimensions are also 
decoupled. 

A. Generalized RBF Description 

The type of network under consideration is described by 

- + - +  
n e  

Y = f ( 2 )  = k(+#h(.i> = 0’4 (1) 
2=1 

where’ denotes a vector and ’ is the transpose operator. Here, 
y E R is the network output2 and 2 E Rnx is the input 
vector. The network has ne nonlinear processing units and 
the nonlinearity of the zth unit is represented by the function $,(e) with 2% E R%. In general each unit input vector 2% 
is a subset of the network input vector Z, i.e., 2% c 2 and 
nxz 5 72,. 

The output of each processing unit is multiplied by the 
weighting function O%(Z) and these values are summed to form 
the network output. In the vector form of (1) we note that 

‘For a two-dimensional input vector linear local models could have the 
form O,(Z) = k , , ~ q  + kz ,2z2  with k , , ~  and IC,,:! constants. 

’In this paper we consider for simplicity only scalar outputs and note that 
extension to the multioutput case is straightforward 
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Generalized basis function network. Fig. 1.  

$, 6 E Rne. A normalized form of the network is sometimes 
used (see [9] for discussion of the effects of normalization) 
and this is described by 

The flow of computation in (1) can be represented graphi- 
cally as the network in Fig. 1 (where the thick lines represent 
vectors). Such graphical representations of the flow of compu- 
tation in parameterized interconnections of simple nonlinear 
functions are popularly referred to as “artificial neural net- 
works” or simply “neural  network^."^ The processing units 4; 
in (1) are known as basis functions and following tradition 
we refer to nonlinear parameterization of the form (1) as 
basis function networks (bland) or, when RBF’s such as the 
Gaussian form are utilized (see (3) or (7) later), as RBF 
networks. 

The basis function network of (1) represents a generalized 
form of network first, since the weights e,(.) are functions of 
the input vector Z.4 We call this type of network a local model 
network (see [6], [lo], and [ll] for more on local models). 
Second, each processing unit acts on only a subset of the 
input vector. Each of the functions 8, (2)  can be viewed as 
local models whose validity is defined by the activation value 
q5z (2,). Thus the network, through the locally active functions 
+,(2,), partitions the input space into n,g operating regions on 
each of which a local model is defined. The network smoothly 
joins these local models together through interpolation to form 
the overall global model f(2). 

A common form of basis function is the radial Gauss- 
ian form. A generalized form of Gaussian basis function is 
described by 

$i(Zi)  = exp [-(2; - Z;)’Ai(Zi - G ) ] .  (3) 

Each basis function has two parameters: the center vector 
c‘, E R”=% and a width matrix A, E Rnz%Xnxt. The width 

3This comes about due to the loose analogy with biological neural networks. 
41n standard basis function networks the weights are scalar, i.e., O t ( 2 )  = 

@,--see Section 11-B in the sequel. 

parameter is a diagonal matrix of the form 

The activation of each unit #;(Z,) depends on the radial 
distance of the unit input vector 2; from the center of the unit 
6. Each dimension j of the distance vector (Z; - G )  E Rnzz is 
further weighted by a width parameter 5, with j = 1 . . . n2,. 
The basis function described above is gLAeralized in the sense 
that standard Gaussian basis functions apply the same width 
parameter in each dimension and each unit processes the whole 
input vector (see Section 11-B below). Due to the definitions 
(3)-(4) the basis functions are defined on hyperellipsoids in the 
input space (as a result of the different width in each direction) 
as opposed to hyperspheres as in standard Gaussian RBF’s. 

B. Standard RBF Network 
We now state the conditions under which the standard 

Gaussian RBF network is recovered from the generalized form 
defined above. There are three conditions under which this is 
achieved: 

Each basis function processes the whole network input 
vector, i.e., nZt = n2 and +,(&) = qhz(.’), for i = 
1 . . . no. 
The local models Ot(2) are constants, i.e., O,(2) = Oz. In 
this case the basis function network (1) or (2)  becomes 

or 

respectively. 
Each basis function has the same width in each dimen- 
sion, i.e., a;~ = ai2 = + ..ain, = a;. The activation 
function of each unit (3) then simplifies to 

( 2 1  - cil)z ( 2 2  - C i 2 ) Z  + . . , 
a; + 4i(2) = exp[-( a; 

11 ( z n ,  - C i n , )  

a: + 
(7) 

where 1 1 . 1 1  denotes the Euclidean norm. 
It is this standard form of Gaussian RBF which is considered 

in the work of Jang and Sun [4]. 

111. THE TAKAGI-SUGENO MODEL OF FUZZY INFERENCE 

A. The TS-Model 

The Takagi-Sugeno model was introduced in [3] and [12] 
as a hybrid model, integrating both fuzzy conditions and 
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functional relationships between the input and output spaces. 
Rules have the canonical form 

R, : if x,1 is A,I A x,2 is A22 A . . . A xznzt is AZnx* then 

with i = 1 . . . ng , ng being the number of rules. Each rule 
is premised on its own input vector 2, where 2, is a subset 
of the complete system input vector 2, i.e., 2, c 2. A,, are 
linguistic labels of fuzzy sets describing the qualitative state of 
the input variables, A is a fuzzy conjunction operator (usually 
of T-Norm-characteristics) and the rule output y is a linear or 
nonlinear function [ 131 of the input variables. Rule inference is 
realized by first calculating the fulfillment, or firing strength, 
of the premise part as 

P R % ( & )  = P~i (x , i )  A - . . A P L , m x z ( ~ ~ ~ z ~ ) .  

Here, pZI  is the membership function of fuzzy set AXJ.  The 
firing strength is then multiplied with the output function, 
defining a locally valid model on the support of the Cartesian 
product of the fuzzy sets involved in building the premise. 
The fulfillment of the premise part can be calculated using 
multiplication or the minimum operator. The overall output 
of the TS-model is usually defined as the normalized sum 
(compare [ 141) 

y = &(q, 

however, sometimes this is simplified to the unnormalized 
form 

(9) 
i=l 

The TS-model has proved its applicability in various fields like 
controlling a model car [15], autopilot design and chemical 
process control [14], [13]. It is especially suitable for com- 
bining prototypical mathematical models with linguistically 
formulated conditions in the input space. The identification 
process of TS-type-models is very similar to the learning 
schemes of basis function nets. It consists of finding an 
adequate fuzzy partition of the input space (defining the shapes 
and number of the fuzzy sets, generating the rulebase) and 
fixing the parameters of the local models [14], [13]. 

B. Connections to Other Inference Mechanisms 

The TS-model can be interpreted as an extension of some 
classical schemes of fuzzy inference Consider the composi- 
tional rule of inference (CRI) proposed by Zadeh together with 
singleton fuzzification (represents sharp input values in the 
set Fuzzy(X) denoting all fuzzy sets defined over the domain 
X), sum-product composition. Using individual rule inference 
and defuzzification followed by additive superposition, results 
in an evaluation algorithm equivalent to a TS-system with 
constant local models. Tsukamoto's proposal [ 161 of fuzzy 
inference based on invertible output sets 0, can be readily 
modeled by a TS-system having nonlinear local models of the 
type 

6, (2) = P.0,' (PR ,  (24). (10) 

It is interesting to note that Kosko's additive fuzzy models 
denoted as BIOFAM (binary input output fuzzy associative 
memory) [I71 can be embedded in the framework of the TS- 
model with only minor restrictions concerning the inference 
operators (algebraic product provides compatibility with the 
TS-inference) and the universe of discourse. To see this, 
let us consider the COG (center of gravity) defuzzification 
represented by the operator F t A G  :Fuzzy (Y) H R mapping 
every fuzzy output set 0, c Fuzzy(Y) , i  = l , . . .  ,n; to 
the real line making use of the COG-defuzzification scheme. 
After the inference procedure the membership functions of 
each rule's consequent part are transformed to &, , where the 
prime operator denotes the restricted possibility distribution 
produced by the evaluation procedure. Kosko suggested to 
add the resulting membership functions instead of using a 
standard T-conorm operator like maximum. The application 
of the COG defuzzification to the sum p& = x:il pbt leads 
to the expression 

i=l 

Equation (1 1) can be reduced to a TS-type output with constant 
local models O,(Z) = F&-,(0,) by using fuzzy sets with 
area(O1) = area(O2) = . . . = area(0,;) or by using a scaling 
operation G : Y H [0,1] to normalize the domain Y and 
defining new premises pa, = area(0,) . P R ~ .  

IV. FUNCTIONAL EQUIVALENCE 

We are now in a position to establish the functional equiv- 
alence of the generalized RBF network and the TS-model of 
fuzzy inference. First we recall the result of Jang and Sun 
[4] which relates to the standard RBF network described by 
(5H7). 

A. Jang-Sun Result 

It is shown by Jang and Sun that the standard RBF network 
(5)-(7) is functionally equivalent to the TS-model of fuzzy 
inference under the following five conditions: 

1) The number of RBF units is equal to the number of 
fuzzy if-then rules, i.e., ng = ng. 

2) The output of each fuzzy if-then rule is a constant, i.e., 

3) The membership functions within each rule are chosen 
as Gaussian functions with the same width. 

&(Z) = 0,. 
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4) The T-norm operator used to compute each rule's firing 
strength is multiplication. 

5 )  Both the RBF network and the fuzzy inference system 
use the same method to derive their overall outputs, i.e., 
either the normalized or unnormalized calculation. 

It seems clear that Conditions l), 4), and 5 )  are natural 
conditions required to make the two systems structurally 

with 

Ai = 

equivalent and that they cause no loss of generality in the 
type of RBF or fuzzy inference system which can be used. 
Conditions 2) and 3), on the other hand, significantly restrict 
the class of TS-model fuzzy inference systems to which this 
result applies. Our aim here is to remove Condition 2) and to 
remove the restriction in Condition 3) to functions with the 
same width. 

B. Generalized Functional Equivalence 

When we consider the generalized Gaussian RBF network 
defined by (1)-(4) the functional equivalence result can be 
generalized as follows: 

Theorem 1: The generalized Gaussian RBF network de- 
fined by (1)-(4) is functionally equivalent to the TS-model 
of fuzzy inference if the following conditions are satisfied: 

1) The number of RBF units is equal to the number of fuzzy 
if-then rules, i.e., ng = ni. 
2) The membership functions within each rule are chosen 
as Gaussian functions. 
3) The T-norm operator used to compute each rule's firing 
strength is multiplication. 
4) Both the RBF network and the fuzzy inference system 
use the same method to derive their overall outputs, i.e., 
either the normalized or unnormalized calculation. 0 

Proof: Under 2) each fuzzy if-then rule consists of the 
composition of the univariate Gaussian functions which define 
the membership values in the premise part of each rule. Each 
univariate membership function then has the form 

and this defines the j th membership value of the ith rule. 
Under 3) the firing strength of each rule is given by 

for i = 1 . . . no [appealing to l)]. This expands to 

= exp [-(& - <)'Ai(Zi - 4)]  ('14) 

Comparing (14) and (15) with (3) and (4) the functional 
equivalence is established since ,u~%(&) = 4%(&) and under 
this condition (together with ni = ng) (1) and (9) [or (2) and 
(8)] become identical. Necessity of Condition 4) is obvious, 
and means that either (1) and (9) are used together, or (2) 
and (8) are used together. It is clear that the firing strength 
of each rule pfiC(&) functionally equates to the activation 
&(&) of the nonlinear processing unit in the corresponding 
RBF network. 

0 

C. Discussion 

Conditions l), 3), and 4) in Theorem 1 are equivalent, 
respectively, to the Jang-Sun Conditions l), 4), and 5).  As 
mentioned already, these are natural conditions leading to no 
loss of generality. 

The Jang-Sun Condition 2) on the other hand (output of 
each fuzzy rule must be a constant) has been eliminated. This is 
a direct result of the local model form of the generalized basis 
function network (1) or (2). Further, the local model network 
represents a generalization of the TS-model of fuzzy inference 
with respect to the original work of Takagi and Sugeno 
[14]. There, the output of each rule was given by a linear 
combination of elements of the input vector (corresponding 
to linear local models). In this paper the formulation in (1) 
and (2) allows generally nonlinear local models. Removal of 
Jang-Sun Condition 2) is therefore an important extension of 
the Jang-Sun functional equivalence result. 

The Jang-Sun Condition 3 is related to our Condition 2). 
In contrast to Jan-Sun Condition 3), however, we require 
no restriction on the widths of the basis functions. This is 
a consequence of our employment of hyperellipsoidal basis 
functions (3) and (4) having differing widths in each dimen- 
sion. This means that the univariate functions making up a 
specific rule (or RBF unit) are less interdependent. This is 
intuitively appealing as there is no practical reason why basis 
functions in different dimensions should be coupled by forcing 
them to have the same widths. 

There is a final point which was not explicitly dealt with 
in the work of Jang and Sun. This relates to the fact that the 
premise part of each fuzzy if-then rule does not necessarily 
include conditions on every element of the input vector. 
Leaving out a specific element from the premise is equivalent 
to replacing the membership value for that element by one. 
This can only be achieved in a cumbersome way in the 
equivalent standard RBF formulation since the dimension 
of unit centers in the standard RBF is equal to the input 
dimension, i.e., dim(c',) = dim(3) = n, in (7). To achieve 
a unity activation of the univariate basis function concerned 
requires adaptively setting the univariate center of the basis 
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Fig. 2. Membership functions p ~ ( . ) - p ~ ( . ) .  

function to the corresponding element of the input vector. For 
example, when the j th  membership value of the ith rule is one 
(i.e., x3 is not conditioned in the premise) then we must set 
cz3 = x3 in the equivalent standard RBF implementation for 
each new input vector. In contrast, the desired effect is inherent 
in the generalized RBF formulation of (1)-(4) since each unit 
in the network has as input only a subset 2% of the input vector 
2. It is clear to see that 2% consists only of those elements of 
the input vector which are conditioned in the premise of rule i. 

D. Example 
A simple example should illustrate the results of this paper. 

Let us consider a fuzzy system of TS-type-inference with two- 
dimensional input IC’ = ( 2 1 , 2 2 ) ’  and one-dimensional output 
y consisting of five rules: 

RI : if 2 1  is AA22 is E then y = 6$(Z) 
R2 : i f  2 1  i s  B then y = &(Z) 
RJ : i f  z1 i s  CAx2 i s  F then y = 193(3) 
R4 : i f  XI i s  C Ax2 is  G theny = Q4(3) 
R5 : if 22 is D theny = &,(Z). 

The membership functions for the sets A .  . . G are Gaussian 

The centers and widths of the membership functions are 
shaped as shown in Fig. 2. 

CA = 15, CB = 35, CC = 60, C D  = 20, 

C E  = 40, CF = 65, CG = 85, 
gi = 30, 2 = 80, 0; = 50, g D  = 40, 

2 g& = 70, 0; = 60, gG = 40 

where the subscripting arrangement is obvious. 

base defined in Section I11 under the following conditions: 
The above rule base can be identified with the canonical rule 

0 0  
xl domain x2 domain 

Fig. 3. RBF basis functions-units 1, 3, and 4. 

Based on the theorem developed in the last section, the 
mapping of the fuzzy rulebase to a functionally equivalent 
RBF-structure is straightforward. The five RBF units (ne = 
n; = 5) are defined to be equivalent to the fuzzy rule firing 
strengths 

h(6) = PRt(2Z) (16) 

for i = 1 . . . 5 .  Specifically, we have 

The centers and widths of these RBF basis functions are 
defined directly by the parameters of the fuzzy membership 
functions as stated above. They are 

The ellipsiodal basis functions for units 1, 3 ,  and 4 are plotted 
in Fig. 3 .  The basis functions for units 2 and 5 can be seen 
in Fig. 4. 

The functional relationships defined by the rule conse- 
quences can be directly interpreted in the RBF-context as local 
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Fig. 4. RBF’s-units 2 and 5. 

models 0, (3) resulting in the functionally equivalent outputs 
(unnormalized case) 

5 5 

~ R B F ( ~ )  = 4i(z i~i(z)  ptzt (zt)oi(z) = fTs(2). 
i=l i=l 

(17) 

V. CONCLUSIONS 

The primary purpose of this paper was the extension of the 
equivalence relation between a class of TS-type fuzzy systems 
with Gaussian membership functions and RBF networks first 
established by Jang and Sun [4], and rooted in the fundamental 
isomorphy property of the exponential function mapping the 
group (R, +) to the group (R\{O}, .). We proved that the 
restrictions concerning the variances of the membership func- 
tions and the use of constant weights can be easily removed in 
the framework of generalized RBF nets with local models and 
discussed the problem of dealing with rule premises that are 
not defined on the full input space. It should be emphasized 
that the equivalence theorem holds not only for the TS-model 
of fuzzy inference but for a quite large class of systems which 
can be transformed to the TS-model, including a subset of 
Kosko’s popular BIOFAM systems. The equivalence theorem 
has immediate application for the following: 

integration of linguistically structured a priori knowledge 
into RBF networks: 

781 

increase of the cognitive transparency of RBF networks; 
transfer of training and learning algorithms: and 
development of hybrid learning techniques mixing sym- 

While some aspects have already been used implicitly in 
numerous works on hybrid learning and approximation theo- 
retic analysis, the main advantage of functional equivalence is 
the provision of a unified framework for the analysis of basis 
function nets, local model nets, and fuzzy systems. 

bolic and connectionist approaches 
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