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Abstract

Loop status monitoring involves the declaration of deterministic trends, such as

oscillations and drifting, in loops that are in multi-loop plant configurations.  By

analysing various time domain statistics pertaining to PI/PID control loops, a

trend can be recognised as one of seven categories. The scientific basis for

working with the particular statistics is given and the categorisation process is

described. These statistics can be combined to produce an Overall Loop

Performance Index for each loop, which can be compared to localise a single

fault in a multi-loop arrangement.  Estimation methods for these time domain

statistics are outlined and the performance of the approach is demonstrated on

both simulated and real plant data sets.
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1. INTRODUCTION

Although loop performance monitoring has been well-researched, especially minimum

variance benchmark based techniques [1-3], the emphasis has been on audit, in a sense

that the underlying performance is of issue, rather than on what the loop is actually

doing at any particular time. When the focus has been on the actual trend itself, workers

have looked at the shape of the trend [4-8] with the aim of diagnosing faults or

disturbances rather than of determining loop performance.  Control loop status

monitoring can be defined as the near-real-time declaration of what a loop is actually

doing at that time [9,10].  The status might indicate that the loop is (1) well-behaved &

in steady state, or (2) well-behaved but with controller compensation, or (3) undergoing

a short-term transient, or (4) undergoing a trend that is disturbed in some non-stationary

manner, or (5) cycling at a relatively low fundamental frequency, or (6) cycling at a

fundamental frequency similar to the natural frequency of the loop, or (7) out of control

(Critical).  For instance category (4) might arise because of feedstock variability whilst

category (5) might arise because of a cyclic disturbance, or of a valve problem

involving a phase lag.  Transients can be classed as either short-term or long-term

depending on whether or not the transient lasts longer than the loop’s settling time.

This is an indicator of whether the response is caused solely by a short-term event, like

a change in operating point, or by something more sustained.  From a performance

point of view the long-term is more important.  Some of the proposed loop statuses

might be of interest to the operator, whilst others might be of more interest to the

control/maintenance engineer.  Some might be of use when analysing data off-line.  For

instance the maintenance engineer would like to know when a loop is limit cycling,

whereas someone analysing off-line data would like to know if the plant was operating

in an unsteady manner.  The benefit might be as much to do with providing information

about plant operation, as with understanding the performance of an individual control

loop.  This would particularly be so, for instance, if the controllers were compensating

for a leak.

The statuses of individual loops cannot be viewed in isolation, however, because in

certain circumstances a number of loops might be affected by the degradation of one

loop or by a plant-wide disturbance.  A single loop might cause an entire plant to

oscillate, but only whilst operating in one particular regime.  Both the operator and

control/maintenance engineer would be interested in not only locating the problem
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loop, but also in doing so whilst the situation still exists on the plant, since this would

enable an engineer to experiment with controller settings.  Although significant work

has been presented [1, 2] on the extension of closed loop performance assessment

methods to multivariable systems, the diagnosis of multivariable systems has not been

thoroughly investigated [1].

This paper proposes various statistics to facilitate the status monitoring of PI/PID loops

and to isolate a problem loop.  These statistics can be complemented by the control loop

performance monitor of Hägglund [11], which focuses on Statuses (5) & (6), and by the

automatic detection of sluggish control loops [12], which can be performed during

Status (3).  Although loop status is a qualitative description, a quantitative version can

be formulated by assigning different real number values to the various categories.  The

quantitative statistic can then be combined with the other statistics to form an index to

isolate a problem loop in a number of interacting loops.  A particular combination has

been formulated, the overall loop performance index (OLPI), which has been designed

to increase as loop performance deteriorates.  A problem loop can then be isolated by

finding that loop with the highest OLPI. The identification of the root cause of a plant-

wide disturbance, such as plant-wide oscillations, is of importance to both auditors and

operators. Although there has been a great deal written about the detection/diagnosis of

a single loop and about specific oscillation problems [11, 13-15], few have attempted to

deal with plant-wide detection and diagnosis.  Thornhill et al. have applied principal

component analysis to power spectra with the aim of detecting groups of oscillatory

process measurements [16], and have also examined the detection of multiple

oscillations in control loops [17].

By focusing on ‘current’ loop status rather than on an audit of loop performance, this

paper can be viewed as a step towards Kozub’s vision.  Kozub [18] has compared

experiences with time series based approaches with those with single statistic based

approaches.  He observed that although the use of a single number statistic can hardly

be as effective as analysis tools that offer far more detail, the latter are very resource

intensive whilst a group of single number statistics would be useful to provide a first

pass indication that a problem exists.  Kozub sees the potential for both detecting and

determining the extent of under-damped, or cyclical, response trend characteristics and
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views the automation of controller performance monitoring and diagnosis as an

important new challenge.

This paper has three main sections.  Section 2 gives the formulation and scientific basis,

loop status monitoring is then developed in Section 3 and the extension to fault

localisation is considered in Section 4.  Detailed derivations of equations have been

placed in appendices.  The method has been tested on a number of applications, both

real and simulated.  Those pertaining to Eastman plants are discussed in Section 4.
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2. FUNDAMENTALS

This section describes a set of statistics, which, when examined together, provide a

means of deciding the Loop Status of either a single PI/PID loop, or the master loop of

a cascade PI/PID-based control system.  An explanation is then given of how these

statistics might be estimated from plant data.

2.1 The Model

Fig. 1 represents a control loop by means of a linear block diagram.  Blocks P & H

represent the process and controller transfer functions, ut is the controller output, yt is

the controlled variable and dt is a deterministic disturbance, which is modulated with

additive Gaussian white noise, et, that is independent of dt.  Non-linear effects caused

by, for instance, hysteresis, are accommodated by representing them as 'pseudo'

external deterministic disturbances.  Note that the set-point is omitted i.e. it is assumed

that the loop is a regulator.  The approach does accommodate infrequent changes to the

set-point, and such changes are seen as additional disturbances to dt.

The status of a loop can be described by the deterministic, or underlying, trend that is

observed.  The trend of interest is therefore the deterministic component of time series

yt.  If ŷ is defined as the deterministic component of yt, and ey is defined as the direct

effect of the noise on yt, then by definition

1ˆ
1

y y e d et y t tHP
 = + = + +

, (1)

which can be separated into deterministic and stochastic components:

1ˆ
1 ty d

HP
=

+
, 1

1y te e
HP

=
+

(2)

Similarly the controller output time series can be represented by

ˆ

ˆ ˆ( ) ( )
u

t y u

u e

u Hy He u e= − + − ≡ +     (3)

where û  is the deterministic time series observed in the controller output and eu is the

noise.

Note that ey is filtered white noise.  Fig. 2 shows the frequency response of this filter for

a typical PI controlled, first order process plant with time delay: it has a high-pass

filtering feature, with a cut-off frequency B0, so that ey will nearly behave as banded
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white noise with lower cut-off B0 and upper cut-off at the Nyquist frequency

:
s

B B
T
π 

  
 

= rads-1, where Ts is the sample interval.  The precise location of B0 is not

important.

2.2 The Basis

Sinusoidal trends are common in control loops and can be categorised as either Loop

Status (2) compensating (if the frequency is very low) or (5) - (6) cycling (if the

frequency is either relatively low or near the natural frequency of the loop). An

examination of the behaviour of a PI control loop, when subjected to a pure sinusoidal

disturbance of frequency ω, therefore provides a basis for understanding the approach.

This behaviour is assessed by analysing three loop statistics, yη , uη and their ratio R.

The behaviour of a normalised version of R, called Rn, is also examined, particularly in

relation to its ability to contribute to the categorisation of trends with other Loop

Statuses.  In particular, its standard deviation, 
nRσ , is found to provide discrimination

between Statuses (4) and (5).  It will be shown that the analysis of statistics yη , uη  Rn

and 
nRσ combined,  provide the necessary discrimination between the various statuses

of a PI loop.  Differences in their behaviour for PID control is also examined.

Definition 1:  Signal-to-noise ratio indices yη and uη are defined as:

2
ˆ
2
y

y
y

e

σ
η

σ
= , (4)

2
ˆ
2
u

u
u

e

σ
η

σ
= (5)

where 2
ŷσ , 2

yeσ , 2
ûσ  and 2

ueσ are the variances of ŷ , ey, û  and eu respectively.

Statistic yη will be the same as the minimum variance performance index [1,2], when

the  predicted, deterministic component (called the predictable component) is estimated

by a d-step ahead AR model, where d is the time delay.  Although in theory a perfect

control loop operating in steady state will have an yη of zero, industry practice is to

recognise that small disturbances do arise and to deem a loop to be performing well if
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yη γ< , where γ is typically 0.5 for a temperature loop, but might be smaller for other

loops, such as flow loops. A customised value could be obtained by analysing the

normal steady state operating data.

Definition 2: R is defined as the ratio of the indices:

y

u

R
η

η
= (6)

2.2.1 PI Control

Theorem 1: If a control loop is under PI control of form 11P
i

K
T s

 
 
  
+ , where Kp is the

gain and Ti is the integral time constant, and the process has a sine wave oscillatory

trend of frequency ω and magnitude A, which is modulated by banded noise ey with

uniform power spectrum of amplitude G over the bandwidth [B0, B], then

2

0

1
2

( )y

A

G B B
η =

−
, (7)

2

( )

11
( ) ( )i

u y y

J

T J
Q

ω

ω
η η ω η

 + 
 = =
 
 
 

, (8)

( )
2

1
1( ) 1

( )i

QR
J

T

ω
ω

ω

= =
+

  (9)

where 
2

21 sB

i

TKQ
Tπ
 

= +  
 

, Ts is the sampling time and 
0

B
BK
B

= .

Proof:  See Appendix A.1.

Thus there is a simple relationship between yη and uη , which can be represented by a

meaningful frequency diagram.  Also yη is independent of frequency and constant for a

sinusoid of fixed magnitude and stationary noise.  The assumption of a uniform

spectrum is justified, firstly because G doesn’t feature in the final results (Equations 8
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& 9), and secondly because 0( )G B B− is the variance of ey.  Fig. 3 shows a typical

frequency plot of the three key statistics uη , yη & R for a well-performing control loop

with Q=1, yη =0.5 and Ti=20.  Although parameter Q is dependent on controller

settings, for most process control loops 1Q ≈ , because 1s

i

T
T

 and KB is relatively

small.  The following normalised version of R is preferred, because this will make the

formulation of a test more straightforward.

Remark 1: A normalised value of R is defined as:

   
2

1
11

( )

n

i

RR
Q

Tω

= =
+

(10)

Fig. 4(a) shows a plot of Rn versus Tiω.  It is significant that Rn≥0.8 when Tiω≥2 (or

2

iT
ω ≥ ) because this can be used to discriminate between low and ultimate frequency

trends.

Remark 2: The nR ω−  relationship of Eq. 10 can be extended to more general

deterministic oscillatory trends such as the non-sinusoidal periodic oscillations typical

of limit cycles, where ω is now the dominant, fundamental angular frequency of the

trend, and the result of Rn≥0.8, when 2

iT
ω ≥ , still holds (See Appendix A.2).

Fig. 3 shows that for a well performing loop with a constant yη , ratio uη  behaves quite

differently at low frequencies.  Consider the case when uη  exceeds γ, whilst at the same

time yη does not (i.e. uη >γ & yη <γ).  Here there is a significant predictable signal in the

controller out and very little in the controlled variable.  This implies that the controller

is having to compensate to regulate the controlled variable to setpoint.  Loop Status (2)

denotes this situation.  Incidentally this result confirms ones intuitive belief that a low

frequency trend will be more visible in the controller output than in the controlled

variable because the controller output will have a higher signal to noise ratio.



9

Second, the results show that, for any specific controller, the ratio, Rn, will be solely

frequency dependent.  Equation 10 shows that it is independent of the value of yη , even

if controller performance is poor.  This means that Rn can be used to distinguish

between certain oscillatory trends because it obtains a value << 1 when the trend is of

low frequency.  Hägglund [11] has pointed out that, if a PI controller is properly tuned,

then usually the integral time constant approximates to the ultimate oscillation period of

the closed loop system i.e. the period of oscillation that occurs when its gain is

increased. Substituting 2

iT
π

ω =  into Equation 10 gives Rn≈1 i.e. Rn will be on the

plateau of the Rn versus ω plot if a loop is oscillating at its ultimate frequency.  This

property can be used to discriminate between an ultimate cyclic oscillation and an

oscillatory disturbance of a lower frequency.  A conservative test can be formulated

based on 2 0.8n n
i

R R
T

ω
 

> = = 
 

, because an ultimate oscillation will have a frequency

of about 2

iT
π > 2

iT
.

Any variation of Rn with time will suggest that there might be some form of low

frequency, non-stationary behaviour, which has a continually shifting dominant

frequency.  Any non-stationary behaviour at higher frequencies would not have any

affect on Rn whereas, as can be seen from Fig. 3, this behaviour at lower frequencies

will result in a significant variation in Rn.  Such variation can be parameterised by

estimating the moving standard deviation, 
nRσ , with time: a large 

nRσ will indicate low

frequency, non-stationary behaviour.

2.2.2  PID

This sub-section examines the extension to PID control.  Most of the results above also

hold for PID control, but with the exception of R.
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Extension 1: If a control loop is under PID control of form 11P d
i

K T s
T s

 
 
  
+ +  and the

process has an oscillatory trend of frequency ω, then

2

2 2
( )2 11

( )

D

i

d d i

QR
T

K K T
ω

ω

=
 
− + + 

 

      (11)

where Kd is the ratio of the controller integral time constant Ti to the derivative time

constant Td,  and QD is a constant as given by equation 44 in the Appendix A.3.

Proof:  See Appendix A.3.

Remark 3: A normalised value of R can be then be defined as:

2

2 2

1
( )2 11

( )

n
D i

d d i

RR
Q T

K K T
ω

ω

= =
 
− + + 

 

(12)

The frequency response of Rn for PID action is shown in Fig. 4(b), which differs from

Fig. 4(a) in that there is no high frequency plateau.  This derivation is for a particular

form of PID controller. The frequency responses of Rn for other forms of PID controller

should have a similar shape, but will have different equations for QD. Equation 43 in

the Appendix A.3 gives a generic way to calculate the value of QD.

2.3 Estimation of yη , uη , Rn and standard deviation of Rn

A moving data window with N latest sampled data, { ( ), 1Y i i N= } and

{ ( ), 1U i i N= }, is used to estimate both yη and  uη  after every sample interval.  Let

the estimation results be the time series ˆ ( )y kη  and ˆ ( )u kη , where k stands for the

discrete time sequence.

Step 1: Normalisation.

The data is normalised as follows:
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( )( ) ,Y

Y

Y iy i µ
σ
−= (13)

( )( ) , 1U

U

U iu i i Nµ
σ
−= =  (14)

where Yµ (or Uµ )and Yσ (or Uσ ) are the sample mean and sample standard deviation

of Y(or U) over N samples.  For computational simplicity, the controller set-point can

be used instead of Yµ  when the set-point does not change, because there is little

difference between them when a loop is well tuned.

Step 2: Extraction of deterministic trends ˆ( )y i  and ˆ( )u i  from ( )y i  and ( )u i .

Many de-noising techniques are available to estimate predictable components from a

time series.  A 30th order d-step ahead AR model with least squares estimation was

adopted in the applications described here, with a data window of length N=1000.  The

choice of prediction horizon d, model order and data window length, was based on the

recommendations of Thornhill et. al. [19], who also discuss how these parameters

affect the models that are obtained.  Note that ey is the same as residual, r, in that paper.

Step 3: Estimation of ˆ ( )y kη and ˆ ( )u kη

Estimates of the signal-to-noise ratio indices yη and uη  can then be derived as:

2
ˆ
2ˆ ( )
y

y
y

e
k

σ
η

σ
= , (15)

2
ˆ
2ˆ ( )
u

u
u

e
k σ

η
σ

= , (16)

where 2
ŷσ  and 2

yeσ  are the sample variances of ŷ  and the residual noise, and 2
ûσ  and

2
ueσ  are sample variances of û  and the residual noise.

An estimate of normalised Rn can then be obtained:

for PI control:
ˆ ( )ˆ ( ) ˆ ( )

y
n

u

k
R k

Q k
η
η

= (17)
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for PID control:
ˆ ( )ˆ ( ) ˆ ( )

y
n

uD

k
R k

Q k
η
η

= (18)

The exponential weighted approach provides an estimate of the sample standard

deviation of Rn, i.e., ˆ ( )
nR

kσ .  The EWMA of Rn, i.e. ˆ ( )
nR

kµ , is first calculated:

ˆ ˆ1 1
ˆ( ) (1 ) ( 1) ( )

n n nR Rk k R kµ λ µ λ= − − + , (19)

and then
2 2 2
ˆ ˆ ˆ2 2

ˆ( ) (1 ) ( 1) ( ( ) )
n n nnR R Rk k R kσ λ σ λ µ= − − + − , (20)

where 1 [0,1]λ ⊂  and  2 [0,1]λ ⊂ are constant factors ( 1 2 0.1λ λ= = were used as

defaults).
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3. LOOP STATUS MONITORING

This Section describes how these statistics can be interpreted to derive the status of a

loop.  A quantitative interpretation is introduced, which will be used to compare the

performances of different loops.

3.1 The Qualitative Loop Status Statistic

Table 1 gives test criteria for PI control.  Note that the criteria involve the loop settling

time, Tst, since this provides discrimination between short-term and longer term

transients.  A short-term transient is deemed to occur if the loop departs from either the

steady state, or compensating condition,  for a time duration that is less than the settling

time i.e. yη >γ & uη >γ over time period : stT T T∆ ∆ < . If a value for Tst  cannot be

obtained, then obviously the relevant transients cannot be sub-categorised as short-term

or long-term.  The standard deviation of ˆ
nR , i.e. ˆ

nRσ , is tested against a tolerance ξ.  A

suitable value for ξ is determined on the basis of simulations of various periodic and

non-stationary trends.  Fig. 5 shows the probability density functions (pdfs) of ˆ
nR  for

these trends.  The shape of pdf( ˆ ( )nR k ) is very narrow ( ˆ 0.02
nRσ < ) for a cyclic type of

trend, whilst the distribution is much wider ( ˆ 0.1
nRσ > ) for a long term non-stationary

disturbance.  A default value of 0.05 is found to distinguish between cyclic and non-

stationary trends.  As explained in Section 2.2, an ultimate cyclic trend occurs in a PI

loop when ˆ 1nR ≈ .  Finally the category ‘critical’ is created to accommodate those test

outcomes, which cannot be attributed to the other statuses.  These test outcomes can

arise when the controller output proves to be ineffective, for instance because the loop

is diverging and/or the controller output saturates.  In all these cases yη ≥γ.  The value

of ratio uη will depend on the situation at that time.  For instance if the controlled

variable is diverging whilst the controller attempts to compensate, uη >γ but 1.2y uη η≥ ,

i.e., 1.2nR ≥  (this tolerance is sufficiently large to accommodate uncertainty in the

value of Q).  Alternatively, the control output might be saturated, and hence constant, in

which case uη  is contrived to be zero.



14

The table for PID control is almost identical with the exception that there is no test for

Loop Status (6) and test ˆ 0.8nR ≥  is eliminated throughout because, referring to Fig. 4,

there is no one-to-one mapping between Rn and the frequency of the trend.  The Loop

Status (6) situation is then recognised as Loop Status (5), which is renamed long-term

cyclic.

A slightly different situation arises if the setpoint is changed whilst data is collected.

As explained in Step 1 of Section 2.3, the controlled variable data set is normalised

with respect to the setpoint unless the setpoint is changed, when mean value Yµ centre-

based values are used instead.  In this case, the effect of a setpoint change can be

likened to that of an external disturbance, which would result in a particular Loop

Status that reflects the trend style of the setpoint change, for example, a step change of

the setpoint will lead to a short-term transient status.  It would be difficult to

distinguish between a frequently changing setpoint and a long term disturbance.

3.2 The Quantitative Loop Status Statistic
A quantitative version of Loop Status, the LS statistic, can be found by assigning the

scores given in Table 2 to each category.  The scores are merely chosen to produce a

statistic that increases as the loop deteriorates.  The quantitative version can then be

filtered, for instance by applying a simple EWMA filter:

 ( ) (1 ) ( 1) ( )LL k LL k LS kλ λ= − − + , (21)

where ( )LL k is the filtered statistic, LS(k) is the score, λ is the filter factor, which is

chosen so that it solely suppresses spikes, and k is the time sequence.  The benefit of

this formulation is that it converges to a value that represents the loop status.

A direct use of this quantitative statistic would be in the provision of an operator aid. A

controller icon on a plant schematic could be made to change its colour or pattern in

response to a change in loop status.  Thus for instance the icon might be changed from

green to yellow, when the controller has to compensate. Before a controller icon could

be displayed properly, the smoothed/filtered LL statistic would have to be converted

back to its qualitative description. The conversion rules are given in Table 3.
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3.3 Examples of Loop Status Monitoring

Three examples are shown in Fig. 6.  The upper panels show what happened when a

slow sensor drift was introduced into a PID loop, the middle panels show the effect of a

sticking control valve in a PI loop, and the lower panels show the effect of a load

change in a PI loop.  The plots show deviations in controlled variables from their

setpoints, controller output deviations from their initial values and the filtered

quantitative statistics LL, all versus time.

A simulated slow sensor drift: the LL value changes to status 1 to indicate that there is

some kind of small disturbance or fault, which has been compensated for by the

controller.

Control valve stick obtained from a real plant: the LL value is at 2.5 and ˆ 0.016
nR

σ = ,

which indicates a low frequency, cyclic trend, which may be caused by a valve problem

(sticking) or some external disturbance.  Plant operators have confirmed that the valve

was sticking.

A simulated change in load: the load change results in a step change in controller output

causing the status to increase transiently.  This indicates a short-term step-style load

disturbance or, perhaps, a sudden change in sensor bias.  In practice the controller

parameters are no longer optimised.

Fig. 7 gives an example of the difference between the long-term sub-categories, non-

stationary and cyclic disturbance.  Focusing on the Rn plots, there is a more pronounced

variation in the non-stationary case, which results in a larger ˆnR
σ .  A value of 0.0126 is

obtained for the low frequency cyclical disturbance, whilst a value of 0.1158 is

obtained when a long-term, non-stationary disturbance is introduced instead.  The

default ξ of 0.05 would discriminate between these two.
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4.  FAULT LOCALISATION IN A NUMBER OF INTERACTING LOOPS

4.1 OLPI Derivations & Fault localisation

The aim is to devise a loop index, the overall loop performance index or OLPI, whose

value is largest for the problem loop.  Thus an index is required that is suitably scaled

(for inter loop comparison) and increases with loop degradation.  Observe that the

larger the value of LL, the worse the loop’s performance, but this is too coarse a

measure for purposes of comparison. On the other hand either ηy or ηu or both will be

large for LS>0, so one possibility might be

ˆ ˆ( ) max( ( ), ( )) /y uOLPI k k kη η γ= (22)

where γ is the same tolerance as before.  Intuitively speaking, an indicative trend should

be strongest in the loop from whence it came, so the signal-to-noise ratio indexes of the

problem loop should be larger than those of affected loops.  However it is important

that the OLPI index should also take the extent of loop degradation into account, and

therefore index LL(k) is incorporated into Equation 22 to give:

 ˆ ˆ( ) ( ) max( ( ), ( )) /y uOLPI k LL k k kη η γ= (23)

This leads to the following localisation and partial diagnosis procedure:

• check OLPI values for each loop within a group of interacting controllers, locate

the loop with the largest OLPI value, and mark this loop as most probably

containing the root cause;

• check the Loop Status of this loop to narrow down the possible causes;

• perform further analyses, such as a non-linearity test [20] and others [15,19], to

diagnosis the fault or disturbance in that loop.

4.2 Examples of OLPI-Based Fault Localisation

Example 1: Real data from an Eastman Chemical plant

Fig. 8 shows steady state data obtained for an Eastman Chemical plant that contains 9

master loops [20].  The Overall Loop Performance Index (OLPI) was evaluated for

each loop by applying a moving data window of 1000 sample points at each time step

assuming that all the setpoints remained unchanged during this period.  All default

thresholds were used.  The OLPI values were then averaged over the two days.  The

results (Table 4) suggest that loop LC2 (tag=22) contains the root-cause, because of its
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largest OLPI value.  Its loop status then indicates that it is operating in a long-term,

cyclic mode. A non-linearity test, applied to this data, has shown that this loop is

operating badly, and this has also been confirmed by plant engineers [20].

Example 2: Case studies from Tennessee Eastman (TE) process benchmark

The benchmark was combined with the plant-wide decentralised control scheme

developed by McAvoy et. al. [21], to which the reader can refer for typical plots.  To

save space, only the plots pertaining to the most important loops are given here.  The

process plant contains multiple control loops as outlined in Table 5: many of these are

standard cascade control systems.  Only the master loops are analysed, because a failure

in an inner loop is likely to be seen as a degradation in the performance of the outer

loop and the setpoints on their inner loops change too frequently. The setpoints of the

master loops remained unchanged. Table 5 also contains values for the threshold

parameters γ, two of which were customised by analysing normal steady state data.

Two case studies are presented: the first demonstrates that the OLPI should be a

maximum for a loop in which a composition has a step change; the second looks at the

effect of a gradual deterioration in the process.  In both cases it was difficult to decide

whether loops 3 and 9 were badly tuned or were continually subjected to excessive

noisy disturbances.

Fig. 9: step change disturbance to Loop 5 (B composition).  Loop 5 regulates the

composition of B by diverting a proportion of the recycle stream out of the process via

a purge valve. The perturbed recycle stream then affects the composition into the

reactor and this disturbs Loop 1 (a cascade system that regulates the A/C component

into the reactor), and the reactor itself. Thus reactor pressure (Loop 3), condenser

cooling water temperature (Loop 4) and eventually the product flow rate (Loop 8) are

affected.  It is easily seen that Loop 5 (Purge composition B purge flow rate cascade

control) has a significantly larger OLPI value than others.  The LL trend of loop 5

confirms that the behaviour is associated with a short-term transient disturbance.  After

a period of time, Loops 1, 4, 5 all return to good conditions (LL=0), whilst Loops 3 and

8 continue to compensate for the change in operating point.
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Fig. 10: slow drift in reaction kinetics.  The reactor is central in the T-E process plant.

Its performance affects the rest of the plant and the plant recycle contributes to the

generation of complicated transients.  Although Loop 3 (the reactor pressure cascade

control loop) is central to its performance, other loops are coupled tightly.  Initially the

change in reactor kinetics causes a small, slow drift in the OLPI’s of at least 5 loops.

However the plant then experiences larger, short-term transients and during this period

the OPLI of Loop 3 rises, significantly, to about a factor of 10 greater than any other

loop.   Application of the localisation procedure thus suggests that Loop 3 contains the

root cause, because the OLPI is considerably greater than others.
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5. CONCLUSIONS

Loop status has been described as a qualitative measure of current loop performance.

The basis for defining seven qualitative descriptions has been given and quantitative

versions of loop status statistics tests have been described that enable a trend to be

categorised. Loop Status monitoring and fault localisation based on a comparison of

overall loop performance indices has proved to be successful and robust by both

simulation and real industrial data analysis. This comparison can point out the problem

loop, and Loop Status information helps to narrow down the possible root cause.

Although the approach has been developed for PI/PID controllers, it should be equally

applicable for those controllers that have a frequency dependent statistic R, which is the

ratio of the signal to noise ratios of the controlled variable and controller output. Thus

the approach is not suitable for a P control loop, because R will always be unity.

Equally it also not feasible for open-loop control, because R is intended to reflect the

relationship between the control error and the controller output, and this does not exist

for an open-loop control system.

This approach is successful when analysing a plant with interacting loops that is

perturbed by ONE dominant deterministic disturbance at a time.  It is unlikely to work

for multiple faults that result in multiple dominant disturbances.  An extension is under

research to accommodate the multiple-faults situation.  Finally the examples have

focused on data obtained from plants in steady state; although more difficult to

interpret, an explanation has been given of how data involving setpoint changes could

be analysed.
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Appendices

A.1  Proof Of Theorem 1

Assume that a closed loop has a sine wave oscillatory trend with frequency ω, then:

ˆ( ) sin( )y t A tω= , (24)

With reference to Section 2.1, assume that the power spectrum, ( )
yeG ω , of ey is

uniform over the bandwidth, that is,

0

0

( )
0ye

G B B
G B

B

ω

ω ω
ω

≤ ≤
= >

 <

(25)

where Nyquist angular frequency B=π/Ts (Ts is sampling time interval) and B0  is low-

band limit.  Define KB: B0 = B/KB.

 Variance of ey: 2
yeσ

0

2
0(0) ( ) ( )

y y y

B

e e eB
R G d G B Bσ ω ω= = = −∫ (26)

Variance of eu: 2
ueσ

According to the input/output power spectrum relationship, the auto-spectrum of eu can

be given by:

 2 2
2 2

1( ) ( ) ( ) 1 ( )
u y ye e p e

i

G H j G K G
T

ω ω ω ω
ω

 
= = + 

 
(27)

where Kp and  Ti are PI controller parameters, and the variance of eu is:

0

2 2
0( ) ( )

u u

B

e e pB
G d G B B K Qσ ω ω= = −∫ (28)

where

 
2

21 sB

i

TKQ
Tπ
 

= +  
 

(29)

Variances of ŷ and û: 2 2
ˆ ˆ,y uσ σ

The s-domain expression of ŷ (t) is:

2 2
ˆ( ) AY s

s
ω
ω

=
+

  (30)

and 2 2

1ˆ ˆ( ) ( ) ( ) 1p
i

AU s H s Y s K
T s s

ω
ω

   = = +   +  
 (31)
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 The controller output can be obtained by Laplace inverse transformation, as

sin (1 cos )p
i

AK A t t
T

ω ω
ω

 
+ − 

 
(32)

Since the data analysis is based on deviation variables, form û(t) by removing the

constant term p

i

K A
Tω

 to give

ˆ( ) sin( )pu t K A M tω β= + (33)

where 2

11
( )i

M
Tω

= + , and  1 1tan ( )
iT

β
ω

−= − ,

The variance of deviations û(t) and ŷ (t) can be given by:

2 2 2
ˆ

1
2u pK A Mσ = (34)

2 2
ˆ

1
2y Aσ = (35)

Signal-to-noise ratio indexes: yη and uη

Substituting the above equations for 2 2 2 2
ˆ ˆ, , and

y uy e u eσ σ σ σ  into Equations 4,5

(Definition 1) yields Equations 7 & 8.

Ratio of indexes: R

Substituting the above equations for yη and uη  into Equation 6 yields Equation 9.

A.2 General deterministic oscillatory trends (PI)

A more general expression for the deterministic oscillatory trend ˆ( )y t  is a Fourier

series representation of sine waves with n components,

1

ˆ( ) ( sin( ))
n

k
k

y t A k tω
=

= ∑ , (36)

where component 1 sin( )A tω is the dominant fundamental component, i.e., ω  is the

fundamental frequency and 1 , 2kA A k n= . 

Applying the Principle of Linear Superposition, the controller output deviation can be

derived as follows:
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1

ˆ( ) sin( )
n

p k k k
k

u t K A M k tω β
=

= +∑ (37)

where 2

11
( )k

i

M
T kω

= +  and 1 1tan ( )k
iT k

β
ω

−= −

The variance of û(t) is:

2 2 2 2 2 2
ˆ

1 1

1ˆ( ) ( sin( ))
2

n n

u p k k k p k k
k k

E u K E A M k t K A Mσ ω β
= =

   = = + =      
∑ ∑ (38)

Note that the mathematical expectations of the terms involving the cross-product of

sinusoids  are zero because of  orthogonality.

The variance of ˆ( )y t  is:

2 2
ˆ

1

1
2

n

y k
k

Aσ
=

= ∑ (39)

The ratio R can be given by

2
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which is the same as for the single sine wave.

A.3 Oscillatory trend with frequency ω (PID)

For a generalised PID controller the ratios R and Rn can be represented as:

D

D

QR
M

=   ;  1
n

D D

RR
Q M

= = (42)
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where QD is a constant and MD is a frequency dependent function.  If the controller has
a transfer function H(s), the analysis of Appendix A.1 can be repeated to produce the
following expression for QD:

0

2

2
0

( )1
B

B
D

p

H j d
Q

K B B

ω ω
=

−
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                     (43)

where Kp is the controller gain,
s

B
T
π

= , and 0B can be chosen as the notch frequency

1

i dTT
.   Thus for a PID controller with transfer function

11p d
i

K T s
T s

 
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where Td is the derivative time constant,
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and Kd is the ratio of Ti/Td.

When Kd→∞, i.e., there is no derivative action, R will equal Q/M, i.e. the result will be

the same as for PI control.  For a normal value of Kd, the nR ω−  relationship will differ

from that of PI control (Fig. 4).  It can be seen that the curve is not a monotonically

increasing function, so the value of Rn cannot be used to determine whether the trend is

of high frequency.
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Criteria Loop Status

ˆyη γ≥ ˆuη γ≥ ˆ 1.2≤nR ˆ 0.8nR ≥ ˆσ ξ>
nR STT T∆ ≥

No No - - - - (1)   Steady

No Yes - - - - (2)   Compensated

Yes Yes Yes - - No (3)   Short-term
        Decaying Transient

Yes Yes Yes No Yes Yes (4)   Long-term
       Non-stationary

Yes Yes Yes No No Yes (5) Long Term
        Low frequency cyclic

Yes Yes Yes Yes - - (6)   Ultimate cyclic

Yes Yes No - - - (7)   Critical

Yes No - - - - (7)   Critical

Table 1 Loop Status Criteria For PI Control

Table 2 Quantitative values of Loop Status

1.1.1.1.1.1.1 Loop Status LS

Steady 0
Compensated 1
Short term transient 2
Long term transient

• Cyclic ( ˆ 3nR
σ ξ≤ )

• Non-stationary ( ˆ 3nR
σ ξ> )

2.5

Ultimately cyclic 3
Critical 4



27

Status Range

Compensated 0.5 < LL < 1.5

Short term transient 1.5 ≤ LL < 2.25

Long term transient

• Cyclic ( ˆ 3nR
σ ξ≤ )

• Non-stationary ( ˆ 3nR
σ ξ> )

2.25 ≤ LL ≤ 2.75 (PI)

2.25 ≤ LL ≤ 3.5 (PID)

Ultimately cyclic 2.75 < LL ≤ 3.5

(only for PI )

Critical > 3.5

Table 3 Rules for converting the filtered statistic LL into a qualitative version

Tag Loop Mean(OLPI) Loop Status

1 PC1 11.6 Compensated

5 LC1 14.3 Long-term transients (cyclic)

10 FC4 48.2 Compensated

13 TC1 38.4 Long-term transients (ultimate cyclic)

16 PC2 < 5 Ultimate cyclic status detected, temporarily, early on.

17 LC3 < 5 Compensated

22 LC2 132 Long-term transients (cyclic)

25 TC2 13 Long-term transients (cyclic)

30 FC7 7 Compensated

Table 4 Loop Status & OLPI for real data from an Eastman Chemical Plant
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Loop Node γ

1 A/C composition  A flow rate cascade control Default

2 G/H composition  reactor level  D,E flow rate control Default

3 Reactor pressure  temperature cascade control 7*

4 Condenser cooling control Default

5 Purge composition B  purge flow rate cascade control Default

6 Separator level  underflow rate cascade control Default

7 Stripper level  product flow rate cascade control Default

8 Product flow rate  C flow rate cascade control Default

9 Product composition E  stripper temperature cascade

control

1.4 *

• Loops 3 and 9 have somewhat non-steady initial behaviours, so customised γ values are used.

Table 5 The nine master loops of TE process benchmark
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Fig. 1 Loop with deterministic disturbance & white noise excitation

Fig. 2 Filtered White Noise Frequency Response For A Typical PI Control Loop

Fig. 3 ηu ,ηy & R relationships when yη =0.5, Q=1 & Ti=20
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Fig. 4 Variation of Rn with Tiω for PI & PID controllers

Fig. 5 PDFs of Rn for 4 trends obtained via simulation
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Fig. 6 Examples of filtered LL Statistics

Fig. 7 Comparison between a low-f oscillation and a non-stationary disturbance
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Fig. 8 Real plant data from an Eastman Chemical Plant

Fig. 9 Step change disturbance to B composition: Data,OLPI & LL
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Fig. 10 Reaction kinetic slow drift: Loop 3 data, OLPI & LL


