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Abstract. In this study the applicability of the lattice Boltzmann method to
oscillatory channel flow with a zero mean velocity has been evaluated. The model
has been compared to exact analytical solutions in the laminar case (Res < 100,
where Re; is the Reynolds number based on the Stokes layer) for the Womersley
parameter 1 < a < 31. In this regime, there was good agreement between numerical
and exact analytical solutions. The model was then applied to study the primary
instability of oscillatory channel flow with a zero mean velocity. For these transitionary
flows the parameters were varied in the range 400 < Res; < 1000 and 4 < a < 16.
Disturbances superimposed on the numerical solution triggered the two-dimensional
primary instability. This phenomenon has not been numerically evaluated over the
range of a or Res currently investigated. The results are consistent with quasi-steady
linear stability theories and previous numerical investigations.
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1. Introduction

This investigation is concerned with the lattice Boltzmann method (LBM) applied to the
generation of the primary instability in oscillatory flow. Oscillatory and pulsating flows
occur both naturally and in engineering applications ranging from chemical mixing and
offshore engineering to respiratory, vascular and acoustic flows. Here, purely oscillatory
flow with a zero-mean velocity in wall-bounded channels is examined. This problem
was chosen to evaluate the LBM applied to unsteady flow as it is one of the simplest
unsteady flows possible, has an exact analytical solution of the Navier-Stokes equations
and can serve as a prototype problem from which conclusions can be inferred for more
complicated non-periodic flows.

For the laminar regime of such flows, experimental and analytical results agree
well and so the LBM is compared to an exact solution enabling the accuracy of the
implemented model to be examined. In the transition regimes there are conflicting
results between experimental measurements [1, 2, 3, 4, 5, 6] and analytical stability
analyses [7, 8] in terms of predicting the phase of the onset of turbulence, with some
stability analyses not predicting instability growth over a large range of wavenumber
and Reynolds number (based on Stokes length) [9]. Evidently numerical modelling plays
an important role in studying such phenomena although there have been relatively few
numerical studies performed relating to purely oscillatory flows in the transition regime,
most notably [10].

The relative merits of the LBM itself are now well established, [11, 12]; it lends itself
naturally to parallel implementation, boundary conditions are easily applied and it is
easily interpreted in physical terms. Historically, the LBM has evolved from lattice gas
models. Lattice gas models belong to a class of cellular automata consisting of a lattice
of sites which can take on a finite number of states. The automaton evolves in discrete
time steps with the state at each site at any time determined by its own state and the
state of a set of neighbouring sites at the previous time step. The lattice gas model
represents fluid particles colliding and propagating throughout a fluid and hence the
ease of physical interpretation. Importantly, the LBM overcomes difficulties associated
with the lattice gas models by considering the evolution of distribution functions rather

than individual fluid particles.

2. Oscillatory Flow

The dominant features of oscillatory flows, in the context of the current investigation, are
characterised by two non-dimensional parameters. The first is the Womersley parameter
o= a\/m with a the channel half-width, w the angular frequency and v the kinematic
viscosity of the fluid. The second is the Reynolds number based on the Stokes layer
thickness, Res = Uyd /v with Uy the maximum amplitude of the velocity and § = {/2v/w
is the Stokes layer thickness. The Stokes parameter A is often used instead of o with

AN=a/s=a/V2
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Previous experimental studies of such flows [1, 2, 3, 4, 5, 6] indicate that there
are three general categories of flow regimes; laminar flow, disturbed laminar flow, and
intermittently turbulent flow. The laminar regime and the development of the primary
instability which is an important mechanism in the transition to intermittent turbulent
flow are of interest in this investigation. For an analytical solution corresponding to the
laminar case [13], consider flow in an infinitely long, two-dimensional channel of width
2a which is being driven by a sinusoidally varying pressure gradient

W e, ()
where the x-axis is in the centre of the channel parallel to the walls, the streamwise
direction, and the y-axis is perpendicular to the walls, the spanwise direction. Here p*
is the maximum amplitude of the sinusoidally varying pressure gradient. Looking for
a solution in which the velocity is independent of the z-position, it is evident from the
continuity equation, that w, takes its boundary value everywhere. Thus the Navier-
Stokes equation reduces to

2
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with boundary conditions t,|,=+, = 0 and where p is the fluid density. Substituting

the expression for the pressure gradient, equation (1), into equation (2) and writing the

velocity as

upy = u(y)e™, (3)
leads to the final form of the equation: 0%*u/dy* — (iwu)/v = —p*/pv. The final

expression for the velocity is [13]

— {i [1 B Cosh[%(a + zoz)g]:| ei“t} ’ )
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where R denotes the real part of the solution. Noting that cosh(a + i) ~ 1 + ia?, for

small o, Equation (4) reduces to
p*

(a* — y?) cos(wt). (5)

Uy ™

- 2up
which is simply a quasi-steady flow in which the velocity profile at any time is the same
as that for Poiseuille flow with the relevant forcing term. For large a we can express
cosh(a + iar) >~ %e|a|ei|a| in which case Equation (4) reduces to

P
o — t); 6
U wpsm(w) (6)

that is, a flat profile across the tube which is oscillating sinusoidally with time.

The second category of disturbed laminar flow refers to observations of small
amplitude perturbations superimposed on the velocity traces during the acceleration
phase of the flow before reverting to the laminar case. The transition of flows to this

category seems to be quite sensitive to the particular experimental set-up, whereas the
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transition to category three, where explosive turbulent bursts are observed towards the
end of the acceleration phase, is much more clearly defined with transition occurring
in the range 500 < Res < 550. These turbulent bursts are largely independent of the
experimental set-up and there is consistent published data available [1, 2, 3, 4, 5, 6].
Despite this, the number of successful theoretical investigations is limited since there is
a lack of derivations of the critical Reynolds number based on linear theories from which
non-linear theories can be developed. It is generally agreed that transition to turbulence
is due to local instabilities in the Stokes boundary layer as long as the boundary layer
is small compared to the physical dimensions of the problem. In view of the general
consensus on the location of the onset of turbulence much of the theoretical work revolves
around studying infinitesimal disturbances in the Stokes layer for which the equations
of motion can be linearized. The problem is generally approached using Floquet or
quasi-steady theories [7, 8, 9]. In quasi-steady theories the spatially dependent profiles
of the flow are examined at different instances in time and therefore the profiles have
only a parametric dependence on time. This method differs from time dependent ones
that use Floquet theory to examine disturbances in the periodic steady state. However
these either do not predict the correct phase for the onset of turbulence or do not predict
instability growth over a large range of Res and wavenumber.

The discord between theory and experiment can be explained by a secondary
instability mechanism whereby the existence of finite-amplitude waves leads to
vortical structures within the flow that are inviscidly unstable to three dimensional
perturbations. The broadband nature of this instability provides a mechanism for the
rapid generation and growth of small scales from a smooth velocity profile. Akhavan
el al. [10] has performed a numerical simulation based on this mechanism which is
consistent with experimental observations.

The transition to turbulence in many shear flows, such as pipe, Poiseuille,
Couette, free shear layer and boundary-layer flows, are the result of instabilities of
two-dimensional equilibrium waves to three-dimensional disturbances. Here we are
concerned with the primary instability which generates the initial two dimensional
disturbance. The range of o or Res currently investigated provides a consistent and
broad evaluation of the phenomenon. In the current implementation an excitation of all
simulated wavenumbers is used as a certain level of noise is always present throughout
the flow field [10]. This differs from previous theoretical and numerical studies which
have largely concentrated on examining growth (or decay) rates of initial perturbations
at critical phases within the cycle and in the case of numerical studies of a single
wavenumber. Furthermore in the case of Akhavan et al. [10], a linearised model of
the Navier-Stokes equation is used. Prior to discussing the results of the simulations,

some theoretical and implementation aspects of the LBM are given.
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3. The lattice Boltzmann model

In the current investigation the LBM is implemented in two dimensions on a square
lattice, using the nine vector model [14], the so-called D2Q9 lattice. The discrete lattice
Boltzmann equation for the particle distribution function takes on a similar form to the

kinetic equation of the lattice gas model

filx+e,t+1) = filx, 1) = Qi(f(x,1)) (7)
where the distribution functions f;(r,?) evolve on a fixed lattice along the links, e,

where ¢ is an integer labelling the link and

(0,0) i =0
e; = (cos[(i — 1)m/2],sin[(z — 1)7/2]) 1=1,2,3,4 (8)
(cos[(1 — B)m /2 + w/4],sin[(s —5)m /2 + w/4]) i=D5,6,T7,8.

The fluid density, p, and velocity, u, at each site can be calculated from the distribution

functions as
p= Zfl and PUo = Zfieiom (9)

where the Greek subscripts represent vector components and summation over repeated
Greek indices is assumed. Using the Bhatnagar-Gross-Krook approximation [15, 16] to
the collision operator greatly simplifies the Boltzmann model with the approximation
given by

0 = Lfix, 1)~ T, 1) (10)

where 7 is the relaxation time and f; is the equilibrium value of the distribution function.
This takes the general form [11],

ﬁ(r,t) =p (ai + biei U+ ci(ei . ’U,)2 + d2u2) 5 = 0, cey 8 (11)
where a;, b;, ¢; and d; are constants that depend on the specific lattice being used
and the required properties of the fluid. The constants a;, b;, ..., d; are chosen so
that the collisions satisfy the conservation of mass and momentum and that the fluid
is isotropic, exhibits Galilean invariance and satisfies the continuity and Navier-Stokes

equations. The values applied here are [14]
a; = Wy, bZ = 3U)Z', C; = 511)2', and dZ = —§’U)i, (12)

where wy = 4/9, w; = wy = w3 = wg = 1/9 and ws = wg = wr = wg = 1/36.
The distribution function can be expanded about the equilibrium value, f; — f; +
ef,t-(l) + 62f2-(2), where € is the Knudsen number which must be small. By substituting this
expansion into Equation (7), performing a Taylor expansion and after some algebraic
manipulation the conservation of mass equation,
dp  Jdpu,
ot oz,

=0 (13)
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can be derived. Similarly a momentum equation can be found as

dpu, 8pu5ua_ dp 0 Jug Oug,
TR P PR P U P P

When the flow speed is sufficiently smaller than the speed of sound, ¢, = 1/4/3 in

lattice units, Equations (13) and (14) represent the Navier-Stokes equation for an

(14)

incompressible fluid in two-dimensions with equation of state p = pc? and kinematic
viscosity v = (27 — 1)/6 [17].

A number of schemes have been proposed to implement a no-slip boundary
condition, see for example [18, 19, 20]. At the boundary there are a number of
distribution functions which are not defined after the streaming action of the LBM
implementation. These are in the directions pointing away from the boundary.
When applying the boundary conditions it is necessary to determine values for these
distribution functions. The simplest method is a bounce-back boundary which is derived
from the lattice gas model in which any particle approaching the boundary is reflected
back in the direction from which it came. An alternative approach proposed by Noble
el al. [18] can be applied to a plane wall parallel to one of the link vectors e;. In this
case there are three unknown distribution functions pointing from the solid boundary
into the fluid. These three unknowns are found such that ", fie;n = t,, where u
is the known wall velocity (zero velocity for a stationary no-slip boundary) and the
internal energy of the system is conserved during the collision. Here both systems of
boundary conditions were implemented; however, the simple bounce back condition
provided adequate accuracy and was therefore applied in all the simulations presented
here. When then bounce back boundary condition is applied at a halfway wall, that is
a wall placed halfway between a row of “boundary sites” and a row of “fluid sites”, the
boundary condition exhibits second-order accuracy [21, 22]. The bounce back condition
is especially useful when considering more complex wall geometries. Periodic boundary
conditions were imposed at the open ends of the channel.

The oscillating pressure variation in Equation (1) was implemented as a body
force F = (p* coswt,0) [23]. This was done by introducing an additional term to the
Boltzmann equation [24], Equation (7) to give

2r — 1

fz(x—l'ezat—l'l) _fz(xvt) = Qz(f(xvt))—l'g u’iFaeia (15)
and re-defining the fluid velocity [24] (Equation( 9)) as
Fy
pPlg = Zfz'@m + 5 (16)

This implementation of a body force can be shown to satisfy the continuity and Navier-
Stokes equations up to second order [24].

In the laminar simulations, the velocities are the same at all points in the stream-
wise direction so a channel length of 5 sites was used to improve computational effi-

ciency. In the turbulent simulations the length of the channel was varied in the range
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2N < M < 10N for selected values of a and Res. Here N is the grid size in the stream-
wise direction. No significant difference were found in the results between the differing
channel lengths in the context of the present work and so a channel length of M ~ 2N
was chosen for computational efficiency. Since a good agreement is observed between
the simulations and the analytic theory in the laminar case and since the simulation can
take a significant number of oscillations to converge from an initially stationary state
the turbulent simulations were initialised with a constant density and with a velocity

calculated from Equation (4).

For the Reynolds numbers considered in this study the turbulent motion can be
simulated directly using the LBM [25, 26]. Martinez et al. [25] use the direct LBM
approach to simulate turbulent flows with Reynolds numbers, Re, as high as 10,000 and
find good agreement between the LBM results and results obtained using a spectral
method. To trigger the turbulence it is necessary to introduce a small random variation
into the simulation in order to disturb the inherent symmetry. This was done by

perturbing the forcing term to produce small irregularities in the flow.

4. Results and Discussion

4.1. The laminar case

Figures 1(a) to (d) compare the exact analytical solutions of Equation (4) to numerically
evaluated velocity profiles across the channel for o =1.085, 5.606 and 30.706. The

velocity is normalised by the term

p*a2

U

[

— 1
2o (17)

which is the velocity that would be observed at the centre of the channel if a constant
forcing term per unit volume of p* were applied in the limit of @ — 0. The y-axis
is non-dimensionalised by dividing by the half-width of the channel as indicated in
Figures 1(a) to (d). The first two graphs (Figures 1(a) and (b)) indicate the evolution
of an oscillation over an entire period at discrete phases wt = n7 /8 of the driving force,
with n an integer, n = 0...15 for & = 5.606. Figures 1(c) and (d) show the evolution of
an oscillation with the velocity increasing over half a period for o = 1.0856 and 30.706

respectively.

Figure 1. Profiles of increasing (growing) (a) and decreasing (b) velocities along the
width of a channel for & = 5.606. Profiles of growing velocity for o = 1.0856 (c) and
a = 30.706 (d). The phase wt indicates the temporal location of the velocity relative
to the forcing pressure gradient and is given by wt = nw/8, where n is an integer,

n=20...15.

Figures 1(c) and (d) indicate respectively that for low and high o values the velocity
profiles approach those limits described by Equations (5) and (6). At intermediate
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values of a, velocity profiles are obtained with characteristic points of inflexion as shown
in Figures 1(a) and (b). These inflexion points are important in the generation and
transfer of turbulence and these are discussed more fully in the following sub-section.
It is evident from the graphs of Figure 1 that the phase is spatially dependent and that
the phase shift between the forcing term and velocity varies as the flow changes from
a viscous dominated system at relatively low values of a to a momentum dominated
system at relatively high values of «, in the laminar regime.

For a quantitative analysis of the errors a global error, £, was defined as

DSl — uix.0)

S o)

where | f(z)| denotes the modulus of f(z). Here the difference between the velocities of

(18)

the exact analytical solution, denoted by the subscript a, and the Boltzmann solution,
denoted by the subscript b, were calculated and then summed over all points on the
discrete lattice and over an entire period of oscillation after a convergence criterion (,

up(x T) — up(x
sz| b( [éb—(}'x’2+T;|( ’t)| §10_7, (19)

X

was attained. Figure (2) graphs the global errors as a function of the channel width M
for a number of different values of . For a given «, as the lattice size was increased
a was kept constant by varying the period T' accordingly within the range 7' > 107
the value of 7 was kept constant. In Figure 2, the straight line has a slope m = —2
indicating that, for 7" > 10, the LBM incorporating the halfway bounce back boundary
conditions and the second-order accurate forcing term, is itself second order in accuracy.
For T < 10° errors become significant and are of the order 7!, consistent with [27]
where oscillatory flow has been investigated for 20 < 7' < 500. He and Luo [28] report a
scheme accurate to second order in time however in the present investigation since 7' is
of order 1076 for the transition simulations of the following section the temporal error

of the current implementation is negligible.

Figure 2. The global error & plotted as a function of the channel width M for
a = 2.00,9.71 and 14.00. The solid curve is a line with slope m = —2.

To determine the compressibility effects, the Mach number, M ¢, was varied over the
range 9.432 x 107* to 3.772 x 10~ by varying the pressure gradient term from 2 x 107¢
to 8 x 107*. The period, viscosity and grid size were kept constant, 7' = 1600, v = 0.066
and M = 80 giving a = 9.708. In all cases the global error was found to be constant
to within £5 x 10" with the difference between results within an order of magnitude
of the numerical rounding error. Therefore the implemented model is effectively incom-
pressible in the laminar regime. We note that with reference to the turbulence regime
mentioned in the following section, the fluctuating velocities at the onset of turbulence
have Mc < 107® with the maximum fluctuating velocities having Mc of order 1072.
Errors due to compressibility scale as O(Mc?) [29, 25] and the value of Mc for the fluc-

tuating velocities is significantly smaller than the value of 0.069 used by Martinez et al.



Lattice Boltzmann simulations of oscillatory channel flow 9

[25] who obtained a good agreement between LBM and spectral simulations of decaying
turbulence. Reider et al. [29] considered the errors for the evolution of a decaying Taylor
vortex and showed that the error decreases with increasing spacial resolution until it
reaches a saturation point at which the error remains constant. The value of the error at
the saturation point is seen to decrease as O(Mc?). The lowest Mach number considered
by Reider et al. [29] is 0.03125 which gives a velocity error due to compressibility errors
of 0.00057. The above considerations indicate that the maximum relative velocity error

associated with compressibility in the turbulent simulations is negligible.

4.2. The turbulent regime

The numerical solutions of the LBM were perturbed to trigger transition. A continual
disturbance was superimposed on the flow with all wavenumbers, A = (A, A,)) in the
range 0 < A, < 27/M,0 < A, < 27/N excited equally, where M and N are the number
of grid points in the streamwise and spanwise directions respectively. The disturbance
had an energy of order 1072, when normalised to the energy of the mean flow is similar
in magnitude to those of Akhavan et al. [10]. This resulted in a velocity U of the form,
U = u + u/, with @ and u’ the mean and fluctuating components respectively. The

averaged velocity U was defined as
a(n,wt) —Z (m,n,wt). (20)

For selected values of o, @ was also averaged over P oscillations, that is

P—1
u*(n,wt) Z n,wt + 2mp). (21)

however u* and @ did not vary significantly in the context of the current discussion.
Furthermore, in the present investigation, [a] >> |u’| and it was noted that calculating
the fluctuating component either as u’ = U — @ or alternatively as u’ = U — u,, where
Ua = {u,(y,t),u, = 0} is given by the exact analytical solution of Equation (4), yielded
results whose differences were negligible for the purposes of the present discussion.

Equation (20) was chosen as the most efficient implementation of the average.

Figure 3. Vector map of the fluctuating velocity after flow reversal showing vortex
interaction for a = 14.1, Res = 800

Figure (3) shows the fluctuating component of the velocity for o = 14.1, Res = 800,
over a section of the channel. Prior to transition the fluctuating component, due to the
numeric perturbation, is several orders of magnitude smaller than that after transition
and there are no clearly defined vortex structures such as those in Figure (3). Transition

is thus very clearly observed. Similar vortex structures were found for all @ and Res
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after the onset of turbulence. Although the vortices interacted in a complex fashion
depending, as expected, on «, Res and the phase wt of the flow, the following general
observations were made. The vortices originated in the Stokes layer at flow reversal,
typically growing and shearing to a size of order §. In some cases several vortices would
form and interact, exchanging momentum under this shearing action. These vortices
close to the boundary set up counter rotating vortices in the main flow which grew to
a size of the order of a. The large rotations tended to sweep the turbulence, generated
close to the boundary, into the main flow where relatively complex interactions between
the small and large eddies and the main flow took place.

These observations can be presented in a more global and quantitative manner by
looking at the turbulent intensity ¢ = v (@2 + EQ), with u/ and u/ the normalised
values of the fluctuating components in the streamwise and spanwise directions
respectively. These profiles are rendered as grey-scale plots of intensity with suitably
non-dimensionalised variables ¢ = q(y/a,wt) for selected values of a and Res in

figure 4.2. Superimposed on these plots are lines of zero velocity which serve as references

Figure 4. Grey-scale maps of turbulent intensity plotted as a function of wt¢ and
non-dimensional channel width, (a) & = 4.5, Res = 850, (b) @ = 7.0, Res = 850, (c)
a = 14.1, Res = 800 (d) o = 14.1, Res = 500. Also shown are lines (dashed) of zero
velocity which serve as references of flow reversal as well as solid lines which indicate
the temporal evolution of inflexion points.

of flow reversal. Lines which correspond to the temporal evolution of these inflexion
points are displayed also. Both these lines were calculated from the exact analytical
solutions of Equation (4). For all a and Res investigated, the primary instability is
triggered in (wt,y/2a) space where flow reversal occurs in the region of a point of
inflexion or a critical layer which can clearly be seen in Figure 4.2 (a)-(d). This is in
agreement with quasi-steady linear stability theories where the least stable eigenmodes
have peak energies in the Stokes layer in the vicinity of inflexion points or critical layers
and occur at the beginning of the acceleration phase. In Figure 4.2 (a), for @ = 4.5,
Res = 850, transition occurs close to the boundary and this is swept rapidly into the
centre of the channel. The turbulence intensity then decreases by almost an order of
magnitude. At wt ~ 3.5(1.17) there is a growth in the turbulence in the region of an
inflexion point, y/a = 0.4, and this propagates into the channel down to y/a ~ —0.5.
The turbulence intensifies and moves towards the centre of the channel over 1/10 of an
oscillation before decaying. As a is increased, Figure 4.2 (b), the turbulence evolves
in a similar fashion with the intensity increasing. The results also suggest that the
instability modes follow the inflexion points as they move away from the wall. Hence
the most intense turbulence does not reach the centre of the channel for higher values of
a, as can be seen in Figure 4.2 (¢). Although Kerczek and Davis [9] concluded that the
instability modes were unable to take advantage of the Rayleigh mechanism to grow,
Monkewitz and Bunster [7] later concluded that the linear transfer of energy between

modes might very well follow points of inflexion.
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With reference to Figure 4.2 (d), with a = 14.1, Res = 500, the initial disturbance
field is localised near the wall with energy peaks near the linear critical layer and
neighbouring inflexion points; we also note that at wt = 27 the disturbance exists
on only one side of the channel. In general, as Res is lowered the frequency of transition
decreases, the intensity of the turbulence is less and the rate and extent of propagation
into the centre of the channel decreases. These general trends can be seen by comparing
Figure 4.2 (¢) and (d), for @ = 14.1, Res = 800, and Res = 500 respectively. Akhavan et
al. [10] investigated the primary instability with o = 14.1 and Res = 1000 using a
spectral method and using a linearised model of the Navier-Stokes equations. The flow
was initially disturbed with a wavenumber A = 0.5 and the evolution of the energy
across the width of the channel was plotted. As in the case of the current investigation
the initial disturbance field was localised near the wall with energy peaks near the linear
critical layer and neighbouring inflexion points with the disturbances quickly migrated

toward the centre of the channel.

4.3. Future Work

The two dimensional analysis presented here is relevant in three dimensional flows since
in the transition regime the primary instability is expected to be two-dimensional.
This primary instability does not appear to transfer energy directly, but aids effective
stretching of the three-dimensional disturbance, an important part of the secondary
mechanism which appears to be responsible for the explosive turbulence observed
in experimental flows towards the end of the acceleration phase. Evidently three
dimensional modelling is required to investigate this further

The evaluation and application of the LBM in the current investigation serves as
a prelude to numerical and experimental studies in vascular applications. Therefore

effects such as elastic boundaries and geometrical effects need to be addressed.

5. Conclusions

The lattice Boltzmann method has been successfully applied to oscillatory channel flow
with a zero mean velocity for a broad range of o and Re;s. In the laminar regime there
was good agreement between numerical and exact analytical solutions. The accuracy of
the implemented scheme was found to be of first order in space and time. The primary
instability was examined and found to be consistent with quasi-steady linear stability

theories and previous numerical investigations.
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Figure 4a



Lattice Boltzmann simulations of oscillatory channel flow

21

Figure 4b
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Figure 4c
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Figure 4d



