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Abstract

In the last five years, the controversy about whether or not gauge transformations

can be empirically significant has intensified. On the one hand, Greaves and Wallace

(2014) developed a framework according to which, under some circumstances, gauge

transformations can be empirically significant—and Teh (2015) further supported this

result by using the Constrained Hamiltonian formalism. On the other hand, Friederich

(2015, 2016) claims to have proved that gauge transformation can never be empirically

significant. In this paper, I accomplish two tasks. First, I argue that there are strong

reasons to resist Friederich’s proof because one of its assumptions is, at the very least,

highly controversial. Second, I argue that, despite criticism by Brading and Brown

(2004) and Friederich (2015), ’t Hooft’s Beam-Splitter experiment is indeed a concrete

example of a case where a local gauge symmetry has empirical significance. By shedding

light on these two points, this paper shows that recent arguments that claim gauge

transformations cannot be empirically significant are not satisfactory.
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1 Introduction

According to conventional wisdom, local transformations, of either the whole universe or of

subsystems within it, never relate universe states that are physically distinguishable from

one another. Recently, however, in a series of papers, many of which have been published

in this journal, the conventional wisdom has come under attack. In particular, Greaves and

Wallace (2014) developed a general framework within which it is transparent that there

are cases where local symmetries produce empirically distinct physical states. By using the
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Constrained Hamiltonian formalism, Teh (2015) further clarifies the conditions under which

this result holds. In response, by generalizing the framework of Greaves and Wallace (GW

henceforth) and by appealing to some very general principles regarding the individuation

and composition of physical systems, Friederich (2015, 2016) has attempted to prove the

result that gauge transformations1 are never empirically significant (that is, they never give

rise to situations that are empirically distinct, but see section 2 for a detailed explanation

of ‘empirical significance’).2 This leads to a puzzle: how can it be that if one adopts GW’s

framework and the Constrained Hamiltonian formalism, then some local transformations

can be shown to be empirically significant and, on the other hand, if one further develops

GW’s framework and adopts some general principles about the individuation of subsystems,

then suddenly gauge transformations can be proven to lack empirical significance? One of

the two main goals of this paper is to offer a solution to this question.

Friederich, who is very much aware of the puzzle just introduced, proposes some sort

of pluralism according to which different answers regarding the empirical status of gauge

symmetries are all acceptable because they come from different (possibly incompatible)

frameworks that disagree, among other things, about how to individuate physical subsys-

tems (Friederich, 2016, p. 9). In this paper, I will offer a different (non-pluralistic) solution

to this dilemma. In particular, I will show that the tension between the results of GW

and Teh on the one hand, and the results of Friederich on the other, is not a matter of

incompatible frameworks, but a consequence of the fact that Friederich’s proof involves

1In this paper, I follow physicists in using ‘local transformations’ and ‘gauge transformations’ as inter-
changeable. As I use it here, a local (or a gauge) transformation is a function from space-time to a gauge
group.

2It is worth mentioning that Brading and Brown (2004) and Healey (2009) also offer arguments with
the purpose of defending the conventional wisdom, but for the sake of space, I will restrict this particular
discussion to the debates between Greaves, Wallace and Teh, on the one hand, and Friederich, on the other
(for a recent argument against the conventional wisdom from the perspective of the Standard Model, see
Dougherty (2019)).
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seemingly false assumptions. In particular, as I will explain in detail in section 3, Friederich

introduces an assumption that entails—contrary to both GW and Teh’s detailed analyses

on this matter—that neither the asymptotic behaviour of gauge transformations, nor the

relations between subsystem transformations and environment transformations, are of any

relevance to the empirical significance of subsystem transformations.

The second goal of this paper is to show that, despite criticism by Brading and Brown

(2004) and Friederich (2015), ’t Hooft’s Beam-Splitter experiment is indeed a concrete

realization of a case where a local gauge symmetry has empirical significance. As I will

explain in section 4, the main problem with these criticisms is that they mischaracterize the

feature that provides empirical significance to the symmetry at hand. Thus, by clarifying

how ’t Hooft’s Beam-Splitter is indeed an experiment where a gauge transformation is

empirically significant, and by showing that Friederich’s proof does not work, I will reinforce

GW and Teh’s claim that local gauge transformations can be empirically significant.

The structure of the paper goes as follows. In section 2, I explain why Greaves and Wal-

lace and Teh think that, simply as a matter of very general considerations, local symmetries

can be empirically significant. In section 3, I discuss Friederich’s alleged proof that local

symmetries can never be empirically significant, and I argue that it is not sound. In section

4, I argue that the main arguments against the view that ’t Hooft’s Beam-Splitter exper-

iment constitutes an empirical realization of a local symmetry with empirical significance

do not succeed.

2 Greaves and Wallace’s formalism

There are three main distinctions we should be aware of for the upcoming discussions.

One is the distinction between external and internal symmetries. An external symmetry
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is a transformation of the space-time parameters of a theory (for instance, x, y, z, t) and

an internal symmetry is a transformation of any other parameter that is not a space-time

one. For example, boosts and rotations are external symmetries, whereas transformations

of the phase of a wave-function are internal. The second distinction is that between global

symmetries and local symmetries. Roughly, a local symmetry is a transformation from

space-time to a gauge group, whereas a global transformation does not depend on space-

time. For example, transformations of the four-vector potential in electromagnetism are

local transformations, whereas boosts are global transformations. Now, it is helpful to note

that the terms ‘gauge transformation’ and ‘local transformation’ are sometimes taken to

mean transformations that relates different descriptions of the same physical state. Clearly,

this is not what it is meant in this paper for otherwise there would not be any substantive

question about the empirical significance of these transformations.3

The third important distinction is that between symmetries of a subsystem and symme-

tries of the whole universe. As the name indicates, a symmetry of a subsystem (a system

that is not the universe itself) relates states of the subsystem, whereas a symmetry of the

whole universe relates states of the universe. I will follow Greaves and Wallace (2014) in

taking symmetry-related states of the universe to always represent empirically indistinguish-

able states of affairs. Furthermore, I will say that a symmetry lacks empirical significance

if and only if any two symmetry-related states of the subsystem (or the universe) are em-

pirically indistinguishable (or, equivalent, I will say that in such a case, the symmetry is

not empirically significant). Obviously, then, from GW’s set-up it follows that symmetries

of the universe lack empirical significance. On the other hand, I will say that a symmetry

is empirically significant if there exists at least two symmetry-related states which are em-

3Teh (2015, p. 97) calls ‘Redundant’ local transformations defined in this way (that is, defined as
transformations that relate redundant descriptions), and ‘Formal’ those local transformation from space-
time to a gauge group.
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pirically distinguishable.4 For example, a world where a certain ship is at rest with respect

to the shore and a world where the same ship is moving with respect to that same shore

are empirically distinct worlds, and so the symmetry relating the states of the ship (for

example, a given boost) is an empirically significant symmetry. But a boost is an external

symmetry, and in this paper we will exclusively focus on internal local transformations of

subsystems. According to conventional wisdom, these always lack empirical significance.

In order to tackle the question of what precise conditions have to be satisfied for a

symmetry to be empirically significant, GW develop a general framework that allows us to

answer that question for different kinds of theories and systems. Here I will briefly introduce

the essential concepts of that framework.

At the heart of GW’s proposal is the remark that we should be able to split states of the

whole universe into states of subsystems of the universe. In particular, one of GW’s main

assumptions is that we should be able to describe the state of the universe, u, in terms of a

tuple of the state of a subsystem s and the state of the environment, e: u = 〈s, e〉 (here u is

an element of the set U that contains all physically possible universe states, s is an element

of the set S that contains all physically possible states of the subsystem, and e is an element

of E, the set containing all physically possible states of the environment). Importantly, GW

introduce an operation denoted by ‘∗’ that should be interpreted as follows: ‘s1 ∗ s2’ means

‘the composition of state s1 and state s2’. So, in particular, u = 〈s, e〉 can be written as

u = s∗e. Importantly, not every combination of states of the environment and states of the

subsystem will yield a well-defined state of the universe, and so s ∗ e will not always yield

a state u in U (so U is a subset of the Cartesian product S× E, see (Greaves and Wallace,

4For this reason, symmetries of the universe are sometimes called ‘theoretical symmetries’ and some
symmetries of subsystems are called ‘empirical symmetries’ (Healey, 2009). However, I will not be using
that terminology here. Others use the term ‘Direct Empirical Significance’ to refer to what I am here calling
‘empirical significance’ (for example, see Brading and Brown (2004), Friederich (2015) or Teh (2015)).
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2014, p. 68)).

Next, let’s consider how GW represent symmetries in this formalism. A given symmetry

σ of the universe acting on a state of the universe u gives us a new state u′ in U: u′ = σ(u)

(unless the symmetry in question is the identity, in which case u′ = σ(u) = u). And just

as universe states can be decomposed into states of the subsystem and the environment,

symmetries of the universe can be uniquely decomposed into symmetries of the subsystem

and the environment. In particular, for all s ∈ S, e ∈ E, σ(u) = σ(s ∗ e) = σS(s) ∗ σE(e)

where σS is the restriction of σ to the subsystem and σE is the restriction of σ to the

environment).

We have now the main ingredients needed to answer the question of when, according to

GW, subsystem symmetries are empirically significant (recall that a universe symmetry al-

ways relates empirically equivalent states of the universe, and so only subsystem symmetries

can be empirically significant). According to GW, the distinction between symmetries that

are empirically significant and those that are not does not hinge, as conventional wisdom

has presupposed, on a distinction between global symmetries and local symmetries. Rather,

it hinges on a distinction between what GW call ‘interior’ and ‘non-interior’ symmetries (we

should not confuse interior symmetries with internal symmetries).

Interior symmetries: A subsystem symmetry σs is interior iff for all s ∈ S and

all e ∈ E for which s ∗ e is defined, σs(s) ∗ e is well-defined and it is empirically

equivalent to s ∗ e.

In other words, if σs is interior, then if we start with an arbitrary universe state s ∗ e

and apply σs to s, we recover an empirically equivalent state of the universe. Thus, only

non-interior symmetries could be empirically significant.

According to GW, there are two main cases in which a subsystem symmetry can be
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empirically significant: first, a symmetry can be empirically significant if, for some states

s and e, (a) s ∗ e and σs(s) ∗ e are both well-defined and (b) they represent empirically

distinct states of the universe. Indeed, this is precisely the case of a ‘Galileo-ship scenario’;

if we represent the ship at rest with respect to the shore by s ∗ e, then we will represent the

ship moving with respect to the shore by σs(s) ∗ e (where σs is a boost, and the state of the

environment stays the same), and clearly, s ∗ e and σs(s) ∗ e are empirically distinct states

of the world. I will call this kind of case, where the symmetry is empirically significant in

the way a Galileo-ship case is, ‘Type I’.

Importantly, notice that measurements confined to the subsystem alone (to the ship

cabin in the last example) or measurements confined to the environment alone (to the shore)

would not be able to distinguish between s ∗ e (the ship at rest) and σs(s) ∗ e (the ship

moving). Thus, the empirical content of such a symmetry is associated with measurements

of relational properties between the environment and the subsystem. For example, the

boost of the ship obviously induces changes in the relative speed between the ship and the

shore.

Second, for cases where the subsystem is not appropriately isolated from the environ-

ment, it can happen that the symmetry in question disrupts the relevant boundary condi-

tions so that it maps a well-defined state s∗e of the universe to an ill-defined state σs(s)∗e.

In that case, the action of the symmetry requires us to alter the environment state, e 7→ e′,

in such a way that σs(s) ∗ e′ is then well-defined (here e′ and e are physically distinct states

of the environment). Notice that a Faraday cage scenario in electrostatics is an example of

this kind of case—henceforth ‘Type II’ case—, where the subsystem is the interior region

of the cage and the environment is the surface of the conductor. As we know, shifts in the

scalar potential in the interior (these shifts are both an internal and a global symmetry)

are associated to changes in the surface charge. And changes in the surface charge are
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detectable changes of the state of the environment. However, the main debate around the

empirical status of gauge transformations has centered around Type I cases, and in this

paper I will follow the literature in that respect.5

The crucial take-away message of GW’s framework, for the purposes of the present paper,

is this: GW’s description of Type I cases is general enough that it does not specify anything

about the kind of subsystem symmetry or the kind of physical theory we are dealing with.

That is, on the face of it, GW’s framework is so general that it not only accommodates

Type I cases involving global symmetries (such as a classic Galileo ship scenario) but, more

interestingly, it seems to allow for Type I cases of local symmetries. In particular, a Type I

case for a local symmetry σs would be one for which (a) for some states of the subsystem,

s ∗ e and σs(s) ∗ e are both well-defined, and (b) s ∗ e and σs(s) ∗ e represent empirically

distinct states of the universe. Not only does their framework allows for the possibility of

local transformations that are empirically significant (a possibility that Brading and Brown

(2004, p. 657), Healey (2009) and Friederich (2015) want to deny)6, but GW also say that

’t Hooft’s Beam Splitter experiment is precisely a concrete realization of a local Type I

case. As we will study to greater detail in section 4, ’t Hooft’s Beam Splitter corresponds

to a modified version of a standard double-slit experiment, where one adds a phase-shifter

behind one of the slits. For GW, the change in interference pattern coming from the phase

shift on the corresponding beam suggests that a local transformation can be empirically

significant.

So far the discussion has been very general, and so, at this point, it would be helpful to

say a bit more about the conditions under which local gauge transformations can lead to

5For a careful recent analysis of Type II cases in the context of gauge theories, see Murgueitio Ramı́rez
and Teh (2019).

6For example, Brading and Brown (2004, p. 657) say that ‘in conclusion, there can be no analogue of the
Galilean ship experiment for local gauge transformation’. And Friederich (2015), as we will see in section 3,
intends to prove this.
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Galileo ship-type scenarios. By using the Constrained Hamiltonian formalism, Teh (2015)

sheds light onto those conditions by showing that the empirical significance of a gauge trans-

formation is sensitive to the asymptotic behaviour of the transformation.7 In particular,

he explains that we should formally distinguish between the group of the so-called ‘small’

gauge transformations (transformations that, asymptotically, can be smoothly deformed to

the identity), and the group of ‘large’ gauge transformations (transformations that cannot

be smoothly deformed to the identity)(Teh, 2015, Sec. 4). Indeed, we should distinguish

between three subgroups of the group of gauge transformations G. One is G∞0 , the group of

gauge transformations that, asymptotically, is smoothly connected to the identity. Another

one is G∞, which corresponds to the group of transformations that go asymptotically to

the identity (but might not be smoothly deformed to the identity). Finally, there is GI , the

group of transformations that leave invariant the boundary conditions of the fields (so that

the subsystem remains invariant). Then, we get the following hierarchy (2015, p. 115):

G∞0 ⊂ G∞ ⊂ GI ⊂ G. (1)

G∞0 contains all the small gauge transformations and these cannot exhibit empirical

significance (they are ‘interior’ in GW’s sense). Therefore, the only candidates of gauge

transformations that can be empirically significant are those in GI (for they need to pre-

serve the boundary conditions in order to count as a Type I case) that are not in G∞0 (for

instance, those in GI/G
∞
0 ). These are then the ‘large’ transformations, and the way they

are empirically significant is by inducing relational changes with respect to an environment

(where the environment here is taken to correspond to a fixed frame at the asymptotic

7In this paper, I do not examine ‘non-asymptotic ways’ by which local transformations can be empirically
significant (but see Gomes (2019a) and Gomes (2019b) for very recent studies of those cases).
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boundary).8 Finally, let us point out that Teh also agrees with GW that ’t Hooft’s Beam

Splitter experiment offers an example of a local transformation that has empirical signifi-

cance (Teh, 2015, p. 109).

3 Friederich’s proof

At this point, someone defending the orthodoxy—in this particular context, the view that

Type I cases of local symmetries are impossible—can proceed in at least two ways. She could

either try to resist GW’s general framework altogether, or she could endorse the framework

(or part of it) and show that, despite the fact that it seems to allow for the possibility of

Type I cases of local symmetries, there are reasons to believe that Type I cases of local

symmetries are impossible (of course, that person would also have to explain why Teh’s

analysis of the constrained Hamiltonian formalism is problematic, but let me focus here

on GW’s general framework). Although in this paper I will be concerned with the second

route, let me briefly offer three reasons for why the first route—the total rejection of GW’s

framework—does not seem to be a very promising way of defending the orthodoxy.

First, GW’s framework elegantly classifies uncontroversial cases of empirical significance.

It makes precise how external transformations (such as boosts and rotations) of isolated

subsystems can be empirically significant; how shifts in the scalar potential in the interior

of a conductor are empirically significant in the case of electrostatics; and, finally, it explains

the manner in which gauge transformations that asymptote to the identity (and hence are

trivial there) are to be understood as mere redundancies of our descriptions of the subsystem

at hand. Thus, at least with respect to these uncontroversial cases, the framework seems

8Teh points out that for a long time, physicists have taken seriously the possibility of local symmetries
exhibiting Type I empirical significance. And indeed, ‘large’ transformations are crucial to the construction
of charges.
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to be on the right track.

Second, the framework has the virtue of being so general that it can easily be applied

to many different physical theories. Indeed, it is hard to imagine that the framework could

not be applied to a given physical theory, for as long as the theory in question deals with

the state space of a system, transformation rules between these states, and composition

rules for states of different subsystems (all of which are very general features of physical

theories), then GW’s framework could be applied to that theory. Thus, if our project is

that of answering when symmetries are empirically significant, it seems that rejecting a

framework that is capable of modelling very different physical theories is not the best way

to go (unless a replacement is put forward). And third, as far as I know, nobody has offered

reasons to reject the framework itself (of course, rejecting the framework merely as a result

of it entailing that there could be local symmetries with empirical significance would be

question-begging in the context of the present dispute).

Let’s consider now the only argument in the literature that, while explicitly accepting

GW’s framework, attempts to prove that Type I local symmetries are impossible. In partic-

ular, the argument intends to show that ‘on a natural development of the Greaves-Wallace

framework, a version of the standard view can be vindicated, which says that only global

symmetries can have direct empirical significance’ (Friederich, 2015, p. 540). Or as he puts

in his 2016 paper (my emphasis):

as I will show, one obtains a result according to which all (subsystem-restricted)

gauge transformations in local gauge theories are without any direct empirical

significance, whether or not they reduce to the identity transformation on the

subsystem boundary and whether or not they connect topologically inequivalent

configurations (Friederich, 2016, p. 5).
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At this point, the puzzle mentioned in the introduction appears. How can it be that

on the one hand, according to both GW’s framework and the Constrained Hamiltonian

formalism, local gauge transformations that are not trivial at the boundary with the envi-

ronment can be empirically significant, and yet, on the other hand, gauge transformations

can be proven to always lack empirical significance? Friederich, who is aware of this puzzle,

suggests some sort of pluralism according to which different answers regarding the empirical

status of gauge symmetries are all acceptable because they come from different (possibly in-

compatible) frameworks (Friederich, 2016, p. 9). As I will explain now, however, there is no

need to adopt this kind of pluralism around the empirical significance of gauge symmetries,

for there are important problems with the proof by Friederich.

The following fact about gauge symmetries plays a crucial role in the upcoming argu-

ment:

FACT*: Any local symmetry σs defined on a subsystem S can be extended

to an interior symmetry defined on a larger subsystem V of which S is a part

(Friederich, 2015, p. 548).9

In other words, FACT* says that we can always extend a subsystem gauge transforma-

tion σs in such a way that its extension, σse, can be smoothly deformed to the identity at

some point in the environment (here the subscript ‘se’ stands for ‘extension of the subsystem

symmetry’). The total transformation thus obtained (the one given by the initial symmetry

and its extension) is interior on a bigger subsystem (see figure 1 for an illustration).

For the sake of simplicity, let me call ‘trivial extension’ any extension of a subsystem

symmetry σs such that asymptotically can be smoothly deformed to the identity (notice

9Although in his (2015) paper this fact was taken to be an assumption (there called ‘Ext’ for ‘extend-
ability’), it is stated as a derivable fact of gauge theories in his (2016, p. 9) paper.
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Figure 1: An illustration of FACT*. On the left, we have a gauge transformation σs
acting on the subsystem S. On the right, we extend this symmetry by means of σse, a
transformation that asymptotically can be smoothly deformed to the identity. The resulting
symmetry σv = σs ∗σse is interior on the bigger subsystem V (V is the subsystem consisting
of S and the region labelled ‘M ’ in the figure). Notice that M together with E′ constitute
the environment of S (that we call ‘E’).

that the composition of the original symmetry with a trivial extension constitutes an interior

symmetry). With this terminology, we can rewrite FACT* as follows:

FACT: for any gauge symmetry σs, there is always a trivial extension σse.

Besides FACT, Friederich’s proof requires three other assumptions that he calls ‘DES’,

‘SUL’ and ‘MAH’. He also uses the symbol ‘∼’ to express the relation of representing or

denoting the same physical state (2015, p. 546). In particular, ‘s ∼ s′’ means that s and s′

represent (or denote) the same subsystem state, ‘u ∼ u′’ means that u and u′ represent the

same universe state, and so on. Notice that if u ∼ u′, then the physical state represented by

‘u’ and the physical state represented by ‘u′’ are, trivially, empirically equivalent because

these are one and the very same physical state. And for Friederich, if the physical state

represented by ‘u’ and the physical state represented by ‘u′’ truly are empirically equivalent,

then these physical states must be one and the same. In particular, he says that ‘s and s′

designate the same physical state if they are empirically equivalent both from within the
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subsystem and from the perspectives of arbitrary external observers’ (2016, p. 4). Hence,

‘physical equivalence’ (‘∼’) and ‘empirical equivalence’ are themselves equivalent terms.

The assumption denoted by ‘DES’ says the following:

(DES): A subsystem symmetry σs has direct empirical significance iff σs(s) � s

for some s.

Now, in order to explain how the notion of direct empirical significance connects to

universe states, Friederich introduces the following assumption:

(SUL): For all s, s′ ∈ S,

s ∼ s′ iff s ∗ e ∼ s′ ∗ e for all e ∈ E for which s ∗ e and s′ ∗ e are defined.

If we take DES and SUL together, the following result follows immediately:

DES-SUL: if s ∗ e and σs(s) ∗ e are empirically distinct states of the universe for

some e for which they are well-defined (if s ∗ e � σs(s) ∗ e), then σs has (direct)

empirical significance.

Notice that DES-SUL essentially states what a Galileo-ship case is, where the environ-

ment is not altered and only the subsystem state is transformed.

Finally, Friederich introduces an assumption related to how the states of composite

systems relate to the states of the subsystems. To facilitate the presentation of both the

assumption and the proof, it will be useful to distinguish between three regions of the

universe, namely, the region corresponding to subsystem S (with states s ∈ S), the region

corresponding to subsystem M (with states m ∈ M), and the region corresponding to E′

(with states e′ ∈ E′). As figure 1 illustrates, region M together with region E′ constitute the

environment E (with states e ∈ E) of S. Also, S together with M correspond to a subsystem
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V (with states v ∈ V) whose environment is E′. Given this, the very same universe state

can be written in different ways depending on what subsystems we are focusing on. For

example, a given universe state u can be written as u = s ∗m ∗ e′ if we focus on S, M and

E′, or it could be written as u = s ∗ e if we focus on S and E (with e = m ∗ e′), or it could

be written as v ∗ e′ if we focus on V and E′ (with v = s ∗m).10 We then have all the tools

to properly understand the next assumption.

(MAH): For all s, s′ ∈ S and m,m′ ∈M,

if s ∗m ∗ e ∼ s′ ∗m′ ∗ e for all e ∈ E for which s ∗m ∗ e and s′ ∗m′ ∗ e are defined,

then s ∼ s′ and m ∼ m′.

Roughly, MAH says that if two universe states are empirically equivalent, then the

apparently distinct subsystem states of those universe states are actually one and the same

physical state (recall that ‘s ∼ s′’ means that ‘s’ and ‘s′’ denote the same state). And so, in

particular, it follows from MAH that if s ∗m ∗ e ∼ σs(s) ∗ σm(m) ∗ e for all e for which they

are defined, then s ∼ σs(s). Given DES, this means that σs is not empirically significant.

Given these ingredients, we can run Friederich’s proof:

(1) Consider an arbitrary gauge transformation σs of a subsystem S, and an arbitrary

state s ∈ S.

(2) From FACT, it follows that there is a Trivial Extension σse of σs.

10Notice that when Friederich uses ‘∗’, he is not using it exclusively as an operation between two states
that together form a universe state (even though this was the way Greaves and Wallace (2014, p. 68)
introduced it). For example, when he writes things such as ‘s ∗m ∗ e′’, we see that s ∗m and m ∗ e′ are not
universe states but rather subsystem states. So Friederich uses ‘∗’ as a generic operator that represents the
composition of subsystem states independently of whether or not these states form a putative universe state.
For simplicity, instead of introducing a new symbol to represent the operation in question, I will just follow
Friederich’s conventions. For convenience, I will also use ‘∗’ to denote the composition of symmetries, such
as when we write σs ∗ σm (it should be obvious from context how the symbol in question is being used).
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(3) The transformation consisting of σs and σse, σv = σs ∗ σse is interior. That is,

σs(s) ∗ σse(m) ∗ e′ ∼ s ∗m ∗ e′ (for all e′ for which these are defined).

(4) From MAH, it follows that σs(s) ∼ s.

(C) From DES, it follows that σs is not empirically significant.

Although the proof is logically valid, there are good reason to doubt its soundness. For

notice how the proof works: it uses the fact that local transformations that are trivially

extended do not lead to empirically distinct states of the universe (for instance, it uses the

fact that σs(s) ∗ σse(m) ∗ e′ ∼ s ∗m ∗ e′) in order to conclude that no local transformation,

including the ones that are not trivially extended, is empirically significant. The problem

with this kind of argument is that transformations that are trivially extended are a very

particular type of transformation because they exhibit features (to be explained below) that

transformations that could be empirically significant do not. Thus, we should not expect

that trivially extended transformations offer reliable guidance regarding the empirical signif-

icance of precisely those transformations that are putative candidates for being empirically

significant. Having said this, the proof is logically valid, and so to resist it we need to reject

at least one assumption.

3.1 Problems with the proof

It is not hard to realize that the most controversial assumption is MAH. For notice that

MAH allows us to assert a very general claim about the (lack of) empirical significance of

σs just from the fact that universe state σs(s) ∗ σse(m) ∗ e′, where σs is trivially extended,

is empirically equivalent to universe state s ∗ m ∗ e′ (see steps 3 and 4 of the proof). In

particular, MAH links the empirical equivalence between σs(s) ∗σse(m) ∗ e′ and s ∗m ∗ e′ to

both σs(s) ∼ s and to σse(m) ∼ m. But if ‘s’ and ‘σs(s)’ denote the same subsystem state
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(for instance, if σs(s) ∼ s), and if ‘m’ and ‘σse(m)’ also denote the same subsystem state,

then, obviously, ‘σs(s)∗σse(m)∗e′’ and ‘σs(s)∗m∗e′’ denote the same universe state whenever

these states are well-defined. But that this follows from MAH is precisely the reason this

premise is controversial. For the states σs(s) ∗ σse(m) ∗ e′ and σs(s) ∗m ∗ e′ are different

in at least three relevant respects. First, the environment state of S in σs(s) ∗ σse(m) ∗ e′

is σse(m) ∗ e′, which is different from m ∗ e′—the environment state of S in σs(s) ∗m ∗ e′.

Second, and related to the first point, in universe state σs(s) ∗ σse(m) ∗ e′, σs is trivial on

the boundary between S and M . However, in universe state σs(s) ∗m ∗ e′, σs is not trivial

on the boundary between S and M . Third, the asymptotic behaviour of σs is very different

in both cases. In one case it goes to the identity, in the other one it does not. I will now

explain why these three differences are crucial to the question of the empirical significance

of σs(s), which will in turn explain why MAH is problematic.

3.1.1 Problem 1: from changed to unchanged environment states

Let’s start by recalling from section 2 what a standard ‘Galileo-ship case’ of empirical

significance is (I called it a ‘Type I’ case). This is a case where the subsystem is transformed

and the environment is not. In particular, it is a case where s ∗ e and σs(s) ∗ e are both

well-defined and represent empirically distinct states of the universe. In the present context,

where m∗e′ is the state of the environment of S, this means that σs(s)∗m∗e′ and s∗m∗e′ are

both well-defined and represent empirically distinct states of the universe. Having said this,

notice that in Friederich’s proof we do not explicitly consider whether or not σs(s) ∗m ∗ e′

and s∗m∗e′ are empirically equivalent—which is the question we are ultimately interested in

answering when asking about σs’s empirical significance. Rather, in the proof, we are asked

to compare σs(s) ∗ σse(m) ∗ e′ and s ∗m ∗ e′ and to notice they are empirically equivalent.

And due to MAH, we can then infer that σs(s)∗m∗e′ and σs(s)∗σse(m)∗e′ are empirically
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equivalent simply because σs(s) ∗ σse(m) ∗ e′ and s ∗m ∗ e′ are (assuming, again, that all

these are well-defined universe states). But this kind of inference should be particularly

controversial because the environment state of S is not the same in σs(s) ∗ σse(m) ∗ e′ and

in σs(s) ∗m ∗ e′—in the first case, it is σse(m) ∗ e′ and in the second is it is m ∗ e′.

To reinforce this last point, let me note that, prima facie, the empirical significance of a

subsystem transformation should depend on whether or not the environment is transformed.

For example, in a universe with two objects, a boost of one object will be empirically signifi-

cant if the other object (the environment) is not boosted, but it is not empirically significant

if that second object is boosted in the same way. In general, whether a transformation is

empirically significant (in the Galileo-ship sense) should depend on whether or not the envi-

ronment is transformed. Yet, if MAH is true, then the transformations on the environment

(given by m ∗ e′ 7→ σse(m) ∗ e′ in our case) are not relevant to the empirical significance of

local transformations σs in the subsystem.

3.1.2 Problem 2: from triviality on the boundary to non-triviality

Second, in the context of field theories, GW are clear that Type I cases will only occur

when σs is not trivial on the boundary with the environment (2014, p. 79). This is due

to the fact that the empirical significance of Type I cases is due to relational differences

between the subsystem and the environment, and such relational differences require that the

transformation in question is not trivial on the respective boundary with the environment.

In the present context, for it to produce relational changes, σs must not be trivial on the

boundary between S and M (recall that M is contiguous to S). But how do we know that

σs is not trivial on the boundary with M? The answer depends on what transformations we

consider on M . If we do not change M ’s states, then any transformation σs that does not go

to the identity on a neighbourhood of the boundary with M will not be trivial (as in the left
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image of figure 1). However, if we change the states in M , then to determine if σs is trivial

or not requires finding out if the shift induced by σs on states in a neighbourhood of the

boundary is of the same magnitude as the shifts induced by the transformation σm acting

on states m ∈ M on the boundary. If the shifts are of the same magnitude (for instance,

σs|∂S − σm|∂S = 0), so that σs ∗ σm is continuous on the boundary, then σs is indeed trivial

on the boundary and will not induce the relational changes required for Type I cases (as

in the right image of figure 1). If, on the other hand, the shifts on the boundary are not

the same and a discontinuity between σs and σm arises, then σs will not be trivial on the

boundary and so might be empirically significant. Having said this, it is clear that σs cannot

produce any relational differences with respect to M in universe state σs(s) ∗ σse(m) ∗ e′,

for in that case it is trivial on the boundary (σse and σs perfectly match in the boundary).

So it is clear that for GW, σs(s) ∗ σse(m) ∗ e′ is not a universe state that is relevant for

the investigation of σs’s empirical significance. And yet, according to MAH, cases where σs

is trivial on the boundary (for instance, σs(s) ∗ σse(m) ∗ e′) suffice to prove that σs is not

empirically significant even when it is not trivial in the boundary. We should be doubtful

of a principle that helps us prove a very general result just from the consideration of a very

particular kind of case (i.e, the case where σs is trivial on the boundary).

3.1.3 Problem 3: from small transformations to large transformations

Third, Teh’s analysis directly contradicts MAH (in footnote 28, Teh explicitly says that

MAH is problematic (2015, p. 110)). For recall that one of the main points of Teh’s

analysis is that the asymptotic behaviour of σs (its ‘extension’) is central to its empirical

significance. In particular, as we discussed in section 2, Teh shows that we need to distin-

guish between ‘small’ transformations (those that asymptotically can be smoothly deformed

to the identity) and ‘large’ transformations (those that cannot be smoothly deformed to the
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identity but still satisfy the subsystem’s boundary conditions). Teh clearly explains that

only large transformations can be empirically significant. However, according to MAH, it

is sufficient to use small transformations in order to derive the result that large transfor-

mations are not empirically significant. To be as explicit as possible, let me prove this in

three main steps.

STEP 1: consider a universe state with three regions, S, M and E, and assume that E

is asymptotically far away from S. Now consider a transformation given by σs ∗ σse (where

σse is a trivial extension of σs) that asymptotically goes to the identity (in particular,

the transformation vanishes at E). Thus, σs ∗ σse is a small transformation and so lacks

empirical significance (in GW’s terminology, this transformation is interior). Hence, we

have that σs(s) ∗ σse(m) ∗ e ∼ s ∗m ∗ e. From MAH, we then get that

Result 1: σse(m) ∼ m.

STEP 2: consider another very simple transformation on universe state s ∗m ∗ e that

consists of a rigid shift by the same amount everywhere. To be concrete, consider the

transformation σc(s)∗σc(m)∗σc(e) that shifts s, m and e by amount c. For simplicity, let’s

choose c to match σs (from the first step) on the boundary between S and M . Obviously,

σc(s) ∗ σc(m) ∗ σc(e) ∼ s ∗m ∗ e (a constant shift must produce an empirically equivalent

state of the universe). From MAH, we then get

Result 2: σc(m) ∼ m.

STEP 3: from Result 1 and Result 2 it follows that σse(m) ∼ σc(m). And if this is true,

then

Result 3: σs(s) ∗ σse(m) ∗ e ∼ σs(s) ∗ σc(m) ∗ e
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Figure 2: We assume that E is asymptotically far away from S. In that case, the left figure
represents a small transformation given by σs ∗ σm, where σm is a trivial extension of σs.
The middle figure represents a constant shift everywhere (including E). The right figure
represents a large transformation given by σs ∗ σc. Notice that it rigidly extends just upon
E. By using MAH alone, one can show that the universe states that result from these three
transformations are all empirically equivalent when defined.

when these states are well-defined. But the transformation given by σs ∗ σc is a large

transformation for it extends rigidly up until E (see figure 2). Hence, just by using MAH

and the meaning of ‘∼’, we have proved that an arbitrary small transformation σs ∗σse and

an arbitrary large transformation σs ∗ σc produce empirically equivalent universe states.

Since small transformations are not empirically significant, then it must follow that large

transformations are not either.

Using the notation of section 2, what I just showed is that MAH allows us to infer that

none of the transformations in GI are empirically significant simply from the fact that the

transformations in G∞0 (the smaller subgroup of the hierarchy in question) is not empirically

significant. That is, MAH entails, contrary to Teh’s analysis, that the asymptotic behaviour

of gauge transformations is not relevant to their empirical significance.

3.1.4 Problem 4: unmotivated

Not only is MAH problematic for the reasons just explained, but I want to end this section

by pointing out that MAH is not well motivated by Friederich himself. In order to motivate

MAH, Friederich invites us to think of cases whereby changing the state of one subsystem,
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one can ‘compensate’ for these changes (for example, ‘cancel their effect’) by considering

changes to another subsystem (Friederich, 2015, p. 547). In particular, he asks us to

consider this kind of case: imagine a universe that has three objects, A (a ship), B (a shore)

and C (another island). If we leave the state of C fixed, it is clear that any (non-trivial)

boost on the first object will inevitably lead to an empirically distinct state of the universe,

and this is true no matter how we boost B. In other words, if A is boosted, there is no

transformation of B that will have the result that the boost on A is no longer empirically

significant (assuming C stays as it is). If we use Friederich’s terminology, what we have just

shown is that, for the case of boosts, if a ∗ b ∗ c � σa(a) ∗ b ∗ c, then there is no σb such

that a ∗ b ∗ c ∼ σa(a) ∗ σb(b) ∗ c. For Friederich, this example motivates MAH for the case

of boosts (Friederich, 2016, p. 7).

The problem is that Friederich presents no similar example motivating MAH in the

field case, which is, after all, the relevant case for our discussion. And there is a good

reason Friederich cannot offer such an example, for there is an important difference between

the boost case and the case of local transformations. To see the difference, let’s again

consider three regions of the universe: S, M and E. The relevant question now is this:

if we were to leave the state E as it is and if there was a transformation on S that had

empirical significance, would that transformation stop having empirical significance ifM was

transformed in some specific way? If the answer is no (as it was in the case of boosts), then

we would have motivated MAH (assuming Friederich’s own example motivates MAH). But

in the field case, the answer to this question is clearly yes. If we transform M by using σse (a

trivial extension of σs), then the total transformation is interior, and so σs(s)∗σm(m)∗e′ ∼

s∗m∗e′. That would mean that the transformation σS no longer has empirical significance.

Thus, if there was a field case analogous to the boost case, it not clear why would we even

hold MAH. In a field setting, which is the setting relevant to Friederich’s proof, MAH looks
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rather implausible.

To summarize, in this section I have shown that, in the light of GW and Teh’s discus-

sions, MAH is problematic for at least three reasons: it entails that the empirical significance

of a subsystem transformation is not sensitive to (i) transformations in the environment, (ii)

its behaviour on the subsystem boundary, and (iii) its asymptotic behaviour. Furthermore,

MAH is not motivated for field cases. But even if these are good reasons to reject MAH,

perhaps the most direct argument against the soundness of Friederich’s proof is that there

are physical models for which s ∗ e (or s ∗m ∗ e′) and σs(s) ∗ e (or σs(s) ∗m ∗ e′) are both

well-defined and represent empirically distinct states of the universe. Given DES-SUL, it

follows that σs has to be empirically significant even by Friederich’s own lights, and so it

follows that the proof cannot be sound. One such model is ’t Hooft-Polyakov Monopole

discussed by Teh (2015) in the appendix of his paper. The other one is ’t Hooft’s Beam

Splitter that we will discuss in greater detail now.

4 The divisive beam splitter

Having explored the more general arguments regarding the issue of whether or not gauge

transformations can be empirically significant, let me focus now on a more concrete question.

Is ’t Hooft’s Beam Splitter, presented by Hooft (1980), a concrete realization of a gauge

transformation having empirical significance? Kosso (2000, p. 95), Greaves and Wallace

(2014) and Teh (2015) think that it is, while Hooft (1980, p. 98), Brading and Brown

(2004), and Friederich (2015) think it is not. But before considering the main arguments

on the matter, let me briefly present the experiment.
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4.1 The set-up

Consider a set-up similar to the double slit experiment, where a matter wave is sent towards

a screen with two slits. Imagine that we manage to separate the outgoing two beams, and

we place a phase-shifter that affects only the upper beam. At the end, we let the beams hit

a screen, where we can see an interference pattern (see figure 3).

This situation can be modeled by what GW call ‘Klein-Gordon-Maxwell’ electrodynam-

ics, where a matter wave ψ couples to a background electromagnetic field. The Lagrangian

of the theory is

L = (∂µψ − iqAµψ)∗(∂µψ − iqAµ)−m2ψ∗ψ + LEM , (2)

where LEM is the Lagrangian of Maxwell Electrodynamics without matter. The Lagrangian

of the theory is invariant under the following conjoint gauge transformation of the potential

and the matter wave:

25



ψ(x)→ e−iqχ(x)ψ(x)

Aµ(x)→ Aµ(x) + ∂µχ(x),

(3)

where χ(x) is a real-valued smooth-function on space-time that parametrizes the gauge

transformation.

After the initial (matter) beam goes through the double slit, it splits into two beams, ψs

and ψe, which can be separated enough so that they are effectively isolated from another

(at least for some time before reaching the screen). Imagine, for example, that ψs is only

non-zero within region Rs, whereas ψe is only non-zero within region Re, where Rs and Re

do not overlap. Given this set-up, GW identify the subsystem with Rs, and its states are

given by s = (ψs, Aµs) (that is, by the matter and electromagnetic fields ‘living’ in region

Rs).

In the case where there is not a phase-shifter (Situation A), we take (ψs, Aµs) to represent

the state of the upper subsystem and (ψe, Aµe) to represent the state of the lower subsystem

after the initial beam goes through the slits. In the case where we place a phase-shifter for

the upper beam (Situation B), (e−iqψs, Aµs) represents the state of the upper subsystem

and (ψe, Aµe) represents the state of the lower subsystem just after the beam goes through

the slits (notice that the phase shifter shifts the phase of the upper subsystem and does

nothing to its potential). Furthermore, we know that the interference pattern on the screen

will be different in Situation A and Situation B due to the fact that the relative phase

between the subsystems is different. We can infer, then, that

INFERENCE: The interference pattern is sensitive to whether the state of the
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upper subsystem is (ψs, Aµs) or (e−iqψs, Aµs). In particular, given the interfer-

ence pattern, we can determine if the state of the upper beam was (ψs, Aµs) or

(e−iqψs, Aµs).

So far we have not said anything about symmetries, but notice that ψs 7→ e−iqψs together

with Aµs 7→ Aµs +0 is precisely the action of the gauge transformation (3), restricted to the

subsystem, for the specific case where χ is constant at the boundary between the subsystems

(if σ = e−iqχ(x) is the gauge transformation on the universe matter field, σs = e−iqχs(x) is

the restriction of that transformation to the subsystem matter field). Suppose that χs(x)

approaches a non-zero constant value at the boundary between the subsystems (take that

value to be 1 for simplicity). As it is constant there, ∂µχs(x) will be zero and so the

vector-potential of the subsystem will not be altered at the boundary. Similarly, as ψs(x) is

assumed to be zero at the boundary, e−iqχs(x)ψs(x) = ψs(x) = 0. Thus, σs = e−iqχs(x) will

preserve the boundary conditions for the matter and electromagnetic fields in question.

Given this set-up, in GW’s formalism Situation A will be represented as s∗e (here e is the

state of the lower beam) and Situation B as σs(s)∗e (the local symmetry in question, recall,

does not affect the state of the lower subsystem, and so we can use e for both situations).

Furthermore, given that s∗ e and σs(s)∗ e are empirically distinguishable (as INFERENCE

states), it follows that

RESULT: the experiment in question corresponds to a Type I situation where a

local symmetry, σs = e−iqχs(x), has empirical significance (at the boundary, this

symmetry simply is σs = e−iq).11

11To be more precise, the gauge symmetry consists of both e−iqχs(x) and ∂µχs(x), but since for constant
χs(s) the transformation on the gauge fields is the identity transformation, I will be omitting it in the
following discussion.
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4.2 Friederich’s criticism

Friederich offers two main criticisms of GW’s analysis of the experiment just described. The

first one is this:

(C1): Situation A and Situation B are not adequately represented by s ∗ e and

σs(s) ∗ e respectively, but by s ∗ e and σs(s) ∗ e′ (where e 6= e′). Thus, contrary

to what RESULT states, this is not a Type I scenario.

The justification for (C1) is that if ψs is the subsystem, then not only ψe but everything

else, including the screen where the interference is manifested, is part of the environment.

And clearly, the state of the screen is different in Situation A and Situation B (the inter-

ference pattern is different), and so the state of the environment is different as well. In his

words:

If the upper half-beam plays the role of the subsystem S and the rest of the

set-up plays the role of the environment E, then, if two situations with different

interference pattern are compared, they must evidently be represented by phys-

ically distinct environment states e 6= e′. The physical situation of the screen is

different, and this must be accounted for by a physical difference between states

e and e′ (Friederich, 2015, p. 553).

Note that what Friederich is expressing here is tightly connected to what Brading and

Brown (2004) say when arguing against the suggestion that the transformation on ψs is a

local transformation that has empirical significance. In particular, they say that ‘an inter-

ference pattern occurs only where ΨI and ΨII overlap’ (2004, p. 653), strongly suggesting

that in the absence of an overlap region (such as the screen), we should not attribute empir-

ical significance to a local transformation on the isolated beams. Thus, by emphasizing the
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importance of taking into consideration the states of the screen (for example, of an overlap

region), Friederich seems to be echoing these remarks by Brading and Brown.

Now, I think that (C1) involves a misscharacterization of Type I scenarios. And in

particular, I think that it is not correct to say, as Friederich does, that ‘if two situations

with different interference pattern are compared, they must evidently be represented by

physically distinct environment states’. For in Type I cases, the term ‘environment’ is not

supposed to refer to things like observers or measurement devices or other objects capable

of detecting the (putative) effects of subsystem symmetries. That is, when representing the

state of the environment with ‘e’, GW (or Teh (2015)) are deliberately not intending to

represent the state of measurement devices (such as the screen) or observers. So, in the

case at hand, the environment is not supposed to include the screen, which simply serves

as a way of revealing the putative physical effects of the action of the subsystem symmetry

in question (just as a radar would simply reveal the effects of boosts on a ship).12

That this is the intended use of ‘environment’—one not including observers or measure-

ment devices—is clear from the analysis of a classic Galileo case scenario involving a ship

passing by a shore. It is clear, not only from GW’s and Teh’s presentations of the case but

also from Galileo’s own description (Galilei et al., 2001, p. 216), for whom the state of the

shore is not supposed to include measurement devices (and the same is true of the cabin).

Of course, a speedometer (or an observer) will be in a different state in the case where the

ship is at rest and in the case where it is boosted, so in order to guarantee that the state

of the shore remains invariant, we have to exclude speedometers and observers. And just

as speedometers and observers are not taken to be part of the environment in a standard

Galileo-ship case, the states of screens or observers should not be taken to be part of the

12Friederich seems to anticipate this response in the second paragraph of (2015, p. 553). I will discuss his
own objection to this response below, when I talk of (C2).
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environment in the beam splitter experiment here discussed.

The previous objection to (C1)—namely, that (C1) mischaracterizes Type I scenarios—

can be further strengthened by noticing that GW’s analysis is meant to be objective in

the sense that if a symmetry is empirically significant (or not) according to their analysis,

then this is so independently of whether something actually measures the effects of such

a symmetry. That is, for a symmetry to be empirically significant there need not be any

actual experiments showing its effects, but rather, the following counterfactual condition

suffices: if there were observers or measurement devices, then they would detect the effects

of the symmetry. Hence, even if an actual situation does involve devices and observers,

abstracting these away should not affect judgments regarding the empirical significance of

subsystem symmetries, and so GW are justified in taking the state of the environment

to remain invariant in the case at hand. For example, abstracting away the presence of

speedometers or observers in the shore should not undermine or decrease our confidence in

the claim that boosts of ships are empirically significant. Similarly, abstracting away the

presence of the screen in the beam splitter example should not affect the judgment that

changes in the relative phase between ψs and ψe are empirically significant.13

Let me consider now a different but related criticism by Friederich. He seems to think

that, perhaps against our intuitions, the fact that the state of the screen is different in Situa-

tion A and in Situation B actually undermines the case for attributing empirical significance

to the subsystem symmetry in question. More precisely, Friederich argues that:

(C2) It is not true that given the interference pattern, we can determine if

13In Teh’s formalism, this point—that measurement devices are supposed to be ignored in the study
of Type I symmetries—is even clearer, for he proposes to treat the environment as a (fixed) asymptotic
reference frame with respect to which subsystem symmetries can have empirical significance. In that case,
the environment is not modeled as a subsystem with its own dynamics, and so the dynamics of measurement
devices living in the environment is deliberately ignored.
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the state of the upper beam is (ψs, Aµs) or (e−iqψs, Aµs) (this goes against

INFERENCE). Hence, we should not attribute empirical significance to the

action of the subsystem symmetry represented by e−iq (recall that χ = 1 at the

boundary).

To understand why Friederich thinks this, it is helpful to go back to GW’s description of

the case. Recall that in Situation A, (ψs, Aµs) represents the state of the upper subsystem

and (ψe, Aµe) represents the state of the lower subsystem. In Situation B, (e−iqψs, Aµs)

represents the state of the upper subsystem after going through the phase-shifter, and

(ψe, Aµe) represents the state of the lower subsystem. Given the fact that the interference

patterns are different in these situations, and the fact that (ψe, Aµe) is the state of the lower

beam in both situations, it seems that the interference pattern is sensitive to whether the

state of the upper subsystem is (ψs, Aµs) or (e−iqψs, Aµs) (this is what INFERENCE says).

And because of this, it seems natural to infer that the subsystem symmetry has empirical

significance (this corresponds to RESULT).

Now, in order to understand how Friederich intends to resist the previous reasoning, we

have to start by distinguishing ψs and ψe when isolated, from ψs and ψe when overlapping

at the screen. Friederich shows that we can recover the interference pattern of Situation

B and Situation A by swapping the states that GW use. That is, he shows that we can

recover the interference pattern of Situation B by using (ψs, Aµs) (instead of (e−iqψs, Aµs))

to represent the state of the upper beam after going through the beam splitter, and we can

recover the interference pattern of Situation A by taking (eiqψs, Aµs) (instead of (ψs, Aµs))

to represent the state of that same beam (of course, this is only possible by modifying

the way we represent the states of the beams in the overlapping region (Friederich, 2015,
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p. 554)).14 Hence, it seems that from the interference pattern alone we would not be

able to tell if the subsystem state of the upper beam is (ψs, Aµs) or (e−iqψs, Aµs) (by a

suitable choice of the states in the overlapping region, both of these states can lead to the

same interference pattern). And so, the argument goes, we should not attribute empirical

significance to the local transformation (given by e−iq) of the upper subsystem.

Let me explain now why Friederich’s criticism fails. The problem lies in Friederich

overlooking an underlying assumption of GW’s set-up, namely, that when GW say that the

interference pattern is sensitive to whether the state of the upper subsystem is (ψs, Aµs)

or (e−iqψs, Aµs), they are implicitly assuming that (ψs, Aµs) represents the state of the

upper beam in the absence of a phase-shifter (that is, since GW express the operation of

the gauge transformation acting on the wave-function as ψs 7→ e−iqχ(x)ψs, then it follows

that they take ψs to be the state prior to any transformation). Given that assumption, the

interference pattern does allow us to determine if the state of the upper beam is (ψs, Aµs)

or (e−iqψs, Aµs) (it is (ψs, Aµs) in the absence of a phase-shifter, and (e−iqψs, Aµs) in the

presence of one).

Of course, Friederich is right in that we could use (ψs, Aµs) to represent the state of

that same beam (for example, the upper beam) in Situation B, but in that case we would

have to assume that in the absence of a phase-shifter, the state of the beam is (e+iqψs, Aµs)

so that the transformation by e−iq yields (ψs, Aµs). But even then we could still use the

interference pattern to discriminate between the relevant states of the beam (as represented

in this alternative form). That is, under this new convention for representing states, the

interference pattern will still allow us to determine if we are in Situation A or Situation B

(Situation A will be characterized by (e+iqψs, Aµs) and Situation B by (ψs, Aµs)).

So, to sum up, the main point of GW’s argument is not, contrary to what Friederich

14Notice that the swapping is not perfect, in one case we need to use a plus sign and not a negative sign.

32



seems to be suggesting in (C2), that the interference pattern will by itself allows us to

determine the state of the upper beam (this is impossible because of the phase-freedom of

quantum states). Rather, the point is that given a convention of what state s we take to

represent the state of the upper beam in the absence of a phase-shifter, the interference

pattern in the screen will allow us to determine if the state of the upper beam remains

as it is (for example, s) or if it changes (for example, e−iq(s)). In other words, all GW

require in order to attribute empirical significance to the action of the local symmetry in

question is that, no matter what representation of the relevant state we use, the symmetry

in question will induce changes in the relative phase between the two subsystems, and these

changes can be measured. Thus, the interference pattern will be able to track whether the

subsystem symmetry in question ‘acted’ or not on that beam, from which we infer that the

symmetry is empirically significant.

It is helpful to briefly explain why focusing on the overlapping region, as Friederich

suggests, does not really help in the current discussion. The reason is simple, namely, a

phase-shifter changes the phase of the system it acts on even if there is no overlapping

region. Imagine, for example, that the beams are not allowed to interact after the upper

beam goes through the phase-shifter (so there is no overlapping region). Even if we cannot

measure an interference patter, it is still true that the relative phase between the two isolated

subsystems changes as a result of the phase-shifter acting on the upper subsystem. And

as I explained earlier, changes in relative phase are empirically significant even if we do

not measure the interference corresponding to these changes (just as boosts of a ship with

respect to a shore are empirically significant, even if there is no agent or device that detects

these changes).

At this point, going back to the original Galileo ship scenario can be helpful. Imagine

that Situation A consists of the ship staying at rest relative to the shore, and Situation B
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consists of a boost of the ship. Then, it is natural for us to say that if the state of the ship

in Situation A is represented by s = 0 m/s, then its state in Situation B is represented by

σs(s) = v (where σs represents a boost of non-zero velocity v). But of course, we could also

say that s = 0 m/s represents the state of the ship in Situation B in a case where we use a

frame in which σ′s(s) = −v represents the state in Situation A (in the latter case, we take the

ship and the shore to be moving with the same negative velocity of magnitude v). In short,

because of its symmetries, classical mechanics entails that there is a lot of freedom in the way

we represent the states of the ship and the shore. But it would be a mistake to think that

the fact that we can easily move from one representation to the other (say, from the state

of the ship at rest being represented by 0 m/s to it being represented by −v) undermines

in any way the claim that boosts of the ship are empirically significant. Analogously, from

the fact that we can represent the state of the upper beam in different ways (for example,

as (e−iqψs, Aµs) or (ψs, Aµs)) we should not infer that the local transformation acting on

the upper subsystem is not empirically significant.

4.3 An ambiguity in GW’s description

Let me end with a criticism expressed by Brading and Brown (BB henceforth) in section

3.1.2 of their (2004) paper. Although GW respond to the main part of their criticism

(Greaves and Wallace, 2014, p. 83), there is an important bit that remains unanswered. In

particular, BB say that (my emphasis)

either the transformation of the electromagnetic potential results in the po-

tential being discontinuous at the boundary between the ‘two subsystems’, in

which case the relative phase relations of the two components are undefined (it

is meaningless to ask what the relative phase relations are), or the electromag-
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netic potential remains continuous, in which case we have a special case of a

local gauge transformation on the entire system (Brading and Brown, 2004, p.

656).

I agree with BB that if the transformation is continous between the two subsystems,

then this will not constitute a case of a gauge transformation with empirical significance.

However, it is not clear that if the gauge transformation in question is discontinuous at

the boundary, then the relative phase relations of the two components (for example, the

two beams) are undefined. Indeed, given what was said in section 4.1, it seems that these

phase-relations are well-defined: if the relative phase between the beams is well-defined after

the placement of a phase shifter for the upper beam, then the relative phase between the

beams has to be well-defined after a gauge transformation that shifts the phase of the upper

beam without affecting the phase of the lower beam. The reason is that in the set-up of the

experiment, the gauge transformation in question perfectly replicates the change of relative

phase coming from the placement of a phase-shifter on the upper beam. Thus, as long as it

replicates the (well-defined) change in relative phase that is coming from the phase shifter,

it should not matter that the transformation in question is discontinuous (again, if it was

continuous, it would not actually induce the change in relative phase that we need).

Now, there is a sense in which the criticism by BB actually goes deeper than what I

just said above. For by protesting about the discontinuity of the transformation at the

boundary between the subsystems, they bring attention to the following confusing feature

of the description of the experiment: the two beams are treated as if they were both two

subsystems that interact at a given finite boundary (at a screen, say). Leaving aside the

subtle issue about how to individuate subsystems in quantum mechanics, this description

is problematic for the following reason. If we were to take seriously that these two beams
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are two subsystems that interact at a finite boundary, then we would have to deal with very

subtle issues (that GW do not address) regarding the composition of gauge subsystems in

the presence of boundaries.15 For example, it is an open question whether or not gauge

transformations actually leave the subsystem invariant in the presence of boundaries (see

Gomes (2019a), Gomes (2019b), and Murgueitio Ramı́rez and Teh (2019) for a careful

discussion of this problem, and for some novel solutions).

5 Conclusion

In this paper, I showed that the tension between the arguments of Greaves and Wal-

lace (2014) and Teh (2015) and those of Friederich (2015, 2016) are due to the fact that

Friederich’s proof appeals to MAH, which is an assumption that is inconsistent with the

results presented by both GW and Teh. In particular, I showed that MAH entails—contrary

to what GW and Teh show—that the empirical significance of a subsystem transformation is

not sensitive to (i) transformations in the environment, (ii) its behaviour on the subsystem

boundary, and (iii) its asymptotic behaviour. In the last part of my paper I argued that

’t Hooft’s Beam Splitter is precisely a case of a local symmetry with empirical significance.

In particular, I explained that in that experiment, contrary to Friederich’s criticism, (i) the

state of the screen should not be considered to be part of the environment, and that (ii)

the freedom regarding the representation of the states of the upper and lower beams (when

isolated) does not preclude in any way the fact that the symmetry in question leads to

empirically distinct scenarios.

15Notice that we can try to accommodate this case to Teh’s analysis, as presented in section 2. To do so,
we would need to treat the upper beam as the subsystem and the lower beam as something like a fixed frame
at infinity whose dynamic is omitted in the analysis (clearly, that would not really be a way of treating this
case as involving two subsystems interacting at a finite boundary, but would still allow us to conceive of this
case as one where a local transformation exhibits empirical significance).
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