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Expressivity Results for Deontic Logics
of Collective Agency

Allard Tamminga*  Hein Duijf  Frederik Van De Putte?

Abstract

We use a deontic logic of collective agency to study reducibility questions
about collective agency and collective obligations. The logic that is at the
basis of our study is a multi-modal logic in the tradition of stit (‘sees to it
that’) logics of agency. Our full formal language has constants for collective
and individual deontic admissibility, modalities for collective and individual
agency, and modalities for collective and individual obligations. We clas-
sify its twenty-seven sublanguages in terms of their expressive power. This
classification enables us to investigate reducibility relations between collec-
tive deontic admissibility, collective agency, and collective obligations, on
the one hand, and individual deontic admissibility, individual agency, and
individual obligations, on the other.

Keywords: deontic logic; collective admissibility; collective agency; collec-
tive obligation; expressivity; bisimulation.

1 INTRODUCTION

In the philosophy of the social sciences, individualism is the methodological pre-
cept that any social phenomenon is ultimately to be explained in terms of the
actions and interactions of individuals. One of the central questions in the debate
on individualism is whether statements about collectives can be reduced to state-
ments about individuals. Does it hold that for every statement about collectives
there is a logically equivalent statement about individuals? In this paper, we use
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techniques from modal logic to find answers to specific reducibility questions, in-
cluding: Does it hold that for every statement about collective agency there is a
logically equivalent statement about individual agency? Does it hold that for ev-
ery statement about collective obligations there is a logically equivalent statement
about collective agency and individual obligations?

By way of a formal study of expressivity relations, we aim to assess which
sorts of reductionism about collective agency and collective obligations are ten-
able. Accordingly, we rephrase the reducibility questions as questions of expres-
sivity: Can statements from a specific language that includes specific statements
about collectives be expressed with statements from another language? We fol-
low standard practice in modal logic and develop new notions of bisimulation to
determine the answers to these questions of expressivity. Doing so enables us to
answer our reducibility questions with logical precision.

To answer our expressivity questions, we use a deontic logic of collective
agency. This multi-modal logic is a simplified and generalized version of Horty’s
(1996; 2001) deontic logic of agency.! Alongside the usual sentential connec-
tives and the universal modality, our full formal language has constants for collec-
tive and individual deontic admissibility, modalities for collective and individual
agency, and modalities for collective and individual obligations.? Truth-conditions
for the formulas of the full formal language are specified in terms of deontic game
models (Tamminga and Hindriks 2020, §3.2).

There are twenty-seven sublanguages of the full language, depending on (a)
whether constants for collective and/or individual deontic admissibility are ex-
cluded, (b) whether modalities for collective and/or individual agency are ex-
cluded, and (c) whether modalities for collective and/or individual obligations
are excluded. Because each of these three items gives rise to three possibilities,
there are exactly twenty-seven sublanguages. The main technical contribution of

I'The deontic logic of collective agency is a logic in the tradition of stit (‘sees to it that’) logics
of agency. Seminal works include Kanger (1957), Pérn (1970), von Kutschera (1986), and Horty
and Belnap (1995). See Belnap, Perloff, and Xu (2001) for a textbook presentation of stit logic.
There are other formal accounts of agency and normativity. Rather than using stif logic, Meyer
(1988) and Segerberg (2012) use dynamic logic to analyse individual actions and obligations.
Czelakowski (2020) uses formal linguistics as a basis for a deontic logic of consecutive individual
actions.

20On admissibility, see Arrow (1951, p. 429), Luce and Raiffa (1957, pp. 287 and 307), Savage
(1972, p. 21), and Kohlberg and Mertens (1986, §2.7.A). Horty (2001, p. 130) relies on collective
deontic admissibility to define group obligations, and Tamminga and Duijf use collective deontic
admissibility to analyse collective rationality (2017, pp. 200-201) and backward-looking collec-
tive moral responsibility (2017, §6).



this paper consists in charting this new territory and ordering these twenty-seven
sublanguages in terms of their expressive power.

Our paper is organized as follows. In Section 2, we first define the full lan-
guage and give truth-conditions for its formulas in terms of deontic game models.
The twenty-seven sublanguages are then defined. Next, we define the concept
of expressivity and give three criteria on expressivity that help to classify the
twenty-seven sublanguages in terms of their expressive power (Section 3). We
chart the sublanguages that are equally expressive in Section 4 and then give the
full picture of the expressivity relations in Section 5. Subsequently, we introduce a
class of bisimulation relations between pointed deontic game models and prove a
Hennessy-Milner theorem for each of the twenty-seven sublanguages (Section 6).
In the following three sections, we prove that the full picture of expressivity rela-
tions is accurate. We briefly discuss two assumptions on our models and languages
in Section 10. A short summary and some philosophical considerations conclude
the paper.

2 LANGUAGES AND SEMANTICS

Let 3 be a fixed countable set of atomic propositions and let N be a fixed fi-
nite set of individual agents that contains at least three elements. (We return to
this assumption in Section 10.) We use p and ¢ as variables for atomic propo-
sitions, ¢, j, and k as variables for individual agents, and F and G as variables
for non-empty sets of individual agents. We use —G to refer to the complement
N —G. The full language £, g),(g) of our deontic logic of collective agency con-
tains (i) deontic admissibility constants of the form “Group G of agents performs
a deontically admissible group action” (formalized as ;) and “Agent ¢ performs
a deontically admissible individual action” (formalized as ;). Moreover, it con-
tains (ii) necessity statements of the form “It is settled true that ¢” (formalized
as Oo), (iii) agentive statements of the form “Group G of agents sees to it that
¢” (formalized as [G]¢) and “Agent 7 sees to it that ¢” (formalized as [i]¢), and
(iv) deontic statements of the form “Group G of agents ought to see to it that ¢”
(formalized as (G)¢) and “Agent i ought to see to it that ¢ (formalized as (i)¢).
Its Backus-Naur form is the following:

¢:=plxg|=¢|(dNQ)[ Do |[G]o](G)e

where p ranges over ‘B and G ranges over non-empty subsets of N.
The operators —, <+, <, and (G) abbreviate the usual constructions. We leave
out brackets and braces if the omission does not give rise to ambiguities. Accord-



ingly, the formulas x;, [i|¢, and (i)¢ are shorthand for the formulas x;, [{i}]¢,
and ({i})¢, respectively.

2.1 DEONTIC GAME MODELS

Truth-conditions for the formulas of £, g] (g) are specified in terms of deontic
game models. A deontic game model is a one-shot game in which each individual
agent ¢ is assigned a non-empty and finite set A, of available individual actions.
The set Ag of group actions that are available to a non-empty set G of individual
agents is given by A; = x5 A;. The set A of action profiles equals the set A, of
group actions that are available to the grand coalition A of all individual agents
and is given by A = A,, = X, A;. The set of action profiles plays the role of
the set of worlds in possible-worlds models for standard deontic logic. A deontic
ideality function d assigns to each action profile a in A a value d(a) that is either
0 or 1. A valuation function assigns to each atomic proposition p in B a set v(p)
of action profiles where p is true.> Formally,

Definition 1 (Deontic Game Model). A deontic game model M is a quadruple
(N, (A;),d,v) such that for each agent i in N it holds that A, is a non-empty
and finite set of actions available to agent i, d : A — {0,1} is a deontic ideality
function such that there is at least one a in A with d(a) = 1, and v : B — p(A)
is a valuation function.

To specify truth-conditions for deontic admissibility constants and for deontic
statements, we order the group actions that are available to any (possibly single-
ton) set G of individual agents by way of a dominance relation:

Definition 2 (Weak Dominance). Let M = (N, (A4,),d,v) be a deontic game
model. Let G C N be a non-empty set of individual agents. Let ag,b; € Ag.
Then

ag =y bg iff forallc_g € A_g it holds that d(ag,c_g) > d(bg, c_g).

Strong dominance is defined in terms of weak dominance: ag >, bg if and only
if ag =, bg and bg 7%, ag.

A group action that is available to any (possibly singleton) set G of individual
agents is deontically admissible if and only if it is not strongly dominated by any
of G’s available group actions. Accordingly,

3We adopt the notational conventions of Osborne and Rubinstein (1994, §1.7).



Definition 3 (Deontic Admissibility). Let M = (N, (4,),d, v) be a deontic game
model. Let G C N be a non-empty set of individual agents. Then the set of G’s
deontically admissible actions in M, denoted by Adm;(G), is given by

Admy(G) = {ag € Ag : thereis no bg € Ag such that bg =, ag}.

We can now specity the truth-conditions for the formulas of the full language
£.5.0,)- (Note that by setting G = {i} we obtain the truth-conditions for the
1nd1v1dua11st1c formulas %;, [i]¢, and (i)¢.)

Definition 4 (Truth-Conditions). Letr M = (N, (4,),d,v) be a deontic game
model. Let G C N be a non-empty set of individual agents. Let a € A be an
action profile. Let p € ‘B be an atomic formula and let ¢,v € £, g ) be
arbitrary formulas. Then

(M.a)l=p  iff a€v(p)
(M, a) | *g iff ag € Admy(G)

(M.a)=~¢  iff (M)}

(M,a) =N iff (M,a) = ¢and (M, a) = o

(M,a) = O¢ iff (M,b)):qﬁforalleA

(M,a) =[Gl iff (M,b) = ¢forallbe Awithbg = ag

(M,a) E(G)p iff (M,b) = ¢forallb € Awithbg € Admy(G).

Given a deontic game model M, we write M = ¢ if for all action profiles a in
A it holds that (M, a) = ¢. A formula ¢ is valid (notation: = ¢) if for all deontic
game models M it holds that M = ¢.

2.2 TWENTY-SEVEN SUBLANGUAGES

Y

The full language £, g}, of the deontic logic of collective agency contains
constants for collective and individual deontic admissibility, modalities for col-
lective and individual agency, and modalities for collective and individual obli-
gations. Our basic language is the standard modal language £ built from the set
B of atomic propositions, using negation (—), conjunction (A), and the universal
modality (O0). (We return to the assumption of including the universal modality in
Section 10.) The sublanguages of our full language are obtained from the basic
language £ by adding (a) either collective deontic admissibility constants, indi-
vidual deontic admissibility constants, or no deontic admissibility constants; (b)
collective agency modalities, individual agency modalities, or no agency modali-
ties; and/or (c) collective obligation modalities, individual obligation modalities,
or no obligation modalities. This gives us twenty-seven languages, ranging from
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£ to £, 6, Their names are systematized as follows: we use £, , . with
x € {xg,*%i, €}, y € {[G],[i].€}, and z € {(G), (i), €}, where € represents the
omission of the relevant constant or modality. Their Backus-Naur forms are read
off from their names. For instance, if z = %;, y = [G], and z = ¢, we obtain the
language £,, ). Its Backus-Naur form is

¢:=plxi|=g[(¢Nn0)| D] [Gl¢

where p ranges over 3, i ranges over N\, and G ranges over non-empty subsets of
N.

We use L to refer to the set that consists of exactly all of our twenty-seven
sublanguages. Truth-conditions for the formulas of any £* € L are specified by
Definition 4. We now order the twenty-seven languages in L in terms of their
expressive power.*

3 EXPRESSIVITY

Let us first recall the concept of expressive power, as standardly used in modal
logic. We say that a formula 1) from language £** can be expressed in language
£* if and only if there is a ¢ in £* such that ¢ and v are logically equivalent. If
every formula from the language £** can be expressed in the language £*, we say
that £* is at least as expressive as £**. Formally,

Definition S. Let £, £** € L. Then £* is at least as expressive as £** (notation:
£* = £*) if and only if for every 1) in £** there is a ¢ in £ such that |= ¢ < ¢.

As usual, £* = £** abbreviates the conjunction of £* > £** and £** » £*.
Moreover, £* > £** abbreviates the conjunction of £* > £* and £ » £*.
Note that £** % £* if and only if there is a ¢ in £* such that for every ¢ in £**
it holds that [~ ¢ <+ ¢. Accordingly, there is no formula in £** that is logically
equivalent to ¢.

To chart the expressivity landscape of our twenty-seven languages, we intro-
duce three criteria of expressive power. The first two criteria are straightforward.
First, consider the obvious inclusion criterion for £* = £**:

4Other metalogical investigations of these languages are scarce. Xu (1998), Wansing (2006),
and Balbiani, Herzig, and Troquard (2008) prove completeness for £;, and Murakami (2005)
proves completeness for £;, ;). Kooi and Tamminga (2008) characterize the possibility of moral
conflicts in £(g] (). Balbiani, Herzig, and Troquard (2008) and Herzig and Schwarzentruber
(2008) study the complexity of £f;}, and the latter study also the complexity of £(g;. Duijf, Tam-
minga and Van De Putte (ms.) define a new and stronger concept of inexpressivity based on
nomological equivalence and prove that there are no statements ¢ and ¢ in £, [ such that ¢ and
*¢ are equivalent modulo 9 (where 1) specifies a set of individualistic background laws).
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Lemma 1 (Inclusion Criterion). Let £*, £** € L. Then
If £ O £, then £* = £**.

Secondly, consider the transitivity criterion for £* % £**. It follows from the
transitivity of >:

Lemma 2 (Transitivity Criterion). Let £, £** £ £ ¢ 1. Then

The third criterion is a criterion for £* % £** that is defined in terms of pointed
deontic game models. The criterion applies if two pointed deontic game models
validate exactly the same formulas from £* but give different truth-values to a
formula from £**. Any ordered pair (), a) that consists of a deontic game model
M and one of its action profiles a is a pointed deontic game model. Two pointed
deontic game models are equivalent on £* if and only if they validate exactly the
same formulas from £*:

Definition 6 (Equivalence on £*). Let £* € L. Let (M, a) and (M’, a’) be pointed
deontic game models. Then (M, a) and (M',a’) are equivalent on £* (notation:
(M,a) =g« (M',d")) iff for all p € £ it holds that (M,a) = ¢ if and only if
(M',d') = ¢.

We can now formulate the equivalence criterion for £* % £**:

Lemma 3 (Equivalence Criterion). Ler £*, £** € L. Let (M, a) and (M',d’) be
pointed deontic game models. Suppose (M, a) =g« (M',a’). Then

If (M,a) = and (M',ad") [~ 4 for some 1p € £, then £* i £*.

Proof. Assume (M, a) =g« (M',d’). Suppose (M, a) = 1 and (M’,a’) = 1) for
some ¢ € £**. Suppose £* > £**. Because ¢y € £**, there is a ¢ in £* such
that = 19 <> ¢. Then (M, a) = ¢ and (M',ad’) [~ ¢ and ¢ € £*. Contradiction.
Therefore, £* 7 £**. O

The inclusion criterion, the transitivity criterion, and the equivalence crite-
rion help to classify the twenty-seven sublanguages of £, g (g) in terms of their
expressive power. We start with the sublanguages that have precisely the same
expressive power.



4 EQUALLY EXPRESSIVE SUBLANGUAGES

Any obligation modality can be given an Andersonian-Kangerian definition in
terms of the universal modality and the relevant deontic admissibility constant:

Lemma 4. Let G C N be a non-empty set of individual agents. Let ¢ € £, ], )-
Then

= (9)¢ < Blxg = ¢).

The Andersonian-Kangerian definitions of obligation modalities are central to
the proofs that some of the sublanguages of £, ) (g) are equally expressive.

Lemma 5. Let x € {xg,*;, ¢}, y € {[G], [i], €}, and =z € {(G), (i), €}. Then

1) Lasyz = Loy
() Lisp: = Loy
(111) S*i,y,z i 'g*i,y,(i)
av) L4222 Ly o)

Proof. (1) We show that for every v € £, ) thereis a ¢ € £, . such that
= 1 <> ¢ by structural induction on .

Basis: we check cases ¥ = p, ¥ = %; (if x = x;), and ¥ = *¢g (if v = *g).
Because all of them are also elements of £, , ., thereis a ¢ € £, , . such that
= o,

Induction Hypothesis: for all x € £, ) with fewer operators than 1 there is
a ¢, € £,y suchthat = x < ¢,.

Induction Step: we check case 1) = (G)x. By Lemma 4, = (G)x <> O(xg —
x). By the Induction Hypothesis, there is a ¢, € £, .. such that = x < ¢,.
Hence, |= (G)x <> O(xg — ¢y). Note that O(xg — ¢, ) € £,,,... Hence, there
isa¢ e L,,,.suchthat |= ¢ < ¢.

The other cases are similar.

(ii), (iii), and (iv) are proved analogously. ]

Theorem 1. Each of the following holds:

M Lo = Lo = Lol
() Lom = Ll = Lalil©
i) L, = Lyw = Ly
) Lajg = Lajglo
VM Lo = Lo
(vi) £, = L)



Proof. (1) By Lemma 5(ii), we have £, 6] = £.;],(:)- By the inclusion crite-
rion, it holds that £, ; g ;) = £.,,1g- Hence, £, g] = £.,.,19),(:)- By Lemma 5(),
we have £, g) = £,;,6),(5)- By the inclusion criterion, it holds that £, ; g ) =
£, Hence, £, 61 = £, 9,6 The transitivity of = gives us £, g =

Ligl01) = L [61,9)-
Claims (i1) through (vi) are proved analogously. 0

Because our focus is on charting the expressivity relations between our twenty-
seven sublanguages, we refer to any class of equally expressive languages by the
language in that class with the shortest name. Hence, we use the six languages in
the first column in Theorem 1 to refer to the six classes of equally expressive lan-
guages that were identified in this theorem. Accordingly, £, ; g refers to the class
of the languages in L that are equally expressive as the full language £, g),()-

5 THE FULL PICTURE OF THE EXPRESSIVITY RELATIONS

Lig i)

Lo i) > Ll 9)

Figure 1: Expressivity Relations between the Eighteen Languages

The eighteen sublanguages that remain to be classified are the six languages of
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the first column of Theorem 1 and the sublanguages in L that were not mentioned
in this theorem. No two of these eighteen sublanguages are equally expressive.
If we represent £* > £** by an arrow from £* to £**, the expressivity relations
between the eighteen languages can be pictured as in Figure 1.

Accordingly, £, g is the most expressive language in L and £ is the least
expressive language in L. To prove that this picture adequately represents the
expressivity relations among the eighteen sublanguages, we think of the picture
as a three-dimensional prism and decompose it in the left front face (Figure 2), the
right front face (Figure 9), and the horizontals (Figure 10).

6 BISIMULATIONS AND HENNESSY-MILNER THEOREMS

To prove that some sublanguage £* is not at least as expressive as another sublan-
guage £, we apply the equivalence criterion to specific pairs of pointed deontic
game models. The equivalence criterion can only be applied if the pointed deontic
game models in the pair are £*-equivalent. To prove that they are £*-equivalent,
we develop a suitable concept of £*-bisimulation and show that the two languages
are £*-bisimilar. All of this is standard practice in modal logic.’

An £*-bisimulation between two pointed deontic game models (M, a) and
(M',a’) is arelation R C A x A’ linking the models’ action profiles that satisfies
a specific set of structural conditions associated with the logical operators in £*.
For every language £* in L we present such a set of structural conditions on R that
characterizes £*-equivalence. Accordingly, for every language £* in L we show
that two given pointed deontic game models are £*-bisimilar if and only if they
are £*-equivalent. Such theorems are known as Hennessy-Milner theorems. We
prove a general claim that summarizes the Hennessy-Milner theorems for all sub-
languages in L (Theorem 2). To establish this general claim, we use a technique
from Van Benthem, Bezhianishvili, Enqvist, and Yu (2017, § 3) and first prove a
general lemma on sublanguages in L. (Note that this technique is also called upon
in our proof of the general claim itself.)

Lemma 6. Let £ € L. Let M = (N, (A;),d,v) and M' = (N, (AL),d',v') be
deontic game models. Letb € Aand b € A'. If (M,b) =g« (M',V), then for
every c € Athereisac € A suchthat (M, c) =¢- (M', ).

Proof. Assume (M,b) =g+ (M', V). Take an arbitrary ¢ € A. For every d € A,
let p.q = pV —pif (M, c) =¢- (M, d); otherwise, let ¢. 4 = 1 for some ¢ € £*

SBlackburn, De Rijke, and Venema (2001, § 2.2) provide a textbook presentation of bisimula-
tion in modal logic.
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for which it holds that (M, c) = ¢ and (M, d) = 1. Let ¢. = A cq ¢ca- The
finiteness of A ensures that ¢, is well defined. Note that (}) for every d € A it
holds that if (M, d) = ¢., then (M, c) =¢- (M, d).

Because (M,c) = ¢, it holds that (M,b) = <¢.. By our assumption,
(M",b') = O¢e. Then there is a ¢ € A’ such that (M', ') = ¢.. Suppose
(M,c) #e+ (M', ). Then there is a y € £* such that (M, ¢) = x and (M', ) b=
X- Then (M’, ) = ¢. A —x and hence (M, V') = (¢ A —x). By our assump-
tion, (M,b) = O(¢. A —x). Then there is a d € A such that (M, d) = ¢. A —x.
By (), the first conjunct entails that (M,c) =e¢- (M,d). However, we have
(M,c) = x and (M,d) F~ x. Contradiction. Hence, (M, ¢) =g+ (M’, ). There-
fore, because ¢ € A was arbitrary, for every ¢ € A there is a ¢ € A’ such that
(M, c) =o« (M', ). N

We now present a list of nine structural conditions on relations R that link
the action profiles of two given deontic game models. Each of the twenty-seven
languages in L is assigned a specific subset of these nine structural conditions.
Because all of these subsets include at least three basic structural conditions, we
set these three conditions apart. The relations that satisfy them are basic bisimu-
lations:

Definition 7. Let M = (N, (A;),d,v) and M' = (N, (A}),d ,v") be deontic
game models. A relation R C A x A’ is a basic bisimulation between M and M’
if R satisfies each of the following clauses:

(i) forall (b,V') € R and all p € B it holds that b € v(p) iff b/ € V'(p)
(i) forallb € Athereisall € A’ such that (b,V') € R
(iii) foralll/ € A’ thereisab € A such that (b,V') € R.
The other six structural conditions on relations R are specified as follows:

Definition 8. Let M = (N, (A;),d,v) and M' = (N, (A}),d ,v") be deontic
game models. Let R C A x A’ be a relation between M and M'. The six optional
structural conditions on R are the following:

C.g: forall (b,V) € R and all non-empty G C N it holds that by € Admy(G) iff
b, € Admyy(G)

C,,: for all (b,b') € R and all i € N it holds that b; € Admy (i) iff b; €
Ade/(i)

11



Cigi: () forall (b,b") € Rand all c € A and all non-empty G C N it holds that
if bg = cg, then there is a ¢ € A’ such that by = c; and (c,c') € R

(ii) for all (b,b") € Rand all ¢ € A" and all non-empty G C N it holds

that if by = cg, then there is a ¢ € A such that by = cg and (c,c’) € R

Cu: () forall (b,V') € Rand all c € A and all i € N it holds that if b, = ¢,
then there is a ¢ € A’ such that b, = ¢, and (¢,c’) € R

(i) forall (b,b') € Randall ¢ € A" and alli € N it holds that if b, = ¢,
then there is a ¢ € A such thatb; = ¢, and (¢,c') € R

Cw: () forallc € Aandall non-empty G C N it holds that if cg € Adm(G),
then there is a ¢ € A’ such that ci; € Admyp (G) and (c,c’) € R

(i) for all ¢ € A" and all non-empty G C N it holds that if ¢; €
Admyp(G), then there is a ¢ € A such that c; € Admy(G) and
(¢,d)€eR

Cw: () forallc € Aandalli € N it holds that if ¢; € Adm(3), then there is
ac € A such that ¢; € Admyy (i) and (¢,d) € R

(ii) forall ¢ € A" and all i € N it holds that if ¢, € Admyy (i), then there
isa c € A such that c; € Admy(i) and (¢,c) € R.

Each of the twenty-seven sublanguages in L is assigned a specific subset of
these six structural conditions in the following way (C. is the empty condition that
is satisfied trivially):

Definition 9. Let M = (N, (A;),d,v) and M' = (N, (A}),d ,v'") be deontic
game models. Let ©x € {*g,*;, e}, y € {[G],[i],e}, and = € {(G),(i),e}. A
relation R C A x A’ is an £, .-bisimulation between M and M' if R is a basic
bisimulation that satisfies conditions C,, C,, and C..

Consequently, an £-bisimulation is just a basic bisimulation, and an £,, g-
bisimulation is a basic bisimulation that also satisfies conditions C,, and Cig. We
write (M, a) ¢, . (M’ d) if there is an £, , .-bisimulation R between M and
M’ such that (a,d’) € R.

We can now establish our general claim:

Theorem 2 (Hennessy-Milner). Let £* € L. Then for all pointed deontic game
models (M,a) and (M',d’) it holds that (M,a) Se (M',d’) if and only if
(M,a) =g« (M',d).

12



Proof. Although the general claim is in fact a conjunction of claims on twenty-
seven individual cases, the proofs of all these claims are very similar. Because the
left-to-right direction is always proved by a straightforward structural induction on
¢, we omit it here. As for the right-to-left direction, we will only give a full proof
for the case where £* = £, g],(g)- Suppose (M, a) =¢,, 10,9 (M',a'). Let R =
{(b,t/) € Ax A" : (M,Db) =¢,. 010 (M',V')}. We prove that R is an £, g],()-
bisimulation between M and M’. We first show that R is a basic bisimulation.

Clause (i) of Definition 7 follows from the definition of R. Clauses (ii) and (iii)

of Definition 7 follow from Lemma 6. Hence, R is a basic bisimulation. Next, we

show that I satisfies conditions C,;, C[g], and Cg).

C,,: Take an arbitrary (b,b’) € R and an arbitrary non-empty G C A. Suppose
bg € Admp(G). Then (M,b) = *g. By the definition of R, we have
(M',V') & xg. Hence, by € Admy;(G). The proof of the converse is
analogous.

Cig): We prove clause (i) of condition Clg). Take an arbitrary pair (b, V') € R, an
arbitrary ¢ € A, and an arbitrary non-empty G C N. Suppose by = c;.
Define ¢, as in the proof of Lemma 6. Then (M, ¢) |= ¢.. Because b; = cg,
it follows that (M, b) = (G)d.. By supposition and the definition of R, it
must be that (M’,b") = (G)¢.. Then there is a ¢ € A’ such that b; = c;
and M’ ¢ = ¢.. By the same reasoning as in the proof of Lemma 6, it must
be that (M, c) =¢.. 1010 (M',c"). Hence (¢,d) € R. Because (b,b') and
c and G were arbitrary, for all (b,b") € R and all ¢ € A and all non-empty
G C N itholds that if by = cg, then there is a ¢’ € A" such that b; = ¢{; and
(¢,c’) € R. The proof of clause (ii) of condition Cg) is analogous.

C(g): We prove clause (i) of condition C(g). Take an arbitrary ¢ € A and an
arbitrary non-empty G C N. Suppose ¢; € Admy(G). Define ¢, as in
the proof of Lemma 6. Then (M, ¢) = ¢.. Hence, (M,c) % (G)—¢. and
therefore (M, a) = (G)—¢.. By supposition, it must be that (M’ a’) =
(G)—¢.. Then there is a ¢ € A’ such that ¢;; € Admy(G) and (M',c’) |=
¢.. By the same reasoning as in the proof of Lemma 6, it must be that
(M, c) =¢, ,.101) (M',). Hence, (¢,’) € R. Because ¢ and G were
arbitrary, for all c € A and all G € N it holds that if cg € Adm 1 (G), then
there is a ¢ € A’ such that c; € Admy;(G) and (c,c’) € R. The proof of
clause (ii) of condition C|g) is analogous.
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Hence, R is an £, [g] g)-bisimulation between A/ and M’. Because (a,a’) € R,
we conclude that (M, a) =, 01 (M, a").

The proofs of the other twenty-six cases are simple variations of the above
proof. Consider the language £, , .. If + = %;, y = [i], or z = (i), then replace
each occurrence of G in the corresponding part of the above proof with i. If x = e,
Yy = €, or z = ¢, then leave out the corresponding part of the above proof. 0

7 THE LEFT FRONT FACE

2*9 5 [g] 5
Lag@
3 \
£*1'7[9] .
N 3 \
Liglil _ L
<+ 3
S*i ) M 7(g) 6
4 \\ ~+ 3
Lyl \7
4 4 4
4 4
S*i,(g) \6
N2 4

Figure 2: The Left Front Face Expressivity Relations

To chart the expressivity relations among the twelve sublanguages of the left
front face of the full expressivity picture (Figure 2), it suffices to prove five theo-
rems. Using these five theorems, the inclusion criterion, the transitivity criterion
and Lemma 5(1), we can easily find the expressivity relations between every pair
from the twelve sublanguages of Figure 2. The labels of the arrows in Figure 2
indicate the theorem that can be used to establish the corresponding expressivity
relation. The five theorems are the following:
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) L Z Lig) (Theorem 3)
(i) £, 7 Ly (Theorem 4)
(iii) 2*1 61, Z £«; (Theorem 5)
iv) L. 9 & £, (Theorem 6)
V) Lig £ L, (Theorem 7).

Theorem 3. £, ;) 7 Lig).

Proof. Because N contains at least three elements, there are i, 7,k € N such
that i # j and 7 # k and ¢ # k. We define two pointed deontic game models
that are £, ;;-bisimilar (and hence validate exactly the same £, ; ;;-formulas) but
give different truth-values to the £;g-formula [i, k]p.

Let M, = (N, (4;),d,v) be such that A; = {a;,b;} and A; = {a;,b,} and
A, = {a,b.} and A, = {q,} forall | € N {i,J, k}. The set A of action
profiles is x;c\-A;. (Note that A_; ;= {a_; ;;,}) Letd(c) = 1forallc € A.
Lastly, let v(p) = {(a;, a;, a,a_g; ;1 4y)s (a5, 05,0, a_g; 500)s (a5, 055 a0 544,
(bj; aj, ap,a_y; ;,0)} and let v(q) = () for all ¢ € P — {p}. Model M, can be
pictured as in Figure 3 (the group action a_ (k) is not represented).

a; by a; by

a; | 1/p | 1/p a; | 1/p| 1

b, [ 1/p| 1 b, | 1 | 1
Qg by,

Figure 3: Deontic game model )/, .

Let M| = (N, (4]),d',v") be such that A} = {aj,b;} and A} = {a/, )} and
Al ={a}} and A} = {a]} foralll € N — {Z,j, k}. The set A’ of action profiles
is X, AL (Note that A" {i5) ={d_(;}) Letd'(d) = 1forall d € A
Lastly, let v'(p) = {(a’,a J,ak,a gry)s (0505, ap,al g 500)} and v'(q) = 0 for
all ¢ € B — {q}. Model M can be pictured as in Figure 4 (the group action
a’ (i) is not represented).

15



a; b
a; [1/p| 1
bl 1 [ 1/p

!
ay

Figure 4: Deontic game model M.

Let R = {(¢,d) € Ax A :c € v(piff ¢ € v'(p)}. Because for all
non-empty G C N it holds that M, = *g and M| [ xg, the relation R sat-
isfies bisimulation condition C,,. For every i € N and every ¢ € A there are
¢, e A, such that (¢;, ¢*;) € v(p) and (¢;, ¢™) & v(p). Likewise, for every
i € N and every ¢ € A’ there are ¢, ¢, € A", such that (¢}, ”;) € v(p) and
(¢, ") & v(p). From these observations, it follows that R satisfies bisimula-
tion condition Cf;). Therefore, R is an £, ;-bisimulation between M, and M].
Hence, (Mlv(am aj;, g, {ijk})) ‘j‘*g,[i] (M{7(aza ]7ak7 {”k}))' By The-
orem 2, we obtain (M, (a;,a;, a,a_; ;4,)) = oo (M, (a;, aj, aj, a’_; 1))
However, note that it holds that (M, (a;, a;, a, a {id’k})) E [i, k]p and also that
(M7, (af, a, ay, a’y; 4y)) = [is k]p. By Lemma 3, £, 1y 7 £(g)- O]

Theorem 4. £, £ £y

Proof. Because N contains at least two elements, there are 7,7 € A such that
i # j. We define two pointed deontic game models that are £, -bisimilar (and
hence validate exactly the same £, ;-formulas) but give different truth-values to
the £p;;-formula [i]p.

Let M, = (N, (A;),d,v) be such that A, = {a;,b,;} and A; = {a;} and
A, = {a,} for all k € N — {i}. The set A of action proﬁles is XzeNAi'
(Note that A_; » = {a_p; 1}.) Letd(c) = 1 forall c € A. Lastly, let v(p) =
{(a;,a;,a_g; ;1)} and v(q) = @ forall ¢ € P — {p}. Model M, can be pictured as
in Figure 5 (left; the group action a (i) is not represented).

Let My = (N, (4]),d',v') be such that A} = {aj,b;} and A} = {a],V}} and

= {a},} forall k € N — {i, j}. The set A’ of action profiles i is X, en Al (Note
that A ;.o = {a’ ;4 }) Letd'(d) = 1forall ¢ € A’ Lastly, let v'(p) =
{(a}, a}, 0" ), (b;,b;,a iy} and v'(q) = 0 forall ¢ € P — {p}. Model M,
can be pictured as in Figure 5 (right; the group action a’ (i} 1s not represented).
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/ /
a; a; b

o, [1/p o [1/p] 1
b, | 1 bl 1 [ 1/p

3 K3

Figure 5: Deontic game models M, (left) and M/ (right).

Let R={(c,d) € Ax A :cev(p)iff ¢ € v'(p)}. Itis easy to check that R
is an £, ;-bisimulation between )M, and M;. Hence, (M,, (a;,a; a_{m.})) <:>2*g

1) J?
(Mé,(al, aj,a’_; ;1)). By Theorem 2, it must be that (M, (a;,a;,a_ {i’j}).) =e.,
(MQ,(al,a],a (i;1))- However, observe that (M,, (a;,a;,a_, ;1)) = [t]p and
(My, (a;, a},a’ {”})) i~ [i]p. By Lemma 3, it must be that £, ; # £y;. O

Theorem 5. £, g ¢) 7 £.s-

Proof. Because N contains at least two elements, there are 7,7 € A such that
i # j. We define two pointed deontic game models that are £,, ) (g)-bisimilar
(and hence validate exactly the same £,, (g g)-formulas) but give different truth-
values to the £, -formula x; ;3.

Let M3 = (N, (4,),d,v) be such that A; = {a,} and A; = {a,} and A4, =
{a,} forall k € N'— {i,j}. The set A of action profiles is X, A,. (Note that
A n= {a_{i’j}}.).Let d(a;, a;,a _ijy) = L. Lastly, let v(p) = () for all pE L.
Model M; can be pictured as in Figure 6 (left; the group action a_ (ij} 18 not
represented).

Let M3 = (N, (A}),d’,v) be such that A} = {aj,b;} and A = {aj, v} and

= {a,} forall k € N — {i,j}. The set A’ of action proﬁles is X,z AL
(Note that A", ., = {a’ (, 1 }) Let d'(a}, b}, a”; ;) = d'(bj, aj,a”_; ;) = 1 and
d'(aj, d},a_y, }) = d'(bj,b},a"y; ;) = 0. Lastly, let v(p) = 0 for all p € B.
Model M can be pictured as in Figure 6 (right; the group action a’ (i is not
represented).

/ /
a. a; b

b O

Figure 6: Deontic game models M, (left) and M} (right).

Let R = Ax A'. Itis easy to check that R is an £,, g) (g)-bisimulation between
M;s and Mj. Hence, (Ms, (ai,a5,a_g; 1)) Se, g (Mg,(az,a],a £, })) By
Theorem 2, it must be that (Mg,(ai,aj,af{i’]})) e (M, (ag, aj,a” g ).

17



However, observe that (Ms, (a;, a;, af{m})) = %7 and (M, (af, a;, a’f{iyj})) =
*{M}' By Lemma 3, 2*“[g]7(g) % S*g.

Theorem 6. £, ¢ ~ £, (g)

Proof. Because N contains at least two elements, there are 7, 7 € A such that
i # j. We define two pointed deontic game models that are £, g)-bisimilar (and
hence validate exactly the same £, g-formulas) but give different truth-values to
the £,, (g)-formula (7, j)p.

Let M, = (N, (4;),d,v) be such that A; = {a;,b;} and A; = {a;,b,} and
A, = {a,} forall k € N — {i,j}. The set A of action profiles is X, A,.

and d(a;, b;,a_y; 1) = d(b;,a;,a_g; ;) = 0. Lastly, letv(p) = {(a;,a;,a_y, ),

J i) g
(b;:bj,a_y; )} and v(q) = 0 for all ¢ € P — {p}. Model M, can be pictured as
in Figure 7 (left; the group action a_y; ., is not represented).

{i.5}
Let My = (N, (A]),d',v') be such that A} = {aj,b;} and A} = {a],V}} and
A; = {a}} forall k € N — {i,j}. The set A’ of action profiles is X, A’

1770 i) g
d'(aj,d},a”; ) = d'(b,b5,a" ;) = 0. Lastly, let v'(p) = {(aj,a},a’; ;1)
(b, b, 0" (; )} and v'(q) = 0 for all ¢ € P — {p}. Model M can be pictured as

17 yi Y
in Figure 7 (right; the group action a’ (i} is not represented).

a; b a; b
a; | 1/p| 0O a; [ 0/p| 1
b, 0 [1/p b 1 |0/p

Figure 7: Deontic game models M, (left) and M) (right).

Let R={(c,d) € Ax A :cev(p)iff ¢ € v/(p)}. Itis easy to check that R
isan £, [g-bisimulation between M, and Mj. Hence, (M, (a;,a;,a_; 1)) e, ¢

1770 0
(Mg, (aj, a},a’_; .v)). By Theorem 2, it must be that (M, (a;, a;, a

U ) =2,
(Mj, (aj, aj,d”_, ;1)) However, observe that (M,, (a;, aj,a_y,; 1)) = (i,7)p and

1) 70 17 g0

(M3, (aj, a}, ai{i,j})) # (i,7)p. By Lemma 3, Lsilg) a L (9)- 0
Theorem 7. £ £ £,..
Proof. Because N contains at least two elements, there are 7, 7 € A such that

i # j. We define two pointed deontic game models that are £(g)-bisimilar (and
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hence validate exactly the same £g-formulas) but give different truth-values to
the £,,-formula x;.

Let My = (N, (A;),d,v) be such that A; = {a;,b;} and A; = {a;} and
A, = {a,} forall k € N — {i,j}. The set A of action proﬁles is X;en A,
(Note that A_; » = {a_; 4}) Letd(c) = 1forall c € A. Lastly, let v(p) =
{(b;;a;.a_g; ;1) } and v(q) = O for all ¢ € P — {p}. Model M5 can be pictured as
in Figure 8 (left; the group action a (i} is not represented).

Let My = (N, (A}),d',v") be such that A} = {a;,b;} and A} = {a}} and

= {a}} forall k € N — {i,j}. The set A’ of action profiles is ><ze ~A%L (Note
that Ay = A{d {”}}) Let d'(aj,a},a’ (; ;) = 0 and &'(b}, a},a”; 1) = 1.
Lastly, let v'(p) = {(b}, a},a’ (; ;) } andv'(q) = @ forall ¢ € P —{p}. Model M;

29 _]7

can be pictured as in Figure 8 (right; the group action a’ () is not represented).

!/

a; aj;
a; | 1 a; | 0
b; 1/]7 bg 1/17

Figure 8: Deontic game models M; (left) and M. (right).

Let R={(c,d) € Ax A :cev(p)iff ¢ € v'(p)}. It is easy to check that R
is an £g-bisimulation between M; and M;. Hence, (Mj, (a;,a5,a_y; ;1)) ey
(ML, (a},a J,a (i) By Theorem 2, it must be that (M5, (a;,a;,a_y; 1)) =g
(M, (a}, aj, a’ {”})). However, observe that (M, (a;,a;,a {w})) = *; and

(Mg, (af, a}, a’_y; ;1)) = *i. By Lemma 3, £g) Z £,,. O

8 THE RIGHT FRONT FACE

To chart the expressivity relations among the nine sublanguages of the right front
face of the full expressivity picture (Figure 9), it suffices to prove four theorems.
Using these four theorems, the inclusion criterion, and the transitivity criterion,
we can easily find the expressivity relations between every pair from the nine
sublanguages in Figure 9. The labels of the arrows in Figure 9 indicate which
theorem must be used to establish the corresponding expressivity relation. The
four theorems are the following:

1) Luyg) 7 Ligg (Theorem 8)

(i) L) £ Ly (Theorem 9)
(i)  Lig £ Lo (Theorem 10)
(iV) Q[Q],(i) Z E(g) (Theorem 11)
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Lig),6)
“ 10 8
Lig)
8 1
Liil, @)
8 4 /11
- Liif, )
< 9
10
v
9 1
L)
9 A %
£

L
S
[y
o

Figure 9: The Right Front Face Expressivity Relations

Theorem 8. £ ) 7~ £

Proof. By Lemma 5(i), it holds that £, = £;,). Theorem 3 states that
£, Z Lig- By the transitivity criterion, £y ) £ £g]- O

Theorem 9. £) £ £y

Proof. By Lemma 5(), it holds that £, ; = £g). Theorem 4 states that £, 7 Lii)-
By the transitivity criterion, £g) # £j;. [l

Theorem 10. £ig 7/ £;.

Proof. Consider models M5 and M! from the proof of Theorem 7. Recall that
(Ms, (az,a5,a_g; 1)) Seg (Mg, (af,a},a”y, ;). However, observe that (Mj,
(ai,aj,af{iyj})) K= (i)p and (M., (ag,a;,al{i7j})) = (i)p. By Lemma 3, £
L) O]

Theorem 11. S[g]j(i) % S(g).
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Proof. Consider models M, and Mj from the proof of Theorem 6. Let R =
{(¢,d) € Ax A" :c e v(p)iffd € v'(p)}. Ttis easy to check that R is an

£[g -blslmulatlon between M, and Mj. Hence, (M, (a;,a5,a_ 1)) g
0 4 A—gip)) Seigy
(My, (aj, a,a” ;1)) ¥ (i, 5)p. By Lemma 3, £ig) ) 7 £(g)- .

) 27 ]7
a’ . By Theorem 2, it must be that (M, (a;, a., a
Mj, (ai, aj, a”; jy))- By
(M}, (a ;, j, " 1ijy))- However, observe that (M4,(al,aj,a iqy) F (i,7)p and
My, (a;
9 THE HORIZONTALS

Y

£..191,0) > Lig19)
Lt — Lia.0)

Lsilil () » Lpi.9)
L) — L)

£4.,9) > Lg)

Ly — L)

Figure 10: The Horizontal Expressivity Relations

To chart the six horizontal expressivity relations among the twelve sublan-
guages of Figure 10, it suffices to prove one theorem. Using this theorem, the
inclusion criterion, the transitivity criterion and Lemma 5(iv), we can easily prove
the six horizontal expressivity relations. The theorem we need is the following:

Theorem 12. £ ) 7 £...

Proof. Because N contains at least two elements, there are 7, 7 € A such that
i # j. We define two pointed deontic game models that are £(g) (g)-bisimilar (and
hence validate exactly the same £g) g)-formulas) but give dlfferent truth-values
to the £,, (g)-formula x;.

Let M6 = (N, (4;),d,v) be such that A; = {a;} and A; = {a;} and A, =
{a,} forall k € N'— {i,j}. The set A of action profiles is x,.,A4;. (Note that
A ;5 ={a_ 1) Letd(ai, aj,a_y; ;) = 1. Lastly, letv(p) = 0 forall p € B.
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Model Mg can be pictured as in Figure 11 (left; the group action a_ (i.j} is not
represented).

Let Mg = (N, (A}),d’,v) be such that A} = {a;,b;} and A} = {a],;} and
Al = {a}} forall k € N — {i,j}. The set A’ of action profiles is X, Al
(Note that A" , . = {a’ , 1 }) Letd'(aj, a),d’ ; ;) = 1and &'(a}, b}, 0’ ;y) =
d' (b, a,a” ;) = d'(b,0),a ;) = 0. Lastly, let v(p) = 0 for all p € PB.

(2 17797
Model M can be pictured as in Figure 11 (right; the group action a’_ (i} is not
represented).
ay bl

a; , 1
1110
a; Zf 0l o

Figure 11: Deontic game models M, (left) and M{ (right).

Let R = A x A’ Itis easy to check that R is an £g) |g-bisimulation between
Ms and M. Hence, (M, (a;,a;, af{iyj})) S0 (Mg, (b, 0, a/—{i,j}))' By
Theorem 2, it must be that (M, (ai,aj,a_{m})) =¢6y0 (Ms (b;,b},a’_{ivj})).
However, observe that (Ms, (a;, a;,a_g; ) | % and (Mg, (b}, 0}, a”; 1)) = *i.
By Lemma 3, ,Q(g)’[g] % ,Q*Z.. O

10 WEAKER ASSUMPTIONS ON MODELS AND LANGUAGES

Before concluding the paper, we briefly discuss two assumptions on our models
and languages: (a) the assumption that A/ is a fixed finite set of individual agents
that contains at least three elements, and (b) the assumption that each sublanguage
in L includes the universal modality. How would the expressivity relations be
affected if we were to weaken these assumptions? (Because these assumptions
are not central to the philosophical debate on reductionism in the social sciences,
the following considerations are largely technical in nature.)

Throughout the paper, we assumed that N is a fixed finite set of individual
agents that contains at least three elements. Note that only Theorems 3 and 8 rely
on the assumption that A contains at least three agents. There are two cases to
consider:

(i) If N were to contain exactly one agent, then the full language would not
contain statements about (non-singleton) groups. Consequently, we would
need to consider only eight sublanguages. The expressivity relations for
these eight languages are given by the subfigure of Figure 1 that contains
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only those languages in L that exclude collective admissibility constants,
modalities for collective agency, and modalities for collective obligations.

(ii) If N were to contain exactly two agents, then the only statements about
(non-singleton) groups would be of the form x,, [N]¢, and (N')¢. Note that
our models validate [N]¢ <> ¢. Consequently (and unlike the case where
N contains at least three agents), for every language £* in L it holds that £*
is equally expressive as the language £** that is obtained from £* by adding
modalities for collective agency. Hence, under these circumstances, modal-
ities for collective agency could be added without an increase of expressive
power. Our results concerning the sublanguages that exclude modalities for
collective agency rely only on the assumption that A contains at least two
agents, and hence the expressivity relations among these sublanguages are
given by Figure 1.

Finally, each sublanguage in L includes the universal modality. What can we
say about the expressivity relations between languages that exclude the universal
modality? Note that because N contains at least two distinct individual agents 4
and j, our models validate d¢ <> [i][j]¢. Accordingly, in each language in L that
has modalities for individual agency, the universal modality is definable in terms
of modalities for individual agency. (Note that for every language £* in L it holds
that if £* has modalities for collective agency, then £* has also modalities for
individual agency.) Hence, in each language in L that has modalities for individual
agency, the universal modality could be left out without losing expressive power.
This does not hold true for those languages in L that lack modalities for individual
agency. These languages lose expressive power if the universal modality is left
out. As a consequence, some expressivity relations no longer obtain: in languages
in L without modalities for individual agency and without the universal modality,
modalities for obligations cannot be defined in terms of the universal modality and
the relevant deontic admissibility constant.

11 CONCLUSION

We classified the twenty-seven sublanguages in L in terms of their expressive
power. To achieve this classification, we first proved twenty-seven Hennessy-
Milner theorems: for every language £* in L it holds that two pointed deontic
game models are equivalent on £* if and only if there is a bisimulation relation
between the two pointed models that satisfies a set of structural conditions that
are specific to £*. The Hennessy-Milner theorems are central to our proofs that a
given sublanguage is strictly more expressive than another.
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The expressivity landscape we charted in this paper strongly suggests that the
answers to the two philosophical questions in the introduction are negative. Be-
cause £ig) = £y and £g) > £(g),;), there are statements about collective agency
that are not logically equivalent to any statement about individual agency, and
there are statements about collective obligations that are not logically equivalent to
any statement about collective agency and individual obligations. Naturally, these
are not the only reducibility questions that are answered by our current study. For
example, because £(g) > £ and Lig) = Ly (g), there are statements about collec-
tive obligations that are not logically equivalent to any statement about individual
agency, and there are statements about collective agency that are not logically
equivalent to any statement about individual agency and collective obligations.

Have we refuted reductionism about collective agency and collective obliga-
tions? No, we have not. Our main philosophical contribution to the debate on re-
ductionism about collective agency and collective obligations is methodological:
our study indicates that logical methods can be used to find precise answers to the
questions we raised in the introduction. To vindicate reductionism, the philosoph-
ical interpretation of our logical results must be contested. This can be done in
various ways. For instance, the modelling considerations that lie at the basis of
our semantics might be criticized. The reductionist might specify alternative mod-
els and/or truth-conditions for statements about collective and individual deontic
admissibility, statements about collective and individual agency, and statements
about collective and individual obligations. Then, she might prove that her al-
ternative modelling supports reductionism about collective agency and collective
obligations. Our methodological contribution therefore highlights the fruitfulness
of logical methods for the study of reductionism in the philosophy of the social
sciences.
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