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Abstract
Much of the confusion that occurs when working at the
intersection of cognitive science, artificial intelligence,
and neuroscience stems from disagreement about what
it means to explain intelligence. I claim that to integrate
these fields, we must reconcile their different theories of
explanation. I briefly review theories of scientific explana-
tion in neuroscience and recontextualize the stated views
of several prominent cognitive computational neurosci-
entists in terms of the theories of explanation they es-
pouse. Finally, I describe some of the challenges of forg-
ing a new theory of explanation that would apply equally
to artificial and biological intelligence. As a first step to-
wards an integration of research on biological and artifi-
cial intelligence, my goal in writing this paper is to equip
scientists of intelligence to interrogate and justify the the-
ories of explanation that underlie their definitions of sci-
entific progress.1
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Integration of AI and neuroscience
Much lip service is paid to the integration of deep learning
and neuroscience, with the goal of creating a feedback loop—
deep learning for neuroscience and neuroscience for deep
learning. However, this has proven difficult in practice. The
confusion when trying to work at this intersection comes in
large part from lack of agreement about what progress to-
wards a common goal would look like. This topic came up at
the inaugural Cognitive Computational Neuroscience (CCN)
conference last year, which was assembled to unify the “dis-
connected communities of cognitive science, artificial intelli-
gence, and neuroscience” towards the common goal of “un-
derstanding the computational principles that underlie com-
plex behavior” (Naselaris et al., 2018). Jim DiCarlo, chairing a
panel discussion, asked, “when people say they want to work
together, usually there is some idea of a shared goal...some
idea of what success would even look like...are we even after
the same thing?” This question received a number of very dif-
ferent answers from the panel, demonstrating the challenge of
even agreeing on a common goal. Panelist Yann LeCun stated
the common goal to “explain intelligence” but this doesn’t an-
swer the question because we disagree about what it means
to explain intelligence. LeCun wants to replicate animal in-
telligence in artificial systems. On the other hand, for neu-

1An earlier version of this paper was presented at the 2018 Cog-
nitive Computational Neuroscience Meeting (CCN2018).

roscientist Jackie Gottlieb, “success means characterizing a
system at a particular level of abstraction ... in a way that
is reproducible and solid” (Kay, 2017a). Cognitive scientist
Josh Tenenbaum, stressed the importance of distinguishing
between goals on different time scales and suggested that all
the CCN attendees probably share some long term vision of
success, even if they disagree about what to do to work to-
wards that goal in the short term. An integration of cogni-
tive science, artificial intelligence and neuroscience will not be
possible until we are able to motivate our research by refer-
ence to a shared definition of what it means to make progress
towards the goal of explaining intelligence.

The same debate is happening in machine learning right
now. The quest for interpretable AI is ultimately asking, What
explanations of AI systems will we accept? Are some systems
more explainable than others? For example, are systems that
are designed specifically to expose ‘disentangled’ represen-
tations more interpretable? Several events were dedicated
to related topics at the Neural Information Processing Sys-
tems conference in 2017 (e.g., Interpretable ML Symposium,
Learning Disentangled Representations: from Perception to
Control). It is no coincidence that machine learning and neu-
roscience are both having these conversations now. Rather,
it is precisely because artificial systems are looking more like
biological ones and our models of biological intelligence are
looking increasingly like AI that we are forced to question our
standard conceptions of what makes a good explanation.

These questions are ultimately in the realm of philosophy
of science, yet philosophical theories are not often (explicitly)
invoked in the discussion. As scientists, instead of reinvent-
ing the wheel, we would do well to look to our philosopher
colleagues to help us wade through these difficult but cru-
cially important questions about what constitutes an explana-
tion. At the very least, our discussion would be simplified if
we borrowed from the established language of philosophy of
science. I claim that what is needed is actually to create a new
theory of explanation that applies equally to biological intelli-
gence and artificial intelligence. The nature of research on AI
(the methods we use to study AI, the nature of explanations
that we accept) is very different from the way we traditionally
conceptualize the study of biological systems. At present, this
constitutes a challenge to the CCN goal, but in the long term,
I see this as an opportunity to define a new science of intel-
ligence that includes both artificial and biological intelligence.
My central claim is that to achieve an integration of cognitive
science, AI and neuroscience, we must reconcile their differ-
ent theories of explanation. Background in the philosophy of
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scientific explanation of neural and computational systems will
better equip us to express our views on questions like, How
ought intelligence be explained?, and ultimately to be able to
design experiments that we can rigorously justify.

Theories of Explanation
To begin, we assume that a primary goal of science is to pro-
vide explanations of phenomena. The role of a theory of sci-
entific explanation is to characterize the structure of explana-
tions in science. An account of scientific explanation must
distinguish between explanations that are scientific and those
that are not. It must also distinguish between explanations
and non-explanations. Sometimes this second contrast is pre-
sented as the difference between explanation and description.
For example, a set of claims about the appearance of a par-
ticular species may be true, accurate and supported by evi-
dence without being explanatory in any way. They are merely
descriptive (Woodward, 2017).

Scientists ought be able to look at a set of claims or a
model and judge whether it is descriptive or explanatory (or
neither) according to one’s favorite theory of scientific expla-
nation. This is not to say that description is somehow inher-
ently less valuable than explanation. We must know that a
phenomenon exists before we can ever hope to explain it. In
calling for better literacy of theories of explanation, my wish
is not to reduce the amount of descriptive science, but rather
to reduce the misrepresentation of scientific activities. If we
already think that we are explaining, then we will not spend
time figuring out how to explain. Instead, if we acknowledge
that what we are currently doing is descriptive, we can better
see our role in a larger scientific enterprise, i.e. the role of a
particular series of experiments may be to describe a specific
set of phenomena that may later be explained by other ex-
periments. When our perceived explanatory power is inflated,
we’re closed off from seeing how we might work together to
ultimately better explain in the long term.

What do contemporary scientists say?
In this section I will discuss how some computational neuro-
scientists have recently answered the question, What makes
a good model (or theory) of the brain? In their answers, we
will find their philosophical commitments.

In his talk Playing Newton: Automatic Construction of Phe-
nomenological, Data-Driven Theories and Models, Ilya Ne-
menman refutes the claim that a good theory of brain must
be a large, multi-scale computational model with a quote from
Rosenblueth Wiener, “Theories must lose details and must
be developed to explain limited sets of phenomena. Other-
wise, the best material mode of a cat is another, or preferably
the same, cat” (Rosenblueth & Wiener, 1945). In other words,
“Don’t model bulldozers with quarks” (Goldenfeld & Kadanoff,
1999). A good theory is one that accurately explains a lim-
ited set of phenomena and throws away everything is wasn’t
designed for (Nemenman, 2018). But what does it mean to
explain to Nemenman? He suggests that we can ignore philo-
sophical answers to this question because philosophy has

failed to define science. In his view, we don’t need philoso-
phy anyway because we have Bayesian statistics. Bayesian
statistics can already tell us what is falsifiable and what is fal-
sified. If a theory does not explain the observed data, then the
theory is falsified. If a theory can explain any dataset, then
it is unfalsifiable. What makes a good model of the brain is
determined by Bayesian model selection. The goodness of a
theory is related to generalization and prediction, with little re-
gard to whether it is true. Falsifiability is then real-valued and
empirical. If it explains the data, we don’t care if it is correct or
not. According to Nemenmen, good models:

• are phenomenological,

• predict your data and generalize to new data and experi-
ments, and

• only explain the specific question they were designed to an-
swer with as few parameters as possible.

This view reflects the well known heuristic of Occam’s Razor:
the best solution is the one that explains the data best with the
simplest model.

Neumenman advocates for phenomenological models,
which have been characterized by philosophers of science as
black box models because they merely capture input-output
relationship for the phenomena to be explained without posit-
ing intervening variables or mechanisms. In computational
neuroscience, phenomenological models are called descrip-
tive models because they “summarize data compactly” without
addressing “the question of how nervous systems operate on
the basis of known anatomy, physiology, and circuitry” (Dayan
& Abbott, 2005). Nemenman claims that the important test is
whether the model generalizes to unseen data and new situa-
tions (Nemenman, 2018).

Consider the oft-cited Balmer formula as a counter exam-
ple. The formula was constructed to describe the four visible
lines in the emission spectrum of hydrogen. Not only does this
model accurately capture the target phenomena, but it also
successfully predicted the existence of previously unobserved
spectral lines outside of the visual range. Despite its success,
none of the model elements have any physical interpretation.
Balmer arrived at this formula via trial and error curve fitting to
find the best mathematical fit to the four visible spectral lines
of hydrogen. It is generally agreed that the Balmer formula is
not explanatory because it does not explain why the emission
spectrum for hydrogen shows the pattern that it does (Kaplan,
2011). Phenomenological models can certainly be very use-
ful and are an important part of any scientific enterprise, but
to claim that they are explanatory is a difficult claim to defend.

In Principles for models of neural information processing
(2017b), Kendrick Kay defines cognitive neuroscience to be
the quest for explanations of the mind in terms of the brain.
Yet, in his definition of explanation, “models posit that specific
variables relate to neural activity. As such, models provide ex-
planations of measurements of the brain.” Is the phenomena
to be explained the behaviour of the animal or the neural ac-
tivity? The implication seems to be that if we can explain the



neural activity, this will imply an explanation for the behaviour.
Consider the example given in the paper, Why is a neuron
highly active during a clip of rock music? We can compare
different models (the neuron responds to sound intensity ver-
sus the neuron responds to guitar tones) and evaluate which
model is more accurate. For example, we can vary the in-
tensity of a variety of sounds and find that the activity of this
neuron scales with the sound intensity, while not being selec-
tive to any other tested features. Have we then explained the
activity of this neuron and, at the same time, explained per-
ception of sound intensity? Some philosophers claim that ex-
planations of human brains proceed via this type of functional
analysis,“according to the explanatory strategy of functional
analysis, the overall behavioral capacities [are] explained by
breaking down or decomposing the capacities into a number
of ‘simpler’ subcapacities and their functional organization”
(Kaplan, 2011). This theory of explanation goes hand in hand
with the information processing theory of mind. When you
assume that the brain is best understood as an information
processing machine, then once you’ve discovered the signals
that it sends around and the operations that it performs, then
you should be able to explain the resulting behaviour. Under
a different theory of mind (e.g. embodied dynamicism), or a
different theory of explanation (e.g. mechanistic), functional
analysis is not explanatory. However, many mechanists would
say that functional analysis is a necessary step en route to a
mechanistic explanation.

Jonas Kubilius, also asks the question, What does it mean
to understand? in his commentary “Predict, then simplify”. To
Kubilius, predictive power is the first and foremost attribute on
which to assess a model. He and the rest of Jim DiCarlo’s lab
appear to be staunch predictivists, taking an engineering ap-
proach to neuroscience. This has led their group to find that
deep neural network models trained originally for visual ob-
ject recognition, better predict activity in much of visual cortex
better than previous scientist-designed models (Yamins & Di-
Carlo, 2016). Predictivism refers to the view that phenomeno-
logical models are explanatory by virtue of their descriptive
and predictive power. The problems facing predictivism are
well known in philosophy of explanation. “Simple examples
readily expose how accurate prediction is insufficient for expla-
nation, and so how the predictive import of a given model can
and often does vary independently of its explanatory force.
On can accurately predict a storm’s occurrence from a drop-
ping barometer, but this does not explain the occurrence of
the storm. Rather, a common cause—a drop in atmospheric
pressure—explains both the dropping barometer value and
the approaching storm. Similarly, a p-model might be pre-
dictively adequate, and yet its variables might only represent
factors that are mere behavioural correlates of some common
or joint cause for the target phenomenon. Just as we reject the
claim that the barometer drop explains the storm, we should
also resist the claim that p-models of this kind provide expla-
nations”

On first read of Kay an Kubilius, one might think that their

disagreement about DNNs being explanatory models of the
brain comes from placing different values on the predictive
power of a model. Kubilius says predictive power comes first
and foremost. Where as Kay says that the model must first
be understood before it can explain. Yet both rely largely on
prediction of observational data to validate their models. The
larger disagreement is about the form of a good model. Both
Nemenman and Kay ascribe to the heuristic of Occam’s Ra-
zor, that the simplest model that explains the data is best.
They want the number of components to be small because
ultimately their modelling efforts are about finding which com-
ponents are important. Kubilius points out that although his-
torically, science’s greatest successes have been the result
of describing complex systems with relatively few parameters,
there is no reason to assume that this will be the case for
understanding the brain. Others have pointed out the absur-
dity of Occam’s Razor, “how could a fixed bias toward sim-
plicity indicate the possibly complex truth any better than a
broken thermometer that always reads zero can indicate the
temperature? You dont have to be a card-carrying skeptic
to wonder what the tacit connection between simplicity and
truthfinding could possibly be” (Kelly, 2007). This adherence
to Occam’s razor is part of what separates Neumenman and
Kubilius. Simpler things seem to be easier for us to under-
stand, so the tendency of science to look for simplicity when
it is available makes sense. Kubilius suggests that we may
look for simple processes that generate complex systems in-
stead. For example, training deep neural networks depends
on a number of principles (e.g. optimization of cost functions
via gradient-based methods, compositionality, distributed rep-
resentations) that is likely smaller than the number of param-
eters in the model.

Towards a new theory of explanation for a new
science of intelligence

There is a growing body of work trying to understand deep
learning using empirical methods that look almost neuro-
scientific: ablation analyses, receptive field analysis, psy-
chophysics. Nikolas Kriegeskorte calls it “synthetic neuro-
physiology” (Kriegeskorte, 2015), Jeff Clune calls it “artificial
neuroscience” (Metz, 2018), and Maithra Raghu calls it “deep
learning science” (personal communication, Dec 7 2017), pre-
sumably because it involves applying the scientific method to
study artificial systems. One exciting aspect of this line of in-
quiry is that it makes many connections to deep learning the-
ory, the mathematical study of how deep learning works. If
we can relate deep learning theory to empirical analyses of
deep learning systems, then might there also be the poten-
tial to relate our empirical analyses of biological intelligence
to a similar mathematical understanding? On the other hand,
Eric Jonas and Konrad Kording asked, Could a neuroscien-
tist understand a microprocessor? in their work which ap-
plied common neuroscientific analyses to electrical measure-
ments of a microprocessor. They show that although these
analyses were able to make replicable and reliable descrip-



tions of patterns of activity, they did not ultimately reveal the
known and accepted explanation of how the microprocessor
works (Jonas & Kording, 2016). Swapping methodologies, ap-
proaches and philosophies between deep learning and neu-
roscience has the potential to demonstrate the strengths and
limitations of our scientific activities and perspectives, helping
us to select those that will be most useful towards our common
goal of understanding intelligence.

If the nature of a good scientific explanation is depen-
dent on the phenomenon to be explained, then, to the extent
that an artificial system and a biological system demonstrate
the same phenomenon, their explanations should share the
same form. All contemporary theories of explanation in neu-
roscience focus on physical computation. The mechanistic ac-
count, which currently dominates philosophy of neuroscience,
requires that explanations consist of physical components in
causal relationships with one another. The explanations we
have for deep learning are concerned with abstract compu-
tation. The same principles hold regardless of which type of
GPU your model is trained on. Reconciliation of these views
suggests a commitment to multiple realizability. However mul-
tiple realizability is often associated with functionalism and
computational chauvinism. We want a version of multiple re-
alizability for the 21st century aligned with a modern theory of
mind.

We know from machine learning research that there are
many equivalent solutions to the optimization problems posed
in deep learning. Repeated optimizations of the same network
lead to solutions that occupy distinct regions in function space.
The loss surface contains many equally good local minima
(Erhan, Courville, & Vincent, 2010). Thus, in deep learning,
specifically characterizing the exact function learned by the
network is not very informative. As such, function identifica-
tion will not play a large role in a unified theory of explanation
for biological and artificial intelligence.

Conclusion
A new theory of scientific explanation for both artificial and
biological intelligence ought:

1. reflect that learning is central to intelligence,

2. imply multiple realizability without computational chauvin-
ism,

3. abandon the focus on physical computation, and

4. not be concerned with characterizing the specific function
that is computed by a network.

If our ultimate goal is truly to explain intelligence, then we must
eventually agree on a theory of explanation that accounts for
successful explanations of both artificial and biological intelli-
gence. Although the mechanistic framework is currently very
popular in most of philosophy of science, it is difficult to ap-
ply to the explanation of cognitive phenomena. Hence, much
of cognitive and computational neuroscience that claims to be

explanatory relies on older problematic theories of explanation
and outdated theories of mind. To forge a new path forward,
we need to first acknowledge that we fundamentally do not
know how to explain intelligence. Until we do, let us be ex-
plicit about our philosophical commitments and let us value
our descriptions without mistaking them for explanations.
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