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Abstract. We consider the nature of quantum randomness and how one

might have empirical evidence for it. We will see why, depending on one’s

computational resources, it may be impossible to determine whether a partic-
ular notion of randomness properly characterizes one’s empirical data. Indeed,

we will see why even an ideal observer under ideal epistemic conditions may

never have any empirical evidence whatsoever for believing that the results of
one’s quantum-mechanical experiments are randomly determined. This illus-

trates a radical sort of empirical underdetermination faced by fundamentally

stochastic theories like quantum mechanics.

1. quantum randomness

Randomness is a characteristic aspect of quantum phenomena. It is unclear,

however, what it should mean for the results of one’s quantum-mechanical measure-

ments to be randomly distributed. It is also unclear how one might have empirical

evidence for the randomness of one’s measurement results. Here we will use the the-

ory of algorithmic randomness to show how one might capture some of the standard

intuitions regarding what it might mean for the results of quantum measurements

to be randomly distributed. We will then see why one may never have any empirical

evidence whatsoever that the results of one’s quantum-mechanical experiments are

in fact randomly determined even on the assumption that one’s data is statistically

uniform. This illustrates a radical sort of empirical underdetermination faced by

fundamentally stochastic theories like quantum mechanics.

The argument is that once one is in the ballpark of capturing standard intu-

itions regarding what it might mean for the results of quantum measurements to

be random, one encounters competing notions of randomness that are different but

formally indistinguishable given standard computational resources. This point re-

garding the empirical indistinguishability of competing notions of randomness could

be made more abstractly. We are considering it in the concrete context of quantum

mechanics because here the truth of the physical theory depends on whether or not
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the physical world is in fact objectively random. To this end, we are interested

in notions of randomness where a physical process (as in a theory like the von

Neumann-Dirac collapse formulation of quantum mechanics) or initial distribution

(as in a theory like Bohmian mechanics) might be understood as being intrinsically

and objectively random. We take this to be what is required to make sense of how

physical randomness is typically understood in the context of quantum mechanics.

We will discuss this approach in contrast with other notions of randomness later.

In some formulations of quantum mechanics the source of quantum randomness

is dynamical. This is the case for the standard von Neumann-Dirac collapse theory

(1955) and more recent collapse theories like Ghirardi, Rimini, and Weber (GRW)

(1986).1 In other formulations quantum randomness results from the specification

of special statistical boundary conditions. This is the case for some no-collapse

theories. In Bohmian mechanics (1952) quantum randomness can be thought of as

resulting from the random selection of an initial particle configuration relative to

the initial wave function.2 In other no-collapse formulations quantum randomness is

the result of epistemic uncertainty regarding self-location. This is the case for some

many-world reconstructions of Everett’s pure wave mechanics (1957).3 Here we will

consider quantum randomness in the context of the standard von Neumann-Dirac

formulation of quantum mechanics, but these considerations are also applicable to

other formulations of quantum mechanics that appeal to the notion of a random

process or random selection.

The standard von Neumann-Dirac collapse formulation of quantum mechanics

stipulates that one’s measurement results are the result of a random dynamical

process and, hence, predicts that a sequence of measurement results will be ran-

domly distributed.4 We will first consider the sense in which it predicts random

measurement results then consider how one might empirically test its predictions.

On the standard collapse formulation of quantum mechanics, the state of a phys-

ical system S is represented by an element |ψ〉S of unit length in a Hilbert space H,

and a physical observable O is represented by a Hermitian operator Ô on that

space. The physical interpretation of a state is given by the eigenvalue-eigenstate

link which says that a system S has a determinate value for observable O if and

only if it is in an eigenstate of O. That is, S has a determinate value for O if and

only if Ô|ψ〉S = λ|ψ〉S , where Ô is the Hermitian operator corresponding to O, |ψ〉S

1See Albert (1992) and Barrett (2019) for discussions.
2See Barrett (1999) and (2019) for discussions.
3See Saunders, Barrett, Kent, and Wallace (2010), Wallace (2012), and Barrett (2019) for discus-

sions.
4See Barrett (2019) for a discussion of the standard von Neumann-Dirac formulation of quantum
mechanics and its conceptual structure.
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is the vector representing the state of S, and the eigenvalue λ is a real number. In

this case, one would with certainty get the result λ if one measured O of S.

Given the eigenvalue-eigenstate link and the linear way that systems evolve when

they are not measured, a particular observable will typically fail to have any deter-

minate value at all for a given system before the system is measured. According

to the standard theory, the system acquires a determinate value for the observable

when it is measured. In particular, the theory predicts that when the observable

is measured, the system will instantaneously and randomly jump to an eigenstate

of the observable being measured with probabilities determined by its initial state.

Since the final state will be an eigenstate of the measured observable, it will be one

where the object system now has a determinate value for that observable. And,

salient to the present discussion, that value will be randomly determined by the

process that generated it.

In describing the dynamical laws of the standard theory, von Neumann referred

to the random nonlinear evolution of the state that occurs on measurement as

Process 1. When no one is observing the system, it evolves in a deterministic, linear

way that he called Process 2. These two dynamical laws might be characterized as

follows:

Process 1: If a measurement is made of the system S, the state

of S will randomly collapse to an eigenstate of the observable being

measured (a state where the system has a determinate value of the

observable being measured). If the initial state is given by |ψ〉S
and |χ〉S is an eigenstate of O, then the probability of S collapsing

to |χ〉S is equal to |〈ψ|χ〉|2 (the square of the magnitude of the

projection of the premeasurement state onto the eigenstate).

Process 2: If no measurement is made of a physical system, it will

evolve in a deterministic, linear way: if the state of S is given by

|ψ(t0)〉S at time t0, then its state at a time t will be given by

Û(t0, t1)|ψ(t0)〉S , where Û is a unitary operator that depends on

the energy properties of S.

Process 2 is a deterministic dynamical law that explains quantum-mechanical

interference and entanglement. In contrast, Process 1 is a fundamentally stochastic

dynamical law. It explains both why measurements yield determinate outcomes and

why one should expect a sequence of quantum measurement results to be randomly

distributed with the standard quantum statistics.
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That the theory does not say what constitutes a measurement means that it is

unclear precisely when each dynamical law obtains. This ambiguity is the source of

the quantum measurement problem.5 For present purposes, we will simply suppose

that Process 1 kicks in at some point during a measurement interaction to produce

determinate measurement records that are randomly determined with the standard

quantum statistics. Our concern here is not to say precisely when or why collapses

occur but rather to consider what it might mean to say that one’s measurement

records are randomly determined with the standard quantum statistics and how

one might have empirical evidence for such a claim.

Consider an infinite series of systems S1, S2, . . . Sk, . . . each in the state

1/
√

2(|↑x〉Sk
+ |↓x〉Sk

).

Suppose that one measures the x-spin of each system in turn and records 0 for ↓x
and 1 for ↑x as a string σ. Call this the quantum coin-toss experiment.6 Here

Process 1 predicts that the outcome of each trial will be randomly determined with

probability 1/2 of recording 0 and probability 1/2 of recording 1 on each trial.

That is, or to say something that is at least very closely related, one expects with

probability one that the outcomes to be statistically independent and unbiased.7

While no particular sequence of 0’s and 1’s is ruled out in the quantum coin-

toss experiment, one would have very good empirical evidence against Process 1 if

the ratio of 0’s and 1’s in σ were not approximately even in the long run. If so,

the dynamics would be predicting the wrong relative frequencies. But one would

also have very good empirical evidence against Process 1 if the sequence of results

exhibited a simple pattern like 01010101 . . .. This would not count against the

dynamics predicting the right relative frequencies, but the longer a simple pattern

like this persists, the better one’s empirical evidence that the measurement results

are not statistically independent and hence not in fact determined by a random

process at all.

If Process 1 is descriptive of the physical world, then one should expect a sequence

of measurement results to exhibit all of the properties of a random sequence. One

such property in the present case is that a random sequence of measurement results

5See Albert (1992) and Barrett (1999) and (2019) for discussions of the quantum measurement

problem and various proposed resolutions.
6One might equivalently, according to the standard theory, alternate x-spin and z-spin measure-

ments on a single electron and keep track of the sequence of up and down results.
7There is an important distinction to be made between a random sequence and a sequence pro-

duced by a random process as these notions are typically used. While one would expect (with
probability one) a random sequence from a random process, and a random sequence is empirical

evidence that it was generated by a random process, it is possible for a random process to produce

a nonrandom sequence. But if a process does produce a nonrandom sequence, that clearly counts
as evidence against the process being random inasmuch as that would be extraordinarily unlikely

otherwise.
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should be expected to have the standard quantum relative frequencies. But, as the

example of an alternating sequence of zeroes and ones illustrates, having the right

relative frequencies is not sufficient for the sequence of measurement results to be

randomly distributed. We expect the sequence to exhibit other statistical features

as well. That said, it is not immediately clear what these should be. In addition

to tracking relative frequencies, one needs an explicit test of all of the features

of a random sequence (whatever these may be) in order to check the empirical

predictions of Process 1.

The general methodological question here concerns how one might empirically

determine whether the output of a physical process is in fact random. Equipped

with a test for randomness, a good Bayesian might then seek to update her degree

of belief that the sequence σ was produced by a random process by conditioning

on new measurement results as one gets them. But what should it mean for the

results in σ, or an initial segment of σ, to be random?

As suggested earlier, our intuitions concerning what it means for a sequence

of results to be randomly distributed are closely tied to our intuitions concerning

what it means for those results to be statistically independent. The judgment that

the sequence 01010101 . . . does not appear to be random goes hand-in-hand with

the judgment that the measurement results that constitute it do not appear to be

statistically independent. In this sense, a test for statistical independence is a test

for a corresponding variety of randomness and the other way around.8 If Process 1

is in fact descriptive of the physical world, then one should expect the results of the

quantum coin-toss experiment to be both random and statistically independent in

some appropriately strong sense.

Von Neumann’s physical intuition was that the sequence σ should be expected

to be random and its elements statistically independent because it is determined by

a dynamical process that produces arbitrary events.9 Specifically, he understood

Process 1 to postulate a “willkürliche Veränderung”—an arbitrary or capricious

change in the physical state. Because the sequence of measurement results is arbi-

trary, one expects it to be patternless and not special in any specifiable sense. The

arbitrary results of this process were, for von Neumann, what made the standard

quantum probabilities the most precise empirical predictions possible. He took the

quantum mechanical state to be complete. Further, salient for the issue at hand,

8Events A and B are statistically independent if and only if P (A) = P (A|B). The issue here is

how one tests whether of not this condition is satisfied by the dynamical process that produced

one’s results given those results.
9By expectation we mean expectation with probability one.
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he took Process 1 to be (1) a physical process and (2) dynamically complete—there

is simply nothing more to say about the result of a quantum measurement.10

As a consequence of von Neumann’s commitment to the outcomes being arbi-

trary, the sequence σ should be typical. That is, it should be a sequence that one

can think of as having been arbitrarily selected from a subset of measure one of all

possible sequences in Lebesgue measure just as in the case of the random outcomes

of tosses of a theoretical fair coin. This ties directly to statistical independence. If

the measurement results are independent, then one should also expect the sequence

to be typical (measure one) in Lebesgue measure.

Finally, concerning von Neumann’s commitment to state completeness and the

completeness of the dynamics, since the standard probabilistic predictions of quan-

tum mechanics are the most precise predictions possible, one should expect there

to be no fair betting strategy that would allow one to do better in predicting

the sequence σ than simply predicting each result with the standard quantum

probabilities—here each with probability 1/2.11

2. algorithmic randomness

In order to test the empirical predictions of the standard theory, then, we want

to test σ for being patternless in a way that satisfies our statistically-independent,

unpredictable, no-betting-strategy intuitions. In short, we want to ensure that the

sequence exhibits no specifiable regularity.

In this spirit, one might take a sequence to be patternless, and hence random,

when there is no algorithm significantly shorter than the sequence that produces

it. While this is a step in the right direction, it is not quite what we want. An

immediate problem is that an infinite sequence might be incompressible but still

contain long, recurring subsequences that exhibit regular patterns. In that case,

the sequence as a whole does not satisfy our intuitions regarding what it is to be

random.

Consider an infinite sequence that consists of one thousand 1’s followed by one

thousand 0’s followed by one thousand random 0’s and 1’s, then repeats this three-

block pattern forever. Because of the random blocks, such an infinite sequence

may be incompressible in the sense of not being representable by a finite-length

algorithm, but the full sequence is clearly not random. This is reflected by the fact

that there is a simple betting strategy that would lead to unbounded wealth in the

10See Wigner (1970, 1005-6 and endnote 1), Earman (1986, 227-8), and Barrett (2019) for more
on von Neumanns understanding of the essential nature of quantum unpredictability. See Earman
(1986, 199-234) for a discussion of the distinction between quantum indeterminism and quantum
unpredictability.
11A fair betting strategy is a plan to bet for or against outcomes at each stage so that one does

not expect to win or loose at the next stage. If one were to adopt an unfair betting strategy, one
could of course expect to win arbitrarily large amounts of money.
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long run (e.g. predict 1 a thousand times then 0 a thousand times then whatever

one wants a thousand times and repeat). The upshot is that this very simple notion

of algorithmic randomness is too weak to support the intuition that there should

be no pattern or betting strategy that allows one to predict better than chance.

But we are on the right track.

There are a number of more subtle notions of algorithmic randomness that

do support our patternless, statistically-independent, unpredictable, no-betting-

strategy intuitions. We will consider two here: Martin-Löf randomness and Schnorr

randomness. Each of these satisfies the basic intuition that a random sequence

should be patternless in a way that makes it effectively unpredictable and, in a

strong sense, does not allow for a successful betting strategy.

Martin-Löf and Schnorr randomness fit into a hierarchy of algorithmic ways of

understanding what it might mean for a sequence to be random. The core notions

of algorithmic randomness from less to more restrictive are Kurtz (weak) random,

Schnorr random, computably random, Martin-Löf random, and 2-random. We are

concerned here with Schnorr randomness and Martin-Löf randomness.12

A notion of randomness can be given in terms of a set of tests that a random

sequence will pass. A Martin-Löf test is a sequence {Un}n∈ω of uniformly Σ0
1 sets

of sequences such that µ(Un) ≤ 2−n for all n, where µ is the unbiased Lebesgue

measure over the sequences. Being uniformly Σ0
1 means that there is a single con-

structive specification of the sequence of sets. A constructive specification can be

represented by a ordinary algorithm.13 Let 2ω be the set of all ω-length sequences

(infinite-length sequences indexed by ω). A sequence S ∈ 2ω passes the Martin-Löf

test associated with the sequence {Un}n∈ω if and only if S is not in the measure zero

null set
⋂

n Un. Passing a Martin-Löf test can be thought of as passing a particular

effective statistical test for randomness.14 A sequence is Martin-Löf random if and

only if it passes every Martin-Löf test. Since there are only a countable number of

Martin-Löf tests, the union of all the associated null sets is also a set of measure

zero. So the set of Martin-Löf random sequences has Lebesgue measure one.

The idea here is that each sequence {Un}n∈ω of uniformly Σ0
1 classes corresponds

to an effectively specifiable way that a sequence might be special and thus to an

associated statistical test of randomness. A sequence passes the test if it is not

special in the specified sense. A sequence is Martin-Löf random then if (1) it is

12See Li and Paul Vitányi (2008) for an introduction to algorithmic complexity and randomness.

See Downey and Hirschfeldt (2010) for a description and comparison of Martin-Löf and Schnorr
randomness and Downey and Griffiths (2002) for further details regarding the properties of Schnorr
randomness.
13Σ0

1 sets are semi-computable open sets in the following sense. Every Σ0
1 is the union of a

countable set of cylinder sets, the clopens of Cantor space. By taking an increasing sequence of

finite unions of clopens, we can approximate each Σ0
1 set by computable objects from below.

14See Downey and Hirschfeldt (2010, 229–31) for an extended discussion.
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not special in any way that can be effectively specified and hence (2) it passes

every effective statistical test for being random. This is arguably precisely what

one should want for a sequence to be considered random.

Martin-Löf randomness also supports the intuition that a random sequence

should be patternless in the sense of being both incompressible and unpredictable.

An infinite sequence is Martin-Löf random if and only if there is a constant c such

that all finite initial segments are c-incompressible (not representable by an algo-

rithm that is c shorter than the initial segment) by a prefix-free machine (a universal

Turing machine that is self-delimiting and hence can read its input in one direction

without knowing what, if anything, comes next). And a sequence is Martin-Löf

random if and only if no constructive martingale succeeds on it (if there is no con-

structive betting strategy that generates unbounded wealth).15 Since measure one

of infinite-length sequences are Martin-Löf random in the unbiased Lebesgue mea-

sure over the set of possible sequences, it also supports the intuition that random

sequences are not special in a measure-theoretic sense.

The notion of a sequence being Schnorr random is closely related. A Schnorr

test is a Martin-Löf test where the measures µ(Un) on the sequence of uniformly

Σ0
1 sets are uniformly computable (there is a single algorithm that computes each

of these measures). A sequence S ∈ 2ω passes the Schnorr test associated with the

sequence {Un}n∈ω if and only if S is not in the measure zero null set
⋂

n Un. A

sequence is Schnorr random if and only if it passes every Schnorr test. Because

the measures on the test classes µ(Un) are uniformly computable, the statistical

tests here might be thought of as being more concretely specifiable than in the case

of Martin-Löf randomness. Indeed, one can suppose that the measures of the test

classes are given by µ(Un) = 2−n without loss of generality.

The notion of Schnorr randomness, like that of Martin-Löf randomness, captures

the intuition that a random sequence should be patternless in the sense of being

both incompressible and unpredictable in a strong sense. An infinite sequence is

Schnorr random if and only if there is a constant c such that all finite initial seg-

ments are c-incompressible by a computable measure machine (a prefix-free Turing

machine with a domain of computable measure).16 If a sequence is Schnorr ran-

dom, then no computable martingale h-succeeds on it (there is no computable

betting strategy that generates wealth over time that is bounded from below by an

unbounded, nondecreasing function h).17 And, like Martin-Löf random sequences,

Schnorr random sequences are not special—measure one of infinite-length sequences

are Schnorr random.

15Constructive again means computably approximable from below.
16See Downey and Hirschfeldt (2010, 277) for further details on such machines.
17See Downey and Hirschfeldt (2010, 271) for further details regarding the martingale properties

of Schnorr random sequences.
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Important for what follows, Martin-Löf random (MLR) infinite-length sequences

are a proper subset of Schnorr random (SR) sequences. Since MLR sequences and

SR sequences are both measure-one sets, their intersection is also measure one.

And the set of sequences that are SR but not MLR is measure zero in the unbiased

Lebesgue measure over the set of infinite-length sequences. Sequences that are SR

but not MLR are measure-theoretically very special.

3. the effective indeterminacy of randomness and independence

Given how they support the relevant intuitions, both Martin-Löf random and

Schnorr random provide plausible standards for quantum randomness. Indeed,

inasmuch as random sequences are not special, one would expect (with probability

one) the sequence σ of quantum-mechanical results produced by Process 1 to be

both Martin-Löf random and Schnorr random. But here one encounters a number

of epistemic problems.

Consider the following proposition concerning whether one can know whether a

sequence is Martin-Löf random or Schnorr random.18

Proposition 3.1. Suppose that C ⊆ 2ω is a non-empty class such that either (i) C
contains no computable members, or (ii) C 6= 2ω and C is a tailset, i.e. if X is in

C and Y differs from X by at most finitely many bits, then Y is in C. Then there

is no algorithm e such that for all X ∈ 2ω one has ϕX
e (0) = 1 iff X ∈ C, where ϕX

e

denotes the e−th computable function with oracle X.

Proof. Suppose not, with witness e. Since C is a non-empty class, choose X in C.
Then ϕX

e (0) = 1. Then there is s such that ϕX
e,s(0) = 1, that is, the computation

converges in < s steps looking at < s bits of the oracle tape.

Let σ = X � s. Suppose that (i) is satisfied. Consider Y = σ_0, i.e. σ followed

by all zero’s. This is computable and we also have that ϕY
e,s(0) = 1 and hence

Y ∈ C, contradicting our hypothesis that C contains no computable members.

Suppose that (ii) is satisfied. Then for any Y ∈ [σ], that is, any Y which begins

with σ, we have Y ∈ C. But every element of 2ω differs by an element of [σ] by

only finitely much, and since C is a tailset, we then have C = 2ω. �

Notions of algorithmic randomness typically satisfy both conditions (i) and (ii).

In particular, both Martin-Löf and Schnorr randomness satisfy these two conditions.

The upshot is that there is no effective procedure to tell whether a sequence σ is

Martin-Löf random or Schnorr random. This means that if one is restricted to

18See Soare (2016) for an explanation of the notation here. The proof of this proposition follows
closely from the definitions of the relevant notions. See, for example, Soare (2016, 190) and Shen

et al. (2017, 81). See also Downey and Hirschfeldt’s (2010, 16–8) discussion of the use principle.



10 JEFFREY A. BARRETT AND SIMON M. HUTTEGGER

Turing-strength computations, one can never know whether one’s empirical evi-

dence is in fact random in either of these two senses.19 But the epistemic situation

is significantly worse than this might suggest.

The following proposition is concerned with the question of whether one can

distinguish between sequences that are Schnorr random but not Martin-Löf random

and sequences that are Martin Löf random.

Proposition 3.2. There is no algorithm e such that for all X ∈ 2ω, if one has

that if X is Schnorr random, then ϕX
e (0) = 1 iff X is Martin-Löf random.

Proof. Choose Martin-Löf random X. Then as above, ϕX
e,s(0) = 1 for some s, and

again set σ = X � s. Choose Y which is Schnorr random but not Martin-Löf random

and let Z = σ_Y . Then since the Schnorr randoms and the Martin-Löf randoms

are tail sets, one has that Z is Schnorr random but not Martin-Löf random. But

we also have that ϕZ
e (0) = 1 since Z ∈ [σ]. �

The upshot is that there is no effective procedure that would tell whether a

particular sequence is Martin Löf random or Schnorr random but not Martin-Löf

random.

In order to make clear what is at stake here, consider two ways of understand-

ing what it might mean for the sequence of results σ in the quantum coin-toss

experiment to be randomly determined dynamically.

Martin-Löf dynamics: When a measurement is made of system Sk,

its state instantaneously jumps to an eigenstate of the observable

being measured in such a way that the sequence of results σ should

be expected almost always to be MLR.

Schnorr dynamics: When a measurement is made of system Sk,

its state instantaneously jumps to an eigenstate of the observable

being measured in such a way that the sequence of results σ should

be expected almost always to be SR.

Given proposition ??, there is a sense in which these two dynamical laws are ef-

fectively indistinguishable, but the Martin-Löf dynamics is in fact more restrictive

19There are similar results to this for other notions of randomness. Notably, Eagle (2005) points
out that one cannot tell from any finite initial segment of a sequence that it is von Mises random

if it is. He concludes that von Mises randomness “is a profligate hypothesis that we cannot

be justified in adopting” even for infinite strings of quantum-mechanical measurement outcomes
(2005, 757-8). Eagle suggests Martin-Löf randomness as an improvement on von Mises’ notion.
But, given the sequence of arguments here, he would presumably take Martin-Löf randomness

and Schnorr randomness to be similarly profligate, especially when, as we will see, there is a sense
in which empirical underdetermination holds here even in the limit as one examines the entire

sequence. In contrast, we take both of these notions to be in the ballpark of the physical intuitions

involved in quantum randomness. We will discuss Eagle’s approach to randomness later.



QUANTUM RANDOMNESS AND UNDERDETERMINATION 11

from a god’s-eye-view than the Schnorr dynamics. This difference would only be

detectable by a computationally strong observer, one who could carry out compu-

tations that go beyond what can be accomplished by an ordinary Turing machine.

But such an observer might find herself with very strong empirical evidence for

accepting the Schnorr dynamics over the Martin-Löf dynamics.

Suppose that one somehow knew that the sequence of results σ was SR but

not MLR. Since one would expect σ to be both SR and MLR on the Martin-Löf

dynamics, this would count as very strong evidence in favor of the Schnorr dynamics

over the Martin-Löf dynamics. This is precisely analogous to the argument that

getting something from the measure-zero set of sequences that can be represented by

finite algorithms would provide strong empirical evidence that the actual physical

dynamics was not random at all.

That said, if the Schnorr dynamics were in fact descriptive of the world, while

such a sequence of results is possible, one would never expect a sequence that was

SR but not MLR. Rather, one would fully expect σ to be both MLR and SR on both

the Martin-Löf dynamics and the Schnorr dynamics. Inasmuch the two laws yield

precisely the same expectations, there is good reason to take them to be empirically

equivalent even after one concedes that it is logically possible for an observer to have

evidence in favor of one over the other and a computationally strong observer to

recognize the difference.

But to see why this does not settle the matter, consider the following nonstandard

law.

Nonstandard dynamics: When a measurement is made of the sys-

tem Sk, its state instantaneously jumps to an eigenstate of the

observable being measured in such a way that the sequence of re-

sults σ should be expected almost always to be SR but not MLR.

Since one should expect this dynamics to produce a sequence of measurement out-

comes that is Schnorr random, one should expect it to produce a sequence that

appears to be perfectly random in the Schnorr sense of not exhibiting any effec-

tively specifiable or discernible pattern. Among other things, this means that one

should expect all initial segments of the sequence of measurement results to ap-

pear to be completely arbitrary and patternless in every algorithmically specifiable

sense. But inasmuch as one should expect the full sequence to be SR but not MLR,

one should expect that it will be selected from a measure-zero set of infinite-length

sequences. So while this dynamics produces sequences whose initial segments will

always appear to be entirely patternless and unpredictable and will pass all effec-

tive statistical tests for being random, a sequence chosen from a measure zero set
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is in a straightforward sense very special and, hence, is not at all random in the

measure-theoretic sense. While the sequence of measurement results will appear to

be randomly determined on the nonstandard dynamics, it isn’t.

Similarly, while one should expect results produced by the nonstandard dynamics

to appear to be statistically independent, they aren’t. If the results were in fact

statistically independent, then the sequence should be expected to be arbitrarily

chosen from the measure-one set of all possible infinite-length sequences, not from

the measure-zero set of sequences that are SR but not MLR. Hence, the sequence

of results produced by the nonstandard dynamics is not random in the sense of in

fact being statistically independent.20

While the nonstandard dynamics represents a simple, concrete law that an in-

quirer might seriously consider given standard deliberational resources, it threatens

a strong variety of empirical underdetermination. Since there is no effective pro-

cedure that would distinguish between a sequence that is both SR and MLR from

one that is SR but not MLR, the nonstandard dynamics is empirically equivalent to

the Martin-Löf dynamics given standard computational resources. But inasmuch

as one should expect the Martin-Löf dynamics to be empirically indistinguishable

from Process 1, the nonstandard dynamics is empirically equivalent to Process 1

if one is restricted to standard computational resources. Indeed, it is empirically

equivalent to any standard criterion of randomness that assigns Lebesgue measure-

one to the set of random sequences. The upshot is that if the sequence of quantum

results σ are in fact random in any standard sense, then there is no effective way

to rule out the nonstandard dynamics regardless of how much empirical evidence

one has.

The epistemic situation here is dire. There is a straightforward sense in which one

can never have any empirical evidence whatsoever that one’s quantum-mechanical

results are in fact randomly determined or genuinely independent if they are. In

order to see why, compare what it would be to have empirical evidence regarding

the relative frequencies of one’s results against what it would be to have empirical

evidence regarding the randomness of one’s results.

A good Bayesian inquirer might have empirical evidence either for or against

quantum mechanics predicting the right relative frequencies by conditioning on

the evidence presented in each initial segment σk of σ on the assumption that the

sequence exhibits an appropriate sort of statistical uniformity. But there is no way

at all to distinguish between the initial segments of sequences that are both SR and

MLR and those that are SR but not MLR. This is because c-incompressible on a

20If one were to repeat the full quantum coin-toss experiment and keep getting sequences in the
gap between SR and MLR, then from a god’s-eye-view one would have evidence for a very subtle
sort of global statistical dependence—a sort that one could not concretely characterize by effective

means.
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prefix-free machine (the condition for being MLR) is precisely the same thing as

c-incompressible on a computable measure machine (the condition for being SR)

for any finite initial segment of the sequence. Sequences that are both SR and

MLR and those that are SR but not MLR will both always appear to be completely

random, patternless, statistically independent, and unpredictable.

Further, because the conditions are identical for all finite initial segments, no

background assumption of uniformity for the full sequence will help a Bayesian

inquirer to distinguish between sequences that are both SR and MLR (and hence

genuinely random) and those that are SR but not MLR and hence not what one

would expect from a random process. The point here is not that the inquirer will

never know with certainty whether the sequence was randomly determined. Rather,

even with a background assumption that the string is overall statistically uniform,

looking at finite initial segments here provides no evidence whatsoever that the

sequence was in fact randomly determined.

Put another way, while the examination of initial segments might provide a

Bayesian inquirer with compelling evidence that a given sequence is or is not simply

patterned in a concrete specified way (as in the case of the alternating pattern

exhibited by the sequence 01010101 . . .), a sequence that is SR but not MLR has a

global property that cannot be detected by examining initial segments. A sequence

generated by the nonstandard dynamics should be expected to exhibit this global

property, one shared by measure-zero of the possible infinite-length sequences. Such

sequences are very special. But the fact that they are special is not detectable from

finite initial segments.

While a good Bayesian is not committed to any particular set of priors as being

rational, on the standard line at least, she is committed to probabilistic coherence

and non-dogmatic priors. The first condition allows her to avoid dutch books and

the second provides a general path to learning the truth. If a Bayesian inquirer

were ever to assign a probability of zero or one to a hypothesis under consideration,

she would never be able to condition away from the initial dogmatic assignment

and hence would be entirely insensitive to new evidence no matter how strong.

While she might assign a very low prior probability to the hypothesis that the

evidence is SR but not MLR, inasmuch as she is interested in the truth, she cannot

assign a probability of zero. But, once on the table, she would never have empirical

evidence that supports both SR and MLR over SR but not MLR if she is restricted

to standard computational resources.

That a good Bayesian agent may have evidence regarding limiting relative fre-

quencies illustrates that the epistemic problem here is not the standard problem

of induction. Even when an agent has full empirical information in the form of

the complete infinite-length sequence σ, she can have no empirical evidence at all
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regarding whether σ is both SR and MLR (and hence statistically compatible with

any standard notion of randomness) or SR but not MLR (and hence statistically in-

compatible with all standard notions of randomness) given standard computational

resources.

4. discussion

The argument here concerns both the objective nature of the physical world and

what we can know about it. A theory that says that a process is random in a par-

ticular sense can only be true if the process is in fact random in the sense specified.

That said, the claim is not that quantum randomness is in fact faithfully described

by any particular notion of algorithmic randomness that we have discussed. We can

think of no reason whatsoever to suppose that quantum randomness as exhibited

in the physical world is precisely characterized by SR but not MLR or by the signif-

icantly more plausible notions of Schnorr randomness or Martin-Löf randomness.

These notions of randomness are defined in terms of our basic understanding of for-

mal computability, and there is no grounds for believing that physical law respects

that. Rather, the argument is that objective standards of randomness that are in

the ballpark of capturing the properties that we expect from the random results of

the quantum coin-flip experiment, notions like SR and MLR, are subtle enough as

to be computationally (and hence empirically) indistinguishable. Further, in the

case of SR but not MLR, we see how one might have a notion of randomness that

one expects will select sequences from a measure zero subset of possible sequences,

and hence violate a basic commitment concerning the nature of objectively random

quantum processes (namely, that they select typical sequences), yet is nevertheless

computationally indistinguishable from other standards of randomness that are in

the ballpark of capturing the properties that we expect from the random measure-

ment results. The upshot is that we cannot empirically distinguish between very

different dynamical laws by standard computational means.

Among the consequences of quantum mechanics is presumably the claim that

the quantum coin-toss experiment in fact models an objectively random fair coin

and hence selects a typical sequence in the Lebesgue measure-one sense from the

set of all possible sequences. In something like the standard collapse formulation

of quantum mechanics, the truth of a dynamical law of nature is at stake—the

dynamics of the world is either such that one should expect ones results to be

randomly distributed in a particular specified way or they are not. More concretely,

most physicists would presumably expect the actual results of a quantum coin toss

to be at minimum Schnorr random and very probably also Martin-Löf random if

they were to consider the question. As we have seen, both of these notions capture
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what it means for a sequence to be patternless and unpredictable and they satisfy

the measure-one typicality intuition regarding what it means to be a fair coin.

Of course, the point concerning the objectivity of quantum randomness also

applies in the context of a deterministic hidden-variable theory like Bohmian me-

chanics. Here there is a physical matter of fact at stake concerning whether particles

are in fact randomly distributed in a particular specified sense with respect to the

wave function at a time. If they are, then the results of the quantum-coin toss ex-

periment should be expected to be randomly distributed in a corresponding sense;

otherwise, all bets are off.

One strategy for avoiding the empirical underdetermination of quantum random-

ness would be to appeal to a different notion of what it means for a process to be

random. Antony Eagle (2005) has argued that randomness might be understood

as just unpredictability for a specified predictor. While the algorithmic notions of

randomness that we have considered are grounded in the martingale idea that a

random sequence should be unpredictable at a specified level of computation, his

proposal is more practically-minded. Specifically, Eagle takes an event E to be ran-

dom for a predictor P with a theory T if and only if P s posterior probability of E

conditional on T and her current evidence, is equal to her prior probability of E.

The idea is that the event is random if and only if a human agent P cannot in fact

make better predictions given her evidence of the current state than she could with

just her theory. Eagle wants a notion of randomness that takes into account the

fact that real predictors are severely limited in their epistemic and computational

capacities. He takes his account of randomness to be objective in the sense that it

is based on the objective features of real predictive agents.

Shifting to a notion of randomness like this would arguably allow one to have

straightforward evidence regarding the randomness of quantum events relative, say,

to the actual community of physicists given their de facto epistemic capabilities.

The results of the quantum coin toss experiment are random on this view if and only

if the physical community can do no better than predicting the standard quantum

probabilities. Since this has repeatedly proven to be the case, we have substantial

empirical evidence for the randomness of quantum measurement results relative

to the actual physics community over its recent history given its formulation of

quantum mechanics and its epistemic access to facts about the physical world.

Such a notion of randomness makes quantum randomness a property that de-

pends on the contingent practical properties of human agents rather than an ob-

jective intrinsic property of the physical world. Inasmuch as one is concerned with

determining whether quantum mechanics has the physical world right, the question

is not one whether the community of physicists up to now has been able to make
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predictions better than quantum mechanics allows when they use quantum mechan-

ics; rather, it is whether quantum mechanics is right in characterizing the collapse

as being a fundamentally random physical process in the context of something like

the standard collapse theory or of the initial distribution of particles being gen-

uinely random in the context of something like Bohmian mechanics. The question

is whether the physical world is in fact random in a concrete sense that supports the

descriptions of our best physical theories. Also salient here, the expected measure-

theoretic properties of random quantum sequences seem to be an essential part of

our theoretical commitments. In the case of the quantum coin-flip experiment, the

question is whether the sequence of results can be expected to be typical—that is,

selected in an unconstrained way from a Lebesgue measure-one subset of the set of

all sequences. This reflects von Neumann’s theoretical commitment to the results

being arbitrary and capricious.21

Notions of algorithmic randomness allow us to consider predictors with compu-

tational abilities that outstrip our current, contingent abilities. This allows us to

specify part of the standard commitments of physicists with respect to quantum

mechanics. Namely, those commitments that outstrip our historically contingent

capacities to predict. But, as we have seen, this comes with a trade-off—the tools

of algorithmic randomness allow us to specify notions of randomness that outstrip

our ability to determine whether they in fact obtain.

5. epistemic morals

We have seen how one might simply characterize a set of sequences (those that

are SR but not MLR) where each will always appear to be patternless and will

be empirically indistinguishable from a standard measure-one notion of random-

ness like Martin-Löf random given computable resources. If nature were always

to produce sequences drawn from this measure-zero set, the quantum world would

not be random, but one could never know this by effective means. Indeed, as we

have seen, there is a sense in which one could never have any empirical evidence

at all for accepting the standard random dynamics if one were ever to allow for

the possibility of something like the nonstandard dynamics obtaining. And it is

unclear the rational grounds on which one might rule out this entirely straightfor-

ward possibility—a possibility that might easily be tested if one had nonstandard

computational resources of sufficient strength.

21While von Neumann was committed to quantum mechanics being indeterministic, it is worth

noting that algorithmic notions of randomness are compatible with determinism. As a simple

example, given the right sort of initial distribution of particles, the quantum world may be de-
terministic as described by Bohmian mechanics and yet still yield results that are expected to be

Martin-Löf random.
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This leaves us with a sort of empirical underdetermination that results from

computational limits and not from any lack of empirical evidence. Even with the

complete set of empirical evidence, full Turing computational power, and the as-

sumption that one’s data is statistically uniform, there is a clear sense in which

one can have no empirical justification whatsoever for believing that the results of

one’s quantum-mechanical experiments are arbitrarily, independently, or randomly

determined.

The practice of science often involves theoretical commitments that extend be-

yond our predictive capacities. These might concern the early energy density of

the universe or the continuity of spacetime or the expected properties of infinite

sequences of quantum coin flips. Such idealized commitments often help us in for-

mulating, reasoning about, and communicating the content of our physical theories.

But they do so at the cost of committing us to claims that may not be empirically

testable given our actual empirical and computational capabilities.22

In the present case, if one is limited to computable resources, there is no em-

pirical content to insisting that quantum-mechanical results are genuinely random,

arbitrary, independent, and/or patternless. While one might be fully committed to

their being randomly determined given one’s intuitions regarding dynamical sim-

plicity or naturalness, one can have no empirical evidence for so believing.

22Different ways of modeling such idealized commitments can also matter to the empirical testa-
bility of scientific theories. This is discussed in the context of nonstandard probability theory in

Huttegger (2019).
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