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Abstract

The Cold Dark Matter model faces many controversies at small scales, as simulations fail to re-

produce the observed properties of dark matter (DM) haloes. Since rival DM models differ on their

predictions about the structure of DM haloes, understanding their mass distribution is crucial for

determining the nature of dark matter. However, only numerical approaches to determining what

a hypothesis implies for the mass distribution are possible. Hence, simulations are a crucial part of

evaluating DM rival models, as is assessing their reliability. I argue that robustness analysis is not a

sufficient criterion for the trustworthiness of cosmological simulations.

1 Introduction

The standard cosmological model describes a nearly homogeneous early universe, where small den-

sity inhomogeneities evolve with time through gravitational collapse to form the large- and small-scale

structures we now observe. An essential component of this cosmological model is a mysterious kind of

matter called ‘dark matter’, that only interacts gravitationally. The Cold Dark Matter model (hereafter

CDM) 1 predicts with great accuracy important large-scale structure properties but does not fare as

well on small scales, where simulations fail to reproduce the observed abundance and demographics of
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DM haloes’ structure. Since rival models such as cold, warm, or self-interacting dark matter agree on

large scale, but differ on their predictions about the structure of DM haloes, understanding how mass is

distributed in these haloes is crucial for determining the nature of dark matter. At such a scale though,

only numerical approaches to determining what a hypothesis implies for the haloes’ mass distribution

are possible. Non-linear effects related to star formation and gas dynamics make it impossible to deter-

mine the mass distribution analytically. Hence, numerical simulations are needed to determine the mass

distribution; and these simulations are a crucial part of evaluating the CDM model and various rival

hypotheses.

Understanding in which case a simulation can succeed in (dis)confirming a model is, yet, still a chal-

lenge in cosmology. At small scale indeed, the CDM seems to do worse than its rivals: simulations pre-

dict, for instance, much more satellite galaxies within DM haloes than is actually observed. Prior to

1998, however, the problem was the exact inverse; simulated DM haloes did not present enough sub-

structure compared to observations. When a model is so sensitive to modeling assumptions, what is the

conclusion that should be drawn from a mismatch between simulation outcomes and observations? How

can we assess whether this ‘missing satellite’ problem stems from numerical artifacts or constitutes a

genuine failed prediction?

In biology and climate science, evaluation of when numerical evidence confirms a model and in what

sense this confirmation must be understood has been based on robustness analysis (Levins 1966; Wim-

satt 2012; Weisberg 2012)2 In cosmology, astrophysicists have been relying on a similar methodology,

according to which results that resist a change of values of the numerical parameters are considered

trustworthy. In this paper, I will argue that robustness is not a sufficient criterion for determining when

a prediction is reliable in N-body simulations, for equally robust but mutually exclusive predictions can

obtain in N-body simulations. Even more worrying, robustness is sometimes a direct consequence of nu-

merical artifacts.

2Although see Parker (2011) for an argument to the effect that robust predictions in climate science

models are not sufficient for trustworthiness.
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2 Robustness and Convergence Studies

The CDM model faces a number of problems at small scale. For example, it predicts way more sub-

structure in a DM halo of the size of the Milky Way than is actually observed. Only 59 satellite galax-

ies seem to orbit our Milky Way, whereas several thousands are predicted by this model. Likewise, the

density profile drawn from this model by Navarro et al. (1997) (hereafter NFW) predicts a steep, cuspy

profile in the central region of the DM halo, with infinite density at the center. Yet, observations favor,

especially for dwarf galaxies and low-surface-brightness galaxies, a ‘cored’ profile, with a flatter density

profile as the radius tends toward zero. Observations for dwarf and low-surface-brightness galaxies are

especially problematic because these galaxies are mostly made of dark matter, which means that this

discrepancy cannot be washed away by adding baryonic physics to the simulations.3

Given that the predictions of the CDM model are not drawn from first principles, but from analytical

fits to DM-only simulations, assessing the extent to which these two problems challenge this model is

as difficult as it is urgent. How can we assess whether the discrepancy between the simulated systems

and the observed ones stems from the physical model or from an erroneous code, whether the simulated

outcome is altered by numerical artifacts or constitutes a genuine failed prediction? Astrophysicists rely

on robustness analysis to decide when the outcome of a simulation is trustworthy. Robustness analy-

sis has been first introduced by Levins (1966), as a way to assess the reliability of models in population

biology in the absence of a background theory providing analytically soluble equations. According to

Levins, a method is needed to evaluate the impact of the simplifications upon which models are based

and to determine “whether a result depends on the essentials of the model or on the details of the sim-

plifying assumptions” (1966, 423). This role is played by robustness analysis: by addressing the same

problem with a diversity of models based on different ‘lies’, one can test whether these models agree on

their predictions. Such agreement is taken to confirm the independence of the models from their char-

acteristic simplifications: “Hence our truth is the intersection of independent lies” (1966, 423). Levins’s

account rely on a form of eliminative reasoning, according to which each model must exclude a given

possibility. However, ? have shown that this reasoning only yields valid inferences when an exhaustive

3A more exhaustive review of all the controversies arising at small scales for the CDM model can be

found in Weinberg et al. (2015).
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set of all possible models is examined. Such an exhaustivity is yet excessively difficult to achieve.

Wimsatt further fleshed out this methodology by suggesting a four-step procedure for robustness analy-

sis:

• To analyze a variety of independent derivation or measurement processes.

• To look for things which are invariant over the results of these processes.

• To determine the scope of the processes across which they are invariant and the condi-

tions on which their invariance depends.

• To analyze and explain any relevant failures of invariance (2012, 62).

For Wimsatt, the purpose of robustness analysis is first to distinguish the “reliable from the unreliable”;

second, to show the invariance of that which reliability (e.g., a prediction) is scrutinized over differ-

ent models, in order to build confidence in their independence from these; and finally to determine the

scope of this invariance. Wimsatt does not justify the robustness of a property via eliminative reason-

ing but through its overdetermination by independent models. Supposing that this independence can

be qualified, such an account does not require to consider all possible models; but only models indepen-

dent ‘in an appropriate way’. In what follows, I will consider any procedure satisfying these Wimsattian

features an instance of robustness analysis.4

Robustness analysis, in astrophysics, takes the form of ‘convergence studies’. The idea is to determine

whether unconstrained numerical parameters impact the outcome of simulations, by systematically

varying their value and defining the value range under which the structure of the simulated halo re-

mains unaffected by such variations. In that case, the halo is deemed ‘appropriately resolved’. Such a

procedure satisfies the characteristic features of robustness analysis listed above, and will thus be con-

sidered as such throughout this paper.

4More recently, Weisberg (2012) has suggested a procedure to establish robust theorems that con-

sists in examining a group of models, searching for a ‘robust property’; then finding the core structure

giving rise to this property. However, the lack of modularity of simulations in cosmology undermines

attempts to find the common structure responsible for the robust property, and the subsequent formula-

tions of a robust theorem. I will therefore leave aside Weisberg’s proposal.
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The influential convergence study of Power et al. (2003) has contributed to set up the parametrization

of N-body simulations for the last fifteen years. Their methodology consists in, first, simulating a large

cosmological volume with low resolution, tracking the structure growth seeded by primordial density

fluctuations. Then, they zoomed-in on some targeted haloes and re-simulated them at higher resolution.

Based on this sample of haloes, several hundred of simulations (typically with a resolution of 323 parti-

cles) were run, allowing to survey the parameter space by varying the numerical parameters and draw

preliminary convergence results. Finally the convergence criteria5 were confirmed with another series of

simulation of higher mass resolution–a series of run with 643 particles, and a few (given how expensive

they are) with 1283 and 2563 particles. If, in the region of the parameter space defined by the conver-

gence criteria, the predictions remain the same despite the increased resolution, then one can trust that

they are independent of the numerical parameters’ values. The convergence of the simulated mass pro-

file is supposed to warrant its independence from numerical parameters and that it is not affected by

artifacts.

3 Against Convergence

3.1 Convergence is not sufficient

Confidence in predictions about the abundance of DM subhaloes extracted is usually explained by the

fact that they seem not affected by an increase of resolution above 50-100 particles per subhalo.6 As

mentioned above however, this prediction is very sensitive to modelling assumptions. Up to the close

of the last century, simulations were suffering from an ‘overmerging’ problem, in that not enough sub-

structure was predicted to match the observations. Several culprits had been proposed back then, with

no consensus on the cause of the subhaloes disruption, but with an agreement that it was a numeri-

5That convergence should be reached in a time t ≤ 1.7τr, with τr the relaxation time is an exam-

ple of such a convergence criterion, since the influence of artificial collisions between particles seems to

produce a core profile after 1.7τr.
6See for instance ?
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cal problem. Moore et al. (1996) blamed inadequate force softening.7 Carlberg (1994), on the other

hand, argued that a low mass resolution could cause two-body heating and artificially enhance mat-

ter disruption. Since this problem was superseded by a ‘missing satellite’ problem as the resolution of

simulations increased, no definitive conclusion was drawn about the cause of the overmerging. Yet, as

shown by van den Bosch et al., subhaloes disruption is still “extremely prevalent in modern simulations,

with [...] ∼ 65 percent of all subhaloes accreted around z = 1 [...] disrupted by z = 0” (2017, 2). The

question thus arises: are N-body simulations still suffering from overmerging, or can they be considered

reliable, based on convergence studies? Is the subhaloes disruption a physical mechanism or the result

of numerical artifacts?

This question is addressed by van den Bosch and Ogiya (2018), in a paper also aiming at gaining a bet-

ter understanding of the non-linear effects of tidal stripping on subhaloes.8 Tidal processes are very

difficult to describe, as the stripping of matter causes the subhalo remnant to fall out of virial equilib-

rium9, and then to re-virialize by expanding, thereby provoking more stripping of matter, and to fall

out of equilibrium once again. No analytical theory is available to describe such complicated processes

of de- and re-virialization: only simulations can tell how the density distribution of the subhalo is af-

fected by tidal stripping. It is thus crucial to disentangle what pertains to this stripping mechanism and

what artificially results from an inadequate parametrization in simulations.

In order to do so, the authors came up with an idealized scenario where the physical hypothesis of tidal

7Due to limits in computational power, real DM particles are substituted in simulations by heavy

particles. Hence, the gravitational force can generate very large, unphysical accelerations when two par-

ticles get very close to each other. Force softening is used to smooth the gravitational potential and

suppress these accelerations below a typical distance–the ‘softening length’.
8‘Tidal stripping’ refers to the escape of matter due to the tidal forces exerted by the host halo on

the subhalo. Beyond some limit, the tidal forces exerted by the host overcome the gravitational force

bounding the subhalo together, resulting in its dislocation.
9The virial theorem applied to celestial bodies states that the total energy of a system is equal to

half its gravitational potential energy. If this equality does not hold, the system is either collapsing–

the gravitational potential energy exceeds the kinetic energy– or expanding. A system for which this

equality applies is considered in virial equilibrium.
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Figure 1: This figure shows the bound fraction of the subhaloes’ mass as a function of time. Colours
correspond to values of the orbital radius ranging from 1.0, 0.9, ..., to 0.1, and the solid and dotted lines
to runs with different codes. See van den Bosch and Ogiya (2018), figure 4. Due to copyright permis-
sions, this figure will only be available in the published version of the paper, forthcoming in Philosophy
of Science.

stripping could be tested against the numerical hypothesis that matter disruption is mostly caused by

inadequate force softening. They focused on the tidal evolution of an isolated subhalo on a circular or-

bit, given that, in such a scenario, only the host halo’s tidal field and the numerical parameters can im-

pact the subhalo disruption. Its isolation forbids high-speed encounters with other subhaloes causing

more matter to disrupt; and the circular orbit excludes a fast pericentric passage that would deform the

orbiting body, cause internal heating and thus more mass loss. The goal is to isolate two possible causes

of the disruption and find the culprit by looking at the evolution of the bound mass of subhaloes when

varying the strength of the tidal field and the force softening.

Figure 1 (2018, 4071) suggests that increasing the strength of the tidal field by decreasing the orbital

radius does not lead to the disruption of subhaloes, except in the extreme case where the orbital radius

is chosen so that rorb/rvir,h = 0.1.10 However, at rorb/rvir,h = 0.1, the subhalo totally disrupts after

∼ 13 Gyr. This results concords with the results of the Millenium and the Bolshoi simulations accord-

ing to which rorb/rvir,h = 0.1 is the typical radius at which subhaloes undergo disruption. Now, if this

prediction is a physical prediction, as it is taken to be by most astrophysicists, it should not be signifi-

cantly affected by variations in numerical parameters.

Now, look at the impact of varying force softening and mass resolution (van den Bosch and Ogiya 2018,

10rorb/rvir,h = 0.1 is the orbital radius of the subhalo expressed in units of the host halo’s virial ra-

dius, rorb the distance between the centres-of-mass of the host and subhalo and rvir,h the virial radius,

defined as the radius inside of which the average density is ∆vir=97 times the critical density for clo-

sure.
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Figure 2: Bound fraction of mass as function of time for simulations with different mass resolution Np
and different force softening ε. The black line shows the ‘converged’ results of a simulation with Np =
107 and ε = 0.003; the blue line the results from 10 simulations; the red line their average. See van den
Bosch and Ogiya (2018), figure 10, 4077. Due to copyright permissions, this figure will only be available
in the published version of the paper, forthcoming in Philosophy of Science.

figure 7, 4074). According to Power et al. (2003) for instance, the optimal value for the force softening

εopt ranges between 0.02 and 0.06. Since a force softening ε too large results in smaller density distri-

bution at small radii, and since less dense systems are more exposed to tidal stripping, for ε > εopt

one expects enhanced stripping and matter disruption. Likewise, a small softening is more exposed to

two-body relaxation effects, that flatten the central density profile and enhance disruption. Thus, force

softening should have no other consequence than increasing the mass loss. Surprisingly however, the

simulations show the opposite: for ε < εopt, the bound remnants are larger and survive longer. One can

suspect then that the physical disruption is very sensitive to the value assigned to ε.

Consider now simulations at the orbital radius rorb/rvir,h = 0.1 when the mass resolution and the force

softening are increased together. If you look for a region in the parameter space where the instability

caused by mass resolution is kept under control11 and a ‘converged’12 fraction of bound mass fbound(t)

can be found, the upper-left corner of figure 2 gives you the closest result to such an ideal. But there,

subhaloes do not disrupt after 13 Gyrs. On the contrary: a large fraction of bound mass survives.

Note the contrast between this result at large Np and small ε and the ones observed along the yellow-

11The sensitivity to discreteness noise is characterized by the authors using the variance σlogf in

log(fbound).
12‘Converged’ here means that “(i) no significant changes occur when Np is increased further, and (ii)

the standard deviation in fbound after one Hubble time is sufficiently small (i.e., σlogf ≤ 0.05)” (van den

Bosch and Ogiya 2018, 4076).
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shaded band, which corresponds to the scaling between mass resolution and force softening defined by

Power et al. (2003). This scaling is obeyed by most of the state-of-the-art simulations since 2003. If one

focuses on the red lines, i.e., on the averaged results of simulations, the bound fraction of mass appears

converged: the red line prediction stays more or less the same despite increasing the mass and the force

resolution, which is precisely why it is considered as robust by Power et al.’s standards. Yet, this red

line indicates a full disruption of the subhalo between 5 and 8 Gyrs. Thus, simulations converge on pre-

dicting that subhaloes fully disrupt after 8 Gyrs but also on predicting that they survive after 13 Gyrs.

What should alert the philosopher here is that convergence alone will not tell which one of these results

is the correct one, or whether one of them is. Given the range of the optimal softening defined by Power

et al. (2003), increasing the mass resolution and the force softening gives good agreement among sim-

ulations and confidence in the prediction that subhaloes at rorb/rvir,h = 0.1 will not survive after one

Hubble time. But if another region of the parameter space is scrutinized, convergence is found on an-

other prediction, that contradicts the former. As summarized by the authors of this study, convergence

is “not a sufficient condition to guarantee that the results are reliable” (2018, 4067).

3.2 Pseudo-convergence or convergence?

In the previous subsection, I have argued that robustness analysis in the form of convergence studies is

not sufficient to exclude numerical artifacts and that robust predictions cannot be considered reliable on

such grounds. Here, I push this thought further and argue that convergence can result from artifacts,

based on the work of Anton Baushev on the cusp-core problem.

In N-body simulations, real DM is represented by a limited number of heavy test bodies, to make the

computational task tractable while preserving the averaged density of the system. However, whereas

dark matter is collisionless, heavy test bodies undergo collisional effects, which in turn affect the density

profile of DM haloes. These collisional effects are characterized by the relaxation time τr = N(r)
8lnΛ.τd

,

with N(r) the number of test bodies inside a sphere of radius r, lnΛ the Coulomb logarithm and τd the

characteristic dynamical time of the system at radius r. This is why Power et al. (2003) recommend, as

one of their convergence criteria, that convergence be reached in a time t ≤ 1.7τr.
13

13See footnote 5.
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Baushev, however, has shown that cuspy profiles are generated by an intensive energy relaxation. This

fact raises important questions. DM haloes undergo violent relaxation when they collapse, as density in-

homogeneities create small-scale gravitational fields mediating the exchange of energy among DM parti-

cles. But they do so only at the moment of the collapse. The halo, once formed, has a stationary gravi-

tational field. How come then that N-body simulations based on the CDM model predicts cuspy density

profiles for formed haloes? If the cuspy profiles stems from collisionality, where does it come from? It is

artificial or physical?

Baushev et al. (2017) addresses this question with a methodology very similar to that of van den Bosch

and Ogiya (2018). First, they propose an idealized scenario where all sources of collisionality are turned

off except the one under scrutiny. Thus, they simulate an isolated halo, to avoid the tidal influence of

nearby haloes and the gravitational capture of more mass from the surrounding, potentially leading to

a secondary violent relaxation. They chose a halo with a Hernquist density profile that behaves like the

NFW profile in the central region but is fully stable. Given that such a halo has a constant gravita-

tional potential field φ(r), the density and velocity profiles should remain the same and all (the implicit

functions of) the integrals of motion such as the specific energy ω = φ(r) + v2

2 , the specific angular

momentum ~K, and the apocenter distance r0
14 should be conserved. Thus, any variation of them must

be due to numerical effects. Such symptoms of artificial collisions can be tracked in their simplified sce-

nario. Figure 2 of their paper (2017, 6) shows the variations of the integrals of motion as a function of

radius over 200 snapshots and confirm that they vary significantly even in one single timestep. Thus,

the convergence criterion of Power et al. (2003) by no means guarantees that all sources of numerical

artifacts have been excluded.

This preliminary conclusion raises another interesting question: why does the density profile remains

stable if the integrals of motion vary? In other words, is the stability of the cuspy profile a mere co-

incidence, or the result of the numerical effects observed above? If the system is collisional, then it is

better modelled by the Fokker-Planck equation, that models dynamical friction and diffusion, than by

the collisionless Boltzmann equation usually appealed to. In that case, the diffusion streams created by

14r0 is the maximum distance on which the particle can move off the center and depends only on the

integrals of motion: ω = φ(r0) +K2/2r0.
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the particle interactions could contribute in forming a stable density profile. And, as it turns out, the

Fokker-Planck equation does have a stationary solution close to the NFW one. If the cusp is a product

of this Fokker-Planck diffusion, then artificial collisions should form a downward and an upward stream

of particles, with increasing and decreasing r0 respectively, that compensate each other and thereby ex-

plain the stability of the profile. This prediction can be tested by taking two adjacent snapshots S1 and

S2 and calculating, for an array of radii r the number of particles ∆N+(r) of particles which had r0 < r

at S1 and r0 > r at S2 and the number of particles ∆N−(r) of particles which had r0 > r at S1 and

r0 < r at S2. Figure 4 in (2017, 9) confirms that the Fokker-Planck streams are present, compensate

each other very well outside a given radius, and are important enough to shape the density profile.

In sum, the variations of the integrals of motion unambiguously demonstrate that converged N-body

simulations still suffer from artificial collisionality. Convergence fails to identify results independent of

artifacts. Moreoever, confidence in the density profile is not warranted by its stability, since this stabil-

ity is itself produced by virtue of numerical artifacts.

3.3 Discussion

Although convergence failed, in the two cases discussed above, in diagnosing artifacts, one could de-

fend robustness by arguing that van den Bosch and Ogiya and Baushev et al.’s studies exemplify the

fourth step of Wimsatt’s procedure–that they demonstrated the unreliability of simulations based on

the breaking down of their robustness.

These two papers cannot, however, be considered instances of robustness analysis, for at least two rea-

sons. Let us consider first the target of van den Bosch and Ogiya (2018). What the authors examined is

not the trustworthiness of the simulations outcomes, but that of the convergence criterion itself. The

main conclusion of this paper is that “most, if not all, disruption of substructure in N-body simula-

tions is numerical in origin”, a conclusion that “questions whether the fact that subhalo mass functions

appear to be converged down to 50-100 particles per subhalo implies that results are reliable” (2017,

4084). In other words, the authors showed that, even though convergence was reached, numerical arti-

facts had not been excluded; and that the results backed up through convergence were still not reliable.

What is at stake here is not whether the amount of substructure predicted through N-body simulations
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is a reliable prediction, but whether the reason it is taken to be a reliable prediction is a sound one.

Still, one could insist that this study makes a negative use of robustness analysis, i.e., that it uses ro-

bustness to show that predictions made about the number of satellite galaxies that should be observed

in haloes are not reliable, because their apparent robustness breaks down when the resolution is in-

creased further. However, this reconstruction of their argument is misleading: what we see in their pa-

per is not that the appearance of convergence of the results based on Power et al. breaks down, while

‘true’ convergence is reached for higher resolution. What we see instead is a first instance of conver-

gence for a given range of values, and a second one for another range of values. Asserting that the ro-

bustness of the first breaks down when increasing the resolution is assuming that we have more rea-

sons to trust the second set of results than the former. However, based on convergence only, we have

equally good reasons to accept one result or the other –and, reversely, equally good reasons to reject

them. Convergence alone will not tell us which result to trust. But here is where the problem becomes

particularly sharp: in the astrophysical context at least, no other criterion is available to back up or

supplement the results of robustness analysis. Simulations are used to determine what rival dark mat-

ter models tell us about the structure of the universe precisely because non-linear effects related to star

formation and gas dynamics make it impossible to determine the distribution of matter in dark matter

haloes analytically. Thus, there is no analytical solution against which the results of simulations can be

tested. Furthermore, a comparison between observations of ‘real’ dark matter haloes and simulations is

of no help, for at least two reasons. While the similarity between the model and the real world is often

used to validate the former, what is under scrutiny here is precisely the pertinence of such a comparison

given that we do not know whether the simulated outcome reliably tracks the predictions of the CDM

model or crucially depends on the parametrization process. Second, parametrization –or ‘calibration’,

or ‘tuning’– is also the process through which one improves the agreement with real world data when

other processes of validation are not feasible (Oberkampf 2014, 33). How could then one appeal to the

agreement between observations and simulations when trying to circumscribe the impact of calibration

on the simulation outcome? But in the absence of any other criterion to assess reliability, how could

one conclude anything from the fact that two mutually exclusive but converged results can be found in

two different regions of the parameter space?
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Even more undoubtedly, robustness analysis has no role to play in Baushev et al.’s result. Like that of

van den Bosch and Ogiya’s, the aim of the paper is not to test the reliability of the NFW density profile

per se, but to test whether its robustness says anything about its reliability. This goal does not involve

any attempt to make the stability of the profile break down. On the contrary, their argument shows

that its robustness will not break down, because it results from numerical artifacts. Simulations con-

verge because the artificial diffusion streams generated by numerical artifacts compensate each other.

The lesson to be drawn from this paper is that robustness by no means says anything about the physi-

cal nature of the prediction made, and even less about its reliability.

4 Conclusion

I have argued that robustness analysis, in the form of convergence studies, fails to exclude numerical

artifacts in N-body simulations and thus to warrant their reliability. Simulations in astrophysics con-

stitute a very exciting opportunity for philosophers to explore the limits of robustness and to suggest

possible rivals better suited for cosmological simulations.‘Crucial ’ simulations, where a numerical hy-

pothesis about the origin of a prediction is tested against a physical explanation, used both by van den

Bosch and Ogiya and Baushev et al., constitute a possible candidate for this task.
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