
CONSTITUTION AND CAUSAL ROLES

Lorenzo Casini† and Michael Baumgartner‡

Gebharter (2017b) has proposed to use one of the best known Bayesian net-
work (BN) causal discovery algorithms, PC, to identify the constitutive de-
pendencies underwriting mechanistic explanations. His proposal assumes that
mechanistic constitution behaves like deterministic direct causation, such that
PC is directly applicable to mixed variable sets featuring both causal and con-
stitutive dependencies. Gebharter claims that such mixed sets, under certain
restrictions, comply with PC’s background assumptions. The aim of this paper
is twofold. In the first half, we argue that Gebharter’s proposal incurs severe
problems, ultimately rooted in widespread non-compliance of mechanistic sys-
tems with PC’s assumptions. In the second half, we present an alternative way
to bring PC to bear on the discovery of mechanistic constitution. More pre-
cisely, we argue that all of the parts of a phenomenon that account for why
the phenomenon has its characteristic causal role are constituents—where the
notion of causal role is probabilistically understood.

1 INTRODUCTION

The mechanistic account of scientific explanation (Machamer et al., 2000;
Bechtel and Abrahamsen, 2005; Glennan, 2002) holds that the explanan-
dum, a higher-level phenomenon, is explained by the lower-level mechanism
responsible for it. In a popular characterization,

[a] mechanism is a structure performing a function in virtue of its com-
ponent parts, component operations, and their organization. The orches-
trated functioning of the mechanism is responsible for one or more phe-
nomena. (Bechtel and Abrahamsen, 2005, 423)

To give a simple but paradigmatic example, which shall serve as our guiding
example throughout the paper, the phenomenon of amplification in a two-stage
amplifier is caused by a signal (e.g., current, voltage, power) received from an
input source, and causes effects such as signal distortion in an output device
(e.g., a loudspeaker). The phenomenon is explained by the augmentation of the
signal by the amplifier’s two transistors arranged in series (see Wimsatt 2007,
ch. 12).
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More generally, a mechanism is embedded in a causal context, where causal
background conditions are operative relative to which certain parts of the sys-
tem are responsible for the phenomenon. The relevant kind of responsibility is
constitutive rather than causal. The system’s parts that mechanistically explain
the phenomenon are the “component” (cf. quote), or constituent, parts. While
causation has been at the centre of philosophical theorizing for centuries, the
notion of constitution, or constitutive relevance, has only recently begun to at-
tract philosophical attention. In particular, it is still unclear what discovery
method(s) could systematize the data-based inference to constitution.

The problem of constitutive discovery is: given a set of spatiotemporal parts
of an explanandum phenomenon, which of these parts are explanatorily rele-
vant, that is, constituents of the phenomenon? Importantly, clarity on parthood
relations (i.e., spatiotemporal overlap) between macro and micro entities is cus-
tomarily assumed by all proposed solutions of this problem (Craver, 2007; Har-
becke, 2010; Couch, 2011; Gebharter, 2017b; Baumgartner and Casini, 2017;
Krickel, 2018; Harinen, 2018). Parthood itself is only necessary but not suffi-
cient for constitution and, hence, must be complemented by additional criteria
in order to identify constituents. Recently, Gebharter (2017b) has suggested
to bring to bear PC, one of the best known causal discovery algorithms in the
causal Bayesian network (BN) framework (Spirtes et al., 2000; Pearl, 2000), on
the task of identifying the constituents among a phenomenon’s parts. To model
and discover causation, PC identifies conditional independence constraints with
statistical tests and, assuming that the analysed system satisfies certain BN
axioms, causally connects variables not found to be independent. Gebharter
claims that, despite the differences between causation and constitution, consti-
tutive relations comply with the BN axioms PC assumes for causation, such
that constitution can be methodologically treated as a form of (deterministic)
direct causation. He concludes that PC may, together with parthood informa-
tion, concurrently be applied to both causal and constitutive discovery.

After briefly introducing causal BNs (§2) and Gebharter’s proposal (§3),
the first part of this paper (§4) takes issue with this latter conclusion. Viola-
tions of causal BN axioms have been argued to be rare in variable sets exclu-
sively featuring causal relations, which are assumed to be non-deterministic
(or pseudoindeterministic) in the BN framework. Hence, these axioms may
be justifiably assumed for causal contexts. By contrast, constitutive relations
generate deterministic dependencies, in the presence of which violations of BN
axioms—in particular, of the so-called Causal Faithfulness Condition—are no
longer rare but commonplace, thus undermining their justifiable assumability.
Moreover, no systematically reliable inferences can be drawn by means of PC
outside the scope of validity of those axioms. We substantiate this latter point
by a series of inverse search trials involving data simulations, which evaluate
the performance of PC when applied to mechanistic systems.
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As an alternative, the second part of the paper (§5) proposes a sufficient
condition for constitution that avoids these problems and allows for bringing
PC to bear on the task of constitutive discovery in a theoretically sound way.1

In short, our proposal is that all of the parts of a phenomenon that contribute
to accounting for why the phenomenon has its characteristic causal role are
constituents. This idea has recently been expressed, in one way or another,
by several authors (e.g., Gillett 2002, 319; see also Fazekas and Kertész 2011
and Soom 2012) but it has never been cashed out with formal precision. We
fill this gap by giving it a precise rendering in the BN framework. Finally, we
demonstrate the performance of our proposal by a series of inverse search trials.

2 PRELIMINARIES

We begin by introducing the theory of causal BNs, as well as a notational con-
vention on the variables of BNs representing mechanistic systems.

Traditionally, the BN formalism uses generic random variables to represent
types (or degrees) of properties or behaviours independently of the entities in-
stantiating them. Here, however, we shall follow the mechanistic literature in
taking the variables as denoting the behaviours exhibited by specific entities
(such as a system and its constituents), and consequently adopt the following
notational convention. Calligraphic fonts are used for specific random vari-
ables A(S) and B(P1) (Spohn, 2006), by which we denote the behaviour A
of a specific system S and the behaviour B of a specific part P1. As we are
only concerned with specific variables, we will leave the entity-relativity of our
variables implicit and just write “A”, “B”, etc. for the behaviour types “A(S)”,
“B(P1)”, etc.

A BN is a triple ⟨V, E, Pr⟩ of a finite set V = {V1, . . . ,Vn} of variables,
each taking finitely many possible values; a set of edges E over the variables in
V, such that variables and edges ⟨V, E⟩ form a directed acyclic graph (DAG);
and a probability distribution Pr, such that the probability of each variable Vi
in the DAG obeys the Markov Condition (MC):

(MC) For any Vi ∈V = {V1, . . . ,Vn}, Vi⊥⊥Noni ∣ Pari ,

where Pari denotes the set of parents of Vi, and Noni denotes the set of non-
descendants of Vi. In words, each variable is probabilistically independent of
its non-descendants, conditional on its parents. Or, its parents “screen it off”
from its non-descendants.

1Both Gebharter’s proposal and our alternative to it are meant to be applied to observational
data only, to avoid conceptual problems due to the inexistence of interventions in the presence
of constitution (Baumgartner and Gebharter, 2016; Baumgartner and Casini, 2017). They differ
from Craver’s (2007) mutual manipulability theory and from so-called inbetweenness accounts
of constitution (Craver, 2015; Harinen, 2018), all of which rely on the notion of intervention.
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In a causally interpreted BN, the edges stand for direct causal relations,
Pari denotes the set of Vi’s direct causes, Noni the set of Vi’s non-effects in
the true causal structure regulating the behaviour of the variables in V, and MC
is called Causal Markov Condition (CMC) (Spirtes et al. 2000, §3.4.1, §3.5.1).

In addition to CMC, the PC algorithm assumes the Causal Faithfulness
Condition (CFC) (Zhang and Spirtes 2008, 247):

(CFC) ⟨V, E, Pr⟩ is such that every conditional independence relation true in
Pr is entailed by CMC applied to the true DAG ⟨V, E⟩.

CFC guarantees that there is no causal dependence without a probabilistic
dependence—i.e., all probabilistic independencies in the graph are due to the
absence of causal dependencies. In particular, CFC entails that all causal
dependencies are detectable by conditional independence tests, as performed
by PC.2

CMC and CFC are provably satisfied or only rarely violated in many well-
known discovery contexts, guaranteeing that PC is reliably applicable in those
contexts. On the one hand, a sufficient (albeit not necessary) condition for
CMC to be provably satisfied is that (i) the functional relations in the data-
generating structure are linear, (ii) the exogenous variables and error terms
are independently distributed, (iii) all non-deterministic dependencies in the
data (i.e., dependencies not producing conditional probabilities equal to 1) are
due to noise and not to some fundamentally indeterministic process, that is, all
non-deterministic dependencies are so-called pseudoindeterministic, and (iv)
the variable set is causally sufficient, where (causal) Sufficiency is defined as
follows (Zhang 2006, 8; cf. Spirtes et al. 2000, §3.2.2):

(Sufficiency) ⟨V, E, Pr⟩ is such that every direct common cause of any two
variables in V either is in V or has an ancestor in V or has the same
value for all units in the population.

Sufficiency guarantees that for any two variables in V, there is no probabilistic
dependence not due to a causal dependence—i.e., no probabilistic dependence
is spurious.

On the other hand, a sufficient (but not necessary) condition for CFC to
hold is that (i) and (ii) hold, and (v) the data contain no deterministic but only
pseudoindeterministic dependencies. Then, violations of CFC have Lebesgue
measure 0, entailing that they can only be produced under very strong assump-
tions (Spirtes et al., 2000, 42). This, in turn, is typically taken as a reason to
expect them to be very rare.

At the same time, there are well-known contexts in which BN axioms are
frequently violated and, hence, not justifiably assumable. One such context, rel-
evant for the remainder of this paper, involves deterministic dependencies in the

2For a description of the steps of PC, the reader is referred to (Spirtes et al., 2000, 84-5).
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data (which generate conditional probabilities equal to 1). Given determinism,
violations of CFC are commonplace (Spirtes et al. 2000, §3.8; Glymour 2007,
236). To illustrate, whenever the dependencies along a path V1 Ð→ V2 Ð→ V3
are deterministic, that is, whenever V1 determines V2, which determines V3, it
holds that Pr(V3 ∣V1 ∧ V2) = Pr(V3 ∣V1) = 1, viz. the indirect cause V1 screens
off V3 from its direct cause V2. These screening-off relations, however, are not
entailed by CMC, and hence violate CFC. That is, every deterministic chain
violates CFC. The systematicity of CMC violations under determinism entails
that PC is not justifiably applicable to deterministic data.

3 GEBHARTER’S PROPOSAL

While PC is one of the most frequently discussed causal discovery tools, it
has played no role so far in constitutive discovery. The main reason is that
constitution is commonly assumed to be characterized by (non-reductive) su-
pervenience (see, e.g., Glennan 1996, 61-2, and Eronen 2011, ch. 11), which
generates deterministic dependencies: a complete set of constituents forms a
supervenience base and thus a sufficient condition of a phenomenon, to the ef-
fect that there cannot be change in the phenomenon without a change in its
constituents. By contrast, as indicated in §2, PC is normally considered to be
applicable to (pseudo)indeterministic data only.

To further clarify the difference between pseudoindeterministic and deter-
ministic dependencies, consider the mechanism operating in an amplifier. Let
G represent the phenomenon of gain, or absolute total voltage increase, of an
amplifier subject to a voltage input I. Amplifiers are built by assembling active
elements, usually transistors, in a circuit. We assume that the amplifier in ques-
tion is a two-stage amplifier, such that the signal received by a first transistor is
amplified and fed to a second transistor, which further amplifies it. LetA and B
be the transistors’ absolute individual gains. Then, the amplifier’s overall gain
in response to any given input I = i is some pseudoindeterministic function
G = rGi − i + εG , where rG indicates the amplifiers amplification ratio and εG is
a noise term. For instance, if I = 2 volts and the amplification ratio is 8, then the
overall gain is G = 2×8− 2+ εG volts, where 14 (i.e., 2×8− 2) volts and εG volts,
respectively, are G’s deterministic and non-deterministic components. Analo-
gously, the transistors’ gains are also given by pseudoindeterministic functions,
namelyA = rAi − i + εA volts and B = rBi − i + εB volts. Assume that the first
transistor amplifies by a ratio 2, and the second amplifies by a ratio 4.3 Then,
when subject to an input I = 2 volts, the first transistor amplifies the signal by
a gain of 2 × 2 − 2 + εA volts; and the second transistor receives that signal
and amplifies it further by a gain of 4 × (4 + εA) − (4 + εA) + εB volts. By
contrast, the relation between overall gain G on the one hand, and the transis-

3This yields the amplifier’s overall amplification ratio of 8 because a serial amplifier’s ampli-
fication ratio of is the product of its transistors’ amplification ratios.
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tors’ individual gains A and B on the other hand, is not pseudoindeterministic
but deterministic: G is simply the sum of A and B, meaning that A and B de-
termine G, such that whatever noisy component is present in G, it is inherited
from, and fully accounted for by, the noise in A and B. More precisely, super-
venience entails that rGi − i + εG = rB(rAi + εA) − i + εB. When I = 2 volts,
2 × 8 − 2 + εG = 4 × (4 + εA) − 2 + εB, that is, εG = 4εA + εB.

Notwithstanding the frequency of CFC violations under determinism, Geb-
harter (2017b, 2652–54) has—surprisingly—argued that constitution satisfies
the same axioms that PC assumes for causation. More specifically, he contends
that the screening-off behaviour of complete sets of constituents (i.e., sets com-
prising a phenomenon’s complete supervenience base) is analogous to that of
deterministic direct causes and that the screening-off behaviour of incomplete
sets is analogous to that of indeterministic direct causes. From that, he infers
that constitutive relations are representable by causal BNs and that, with some
restrictions, PC is directly applicable to variable sets featuring both constitutive
and causal relations, such that the uncovered dependencies can then be grouped
into causal and constitutive dependencies by using knowledge of spatiotempo-
ral overlap (i.e., parthood relations) between instances of variables. In short, he
claims that PC can perform causal and constitutive discovery in one go.

Given the well-known problems determinism creates for BN axioms, the
natural conclusion to draw from Gebharter’s finding that constitution behaves
like deterministic direct causation would be that BNs are incapable of repre-
senting systems featuring constitutive relations and—a fortiori—PC is inap-
plicable to them. Aware that his proposal raises severe questions, Gebharter
discusses two approaches to reconcile the deterministic nature of constitution
with BN axioms (cf. Gebharter 2017b, 2661–62):

(A) Only apply PC to incomplete constitutive sets, which do not form com-
plete supervenience bases and, hence, do not generate deterministic de-
pendencies in the first place;

(B) Allow for deterministic dependencies but only apply PC to systems fea-
turing no more than two mechanistic levels.

Approach (A) amounts to testing for determinism prior to a BN analysis
(by, e.g., performing a multicollinearity test) and, if that test is positive, ab-
staining from applying PC. A variable set V featuring constitutive relations
will only be free of deterministic dependencies provided that no phenomenon
in V has a complete set of constituents in V. As constitution, according to
Gebharter, technically behaves like causation, missing constituents are on a par
with missing causes of the phenomenon. Since constituents typically are not
only relevant for the phenomenon but also for other micro-level variables in V,
it follows that missing constituents amount to missing common causes of vari-
ables in V, in violation of causal Sufficiency (Gebharter, 2017b, 2660). Yet, if
Sufficiency is violated, CMC tends to be violated, too. Thus, adopting (A) in
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an attempt to avoid CFC violations generates frequent CMC violations, which
leads Gebharter to discard (A). To justifiably assume CMC, V should contain
complete constitutive sets, meaning that data over V should feature determin-
istic dependencies.

This leaves us with (B), which Gebharter indeed advances as a solution to
the problems prompted by the deterministic nature of constitution (Gebharter,
2017b, 2662). In §2, we have seen that chains of at least three deterministically
related variables are a paradigmatic type of structure generating CFC violations.
Without argument, Gebharter takes such chains to be the source of all CFC
violations induced by determinism. Accordingly, he stipulates that PC be only
applied to mechanistic systems with no more than two levels, which excludes
deterministic chains. More specifically, Gebharter proposes to use background
knowledge on spatiotemporal parthood relations between instances of analysed
variables in order to only include parts of the phenomenon in V but not parts of
parts of it. That is, V must not contain any triple of variables ⟨V1,V2,V3⟩ such
that V1 is a part of V2, which is a part of V3. Gebharter believes that this two-
level restriction ensures that deterministic dependencies do not conflict with
CFC more frequently than pseudoindeterministic dependencies and, hence, that
CFC is justifiably assumable even for the purpose of constitutive discovery.

4 THE LIMITS OF GEBHARTER’S PROPOSAL

4.1 Extensive Faithfulness violations

Gebharter severely underestimates the problems constitutive relations induce
for PC. First, recall that, in order to justifiably assume CMC (and Sufficiency),
every analysed variable set V should contain a complete set of constituents
C for every phenomenon in V. Subject to the supervenience of phenomena
on their constituents, every phenomenon is determined by C. This universal
bottom-up determination yields that every phenomenon is screened off from
all other variables—whether in V or not. The reason is that determination
is monotonic: for any arbitrary variable Vi, if C determines V1, then C ∧ Vi

also determines V1. If Pr(V1∣C) = 1, then Pr(V1∣C ∧ Vi) = 1, meaning that
C screens off V1 from any variable Vi. To illustrate, reconsider our amplifier
example and let the analysed variable set be G = {I,G,S,A,B}, where I (the
amplifier’s input), G (its overall gain), A (the first transistor’s gain), and B (the
second transistor’s gain) are complemented by S , which denotes, say, the signal
distortion as received by a loudspeaker. Since A and B determine G (from the
bottom up), A and B screen off G from I and S, or formally I,S⊥⊥G ∣A,B.4

Universal bottom-up determination entails that, in CMC-warranting con-
texts, every mechanistic system (involving two or more levels) features condi-

4By contrast, A does not screen off I and B. When holding the absolute gain of the first
transistor fixed, I still makes a difference to the absolute gain of the second transistor. For the
same reason, B does not screen off A and S, and A and B do not screen off I and S.
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Figure 1: Graph (a) is the true structure behind a two-stage amplifier mechanism over
G = {I,G,S,A,B} for an epiphenomenalist*. Dotted arrows are constitutive; all
other arrows are causal. Graph (b) results from applying PC to the true conditional
(in)dependencies over G, where G is a deterministic function of A and B.

tional independencies between phenomena and all their non-constituents. As-
suming CFC in such contexts implies that these independencies are entailed
by the true graphs, meaning that all macro phenomena are both uncaused and
causally inert, that is, causally isolated.

However, mechanists—the addressees of Gebharter’s proposal—tend to be
non-reductive physicalists who endorse the existence of macro-level causation.5

They will thus reject the causal isolation of all phenomena and, consequently,
refuse to assume CFC in CMC-warranting mechanistic contexts. Instead, they
will interpret the independencies between phenomena and all non-constituents
as yet another CFC violation induced by determinism—one that obtains even
in two-level systems.

To avoid that consequence, Gebharter (2017a), in turn, rejects non-
reductive physicalism and endorses a radical form of macro-level epiphe-
nomenalism, call it epiphenomenalism*, viz. the view that non-fundamental
properties are not only causally inert (as entailed by standard epiphenomenal-
ism) but also uncaused. More concretely, according to epiphenomenalism*,
the true graph for our amplifier example is the one in Figure 1a. Against that
background, the fact that G is screened off from I and S by A and B follows
from CMC applied to the true graph and, hence, does not violate CFC. Clearly
though, this manoeuvre not only clashes with the standard metaphysical com-
mitments in the mechanistic literature but also with the scientific practice of
those disciplines that are most interested in constitution, such as the social and
biomedical sciences. They routinely engage in investigating causal relations
among macro variables and, hence, do not commit to epiphenomenalism*.

Worse yet, in addition to bottom-up determination, mechanistic systems
with exactly two levels may also feature top-down determination, to the effect
that not only phenomena are screened off from all incoming and outgoing in-
fluences, but also constituents can be screened off in this way. This problem
is best introduced by reconsidering the amplifier example. The amplifier’s ab-

5In fact, we are not aware of a single proponent of the mechanistic framework who would
endorse the causal isolation of macro phenomena.
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solute overall gain G is the sum of its constituents A and B. The function of
addition, however, is reversible: it not only holds that G is determined byA and
B, but also that A is determined by G and B (e.g., G =14 ∧ B =12 determines
A = 2) and that B is determined by G and A (e.g., G = 14 ∧ A = 2 determines
B=12). Hence, every variable in M = {G,A,B} is screened off from I and S
by the other two elements of M.

If PC is applied to “oracle” (true) information on conditional dependen-
cies and independencies in G, all edges connecting the variables in M to the
variables in G ∖M will be removed, resulting in the graph skeleton in Fig-
ure 1b. This graph is non-Markovian because the pairs ⟨I,A⟩, ⟨I,B⟩, ⟨A,S⟩,
⟨B,S⟩ are unconnected even though these variables are pairwise uncondition-
ally dependent. Under the assumption that CMC is satisfied, Figure 1b cannot
amount to the skeleton of the true graph because too many edges have been
eliminated. Moreover, since no Markovian graph over G exists that entails all
the independencies depicted in Figure 1b, this constitutes a so-called detectable
violation of CFC (Zhang and Spirtes, 2016, 252), viz. a CFC violation ensuing
from the fact that the data cannot possibly be modelled in compliance with
BN axioms.6 No metaphysical background assumption—whether epiphenom-
enalism* or else—could ever reconcile the independencies in Figure 1b with
CFC. The only remaining conclusion is that PC is inapplicable to our amplifier
system.7

The possibility of top-down determination shows that not even the idiosyn-
cratic metaphysical background of epiphenomenalism* suffices to secure the
applicability of PC to mechanistic systems featuring two levels only. The cru-
cial follow-up question now becomes how widespread top-down determination
is. It is clearly not limited to amplifier gains or even to phenomena whose
values are the sum of their constituents. It obtains whenever the relation be-
tween phenomena and constituents is regulated by an aggregation function
with the following reversibility property: a function y = f(x1, . . . , xn) is re-
versible iff all of its inputs xi are determined by its output y in conjunction
with all of its other inputs apart from xi, or formally, iff for all i, 1 ≤ i ≤ n,
xi = f

−1
(x1, . . . , xi−1, xi+1, . . . , xn, y). Examples of functions for which re-

versibility holds are linear functions, the product of non-zero values, exponen-
tiation of positive integers, the sum of squares, many Boolean functions, or

6The detectability of the CFC violation would render the (conservative) PC algorithm appli-
cable if the CFC violation were only one of so-called Orientation Faithfulness and not one of
Adjacency Faithfulness (Zhang and Spirtes, 2016, 254–55). However, what is violated here is
Adjacency Faithfulness.

7At this point, algorithms different from PC might be resorted to, in particular, algorithms not
imposing CFC (see, e.g., Malinsky and Danks 2017, 6, and Glymour et al. 2019, §4). Gebharter
(2017b, 2664) himself makes some vague suggestions to the effect that PC might be replaced by
other algorithms in his procedure. However, he explicitly mentions only algorithms that weaken
CFC rather than dispense with it. Moreover, as algorithms not relying on CFC differ in informa-
tiveness and background assumptions from PC, their integration in Gebharter’s procedure would
require extensive procedural adjustments.
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functions used in information coding, storage, and encryption (which are ex-
plicitly exploited for their reversibility).

To provide another example, consider the phenomenon of voting by a show
of hands. Casting a vote, W = 1, can be constituted by a raise of either the
left hand, L= 1, or of the right hand, R= 1 (but raising both hands is invalid);
or formally, W = 1 ↔ (L = 1 ∧ R = 0) ∨ (L = 0 ∧ R = 1). This system of
binary variables does not only feature bottom-up determination but also top-
down determination: any of the four possible value configurations of {W,L}
and of {W,R} determine the value ofR and L, respectively.8 Hence, not only
the phenomenon of voting but also the hand raisings are screened off from all
variables outside of that system. But clearly, outside variables can de facto
causally interact with hand raisings (e.g., they have causes in the motor cortex
and effects in air displacement), entailing that these conditional independencies
violate CFC.

These considerations suffice to establish that, contrary to what Gebharter
envisages in approach (B), CFC violations in (deterministic) mechanistic sys-
tems comprising only two levels are not rare but widespread—unlike CFC vio-
lations in (pseudoindeterministic) causal systems.

A possible response might be to further restrict the applicability of PC to
mechanisms regulated by a non-reversible aggregation function, such that top-
down determination does not obtain. However, such an approach would differ
in a crucial respect from Gebharter’s original restriction to two-level systems
in (B). An analysed variable set V can be ensured not to feature more than two
mechanistic levels by imposing that V does not contain a triple ⟨Vi,Vj ,Vk⟩
such that Vi is a spatiotemporal part of Vj and Vj is a part of Vk. While identi-
fying spatiotemporal parthood relations—clarity on which is generally assumed
in the mechanistic literature—is undoubtedly difficult, it does not presuppose
clarity on constitutive relations. In consequence, that V satisfies the two-level
restriction can be established independently of clarity on the constitutive rela-
tions among the elements of V. The same does not hold for a restriction to
admissible aggregation functions. It is unclear how it could be established in-
dependently of clarity on the identity of the constituents that a phenomenon
is aggregated from its constituents in V by a certain type of (non-reversible)
function. What type of function regulates the interplay between phenomena
and constituents can only be determined after the constituents have been iden-
tified. The latter, however, is exactly the purpose of Gebharter’s procedure.
Hence, an attempt to avoid CFC violations resulting from top-down determina-
tion by restricting the procedure’s applicability to systems with non-reversible
aggregation functions would render that procedure circular.

Nonetheless, let us assume for the sake of argument that there are types of
mechanistic systems for which the nature of the aggregation function is known

8To illustrate for {W,L} and R: W = 0 ∧ R = 0 → L = 1; W = 0 ∧ R = 1 → L = 0;
W =1 ∧ R=0→ L=1; andW =1 ∧ R=1→ L=0.
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Figure 2: Voting with a non-reversible aggregation function. (a) is the true graph over
O under epiphenomenalism* (where dotted arrows are constitutive). Graph (b) results
from applying PC to the true conditional (in)dependencies over O.

even in the absence of clarity on the constituents. The applicability of Geb-
harter’s proposal could thus be confined to mechanisms known to have a non-
reversible aggregation function. To show that not even such a restriction would
ensure compliance with CFC, we modify the voting example such that a vote
also counts as validly cast (W = 1) if both hands are raised (L = 1 ∧ R = 1).
The relation between the phenomenon W and its constituents L and R shall
hence be regulated by the non-reversible function of inclusive disjunction (i.e.,
maximum): W = 1 ↔ L = 1 ∨R = 1 (i.e., W = max(L,R)). While we still
get bottom-up determination from this system, we no longer get top-down de-
termination. Not every value configuration of {W,R} and {W,L} determines
a value of L and R, respectively. For example, if W = 1 and L = 1, it is not
determined whetherR takes the value 0 or 1, as both values are possible.

To decide whether Gebharter’s procedure is reliably applicable to structures
for which top-down determination can be non-circularly excluded, we embed
this non-reversible voting mechanism in a simple causal context. LetM be a
variable representing the cause of the hand raising in the voter’s motor cortex,
and let D represent the ultimate decision taken by the vote. Let us moreover
grant Gebharter that epiphenomenalism* holds. Against that background, the
true structure over O = {M,L,R,W,D} is given in the graph of Figure 2a.
Contrary to constitutive arrows, causal arrows shall again be pseudoindetermin-
istic. In that system, L andR cannot be screened off from their causeM by the
other variables in O. However, sinceW is a deterministic function of L andR,
and D can be expressed as a probabilistic function ofW ,W encodes all the in-
formation on L andR relevant for the probability of D. All that matters for the
decision is whether at least one hand was raised; whether it was the left or the
right is irrelevant. Hence, given the value of W additional information about
L or R has no bearing on the probability of D. Or formally, D ⊥⊥ L,R ∣W .
Even without top-down determination, W screens off the hand raisings from
the resulting decision. If PC is applied to oracle information on conditional
(in)dependencies in O, it will detach D from the voting mechanism, as shown
in Figure 2b. Just as Figure 1b, Figure 2b is non-Markovian because the pairs
⟨W,D⟩, ⟨L,D⟩, ⟨R,D⟩ are unconnected despite the fact that they are uncon-
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ditionally dependent. Since no Markovian graph exists, which is faithful to the
(in)dependencies among the variables in O, CFC is again detectably violated,
which, in turn, establishes PC’s inapplicability—epiphenomenalism* notwith-
standing. In sum, strengthening approach (B) by adding a restriction to certain
types of aggregation functions is not a feasible option.

These findings confirm the received wisdom in the BN literature that vari-
able sets comprising phenomena and their constituents are simply beyond the
scope of warranted applicability of PC, which is limited to pseudoindetermin-
istic data (cf. condition 3 in Spirtes et al., 2000, 351).

4.2 PCD won’t save the day

Given the problems deterministic data generate for PC, Glymour (2007) has
proposed a variant of PC, called PCD, that is custom-built for variable sets
featuring deterministic dependencies. Accordingly, this section investigates
whether the principle behind Gebharter’s proposal could be saved by imple-
menting it with PCD instead of PC. PCD aims to make causal discovery insen-
sitive to CFC violations induced by determinism. To this end, it operates like
PC with one important exception. Unlike PC, PCD does not take screen-off re-
lations involving maximal conditional probabilities of 1 to indicate the absence
of causation. PCD only infers that two variables Vi and Vj are causally unre-
lated if they can be screened off with non-maximal conditional probabilities. If
they can only be screened off with maximal probability, the output of PCD fea-
tures an edge between Vi and Vj that is marked as “uncertain” with a question
mark (Glymour, 2007, 236).

The first thing to note about replacing PC by PCD in Gebharter’s proce-
dure is that discovery by PCD is much less informative than by PC. While
PC exploits conditional independencies of 1 to infer to (causal) irrelevance,
PCD simply abstains from drawing any inference from such independencies.
Furthermore, it is doubtful whether the assumptions required by PCD are any
more justifiable when analysing mechanistic systems than the assumptions of
PC—even though PCD’s assumptions are clearly weaker than PC’s. While ap-
plying PC requires assuming that all conditional independencies in the data
faithfully reflect the true graph, applying PCD only requires assuming that the
conditional independencies with probabilities lower than 1 are faithful to the
true graph. But the version of the voting example with a non-reversible ag-
gregation function (max) has shown that bottom-up determination may gen-
erate non-deterministic screen-off relations not following from applying CMC
to the true graph. The same happens in our amplifier example. Since G is the
sum of A and B, G encodes all the information on A and B relevant for the
probability of S. Accordingly, although S is not determined by any subset of
G = {I,G,S,A,B}, it is screened off from A and B by the conjunction of I
and G: given I and G, A and B have no bearing on the probability of S . These
conditional independencies obtain despite I and G not raising the probability
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Figure 3: (a) is the true graph over G, where starred edges mean either the absence of a
dependence (epiphenomenalism*) or its presence (non-reductive physicalism). Graph
(b) is the skeleton output by PCD applied to the true conditional (in)dependencies in
G, with question marks corresponding to uncertain edges.

of S to 1 and, hence, should be faithful to the true graph, if PCD is applied to
data on our amplifier. However, they are not.

If PCD is applied to oracle information on conditional (in)dependencies
among the variables in G, its output has the skeleton in Figure 3b. Here, CFC
is violated because the edges corresponding to the pairs ⟨A,S⟩ and ⟨B,S⟩ are
missing, even though A and B are causes of S both under epiphenomenalism*
and non-reductive physicalism (cf. Figure 3a). Moreover, contrary to Figures
1b and 2b, this graph is Markovian, as it preserves connections corresponding
to all unconditional dependencies. In particular, the pairs ⟨A,S⟩ and ⟨B,S⟩
are connected—via G. This means that, differently from the CFC violations
incurred by PC, this CFC violation is undetectable.

Clearly, these (non-deterministic) CFC violations do not hinge on the par-
ticularities of the voting or the amplifier example. If a set of variables D deter-
mines a variable Vi, it easily happens that Vi encodes all the information on D
relevant to some downstream variable Vj . In all such cases, Vi renders Vj con-
ditionally independent of D, even if the corresponding conditional probabilities
are below 1. Undoubtedly, this is a frequent pattern in systems featuring phe-
nomena and complete sets of their constituents. According to all metaphysical
views not denying the causal efficacy of constituents, these (non-deterministic)
conditional independencies violate PCD’s faithfulness standards and, thus, ren-
der the use of PCD unwarranted. Moreover, since these CFC violations are
undetectable, PCD’s inapplicability will tend to go unnoticed. Consequently,
PCD may be unjustifiably applied resulting in fallacious inferences. By con-
trast, the detectability of the CFC violations incurred by PC ensures that PC’s
inapplicability does not go unnoticed, thereby preventing fallacious inferences.
In sum, PCD is an even less suitable tool for constitutive inference than PC.

4.3 False positives

Recently, various studies (e.g., Zhang and Spirtes 2008, Zhalama et al. 2017)
have investigated to what degree CFC violations affect the actual output of PC,
among other algorithms. These studies suggest that proper parts of PC outputs
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Figure 4: PC-friendly expansions of the structure in Figure 1a over G∗ =G∪{X ,Z},
where (a) is the epiphenomenalist* and (b) is the non-reductive physicalist variant.

can, under certain circumstances, be reliably interpreted causally despite CFC
violations. More concretely, it is CFC’s purpose to ensure that the absence of
edges in PC’s outputs can be interpreted in terms of the absence of causation.
This interpretation is blocked if CFC is violated. However, the interpretation of
present edges in terms of the presence of causation remains unaffected by CFC
violations. So perhaps there is a case to be made that, when applied to mech-
anistic systems, PC can still reliably infer the presence of causal/constitutive
dependence relations without incurring false positives, even if it cannot reli-
ably infer the absence of such relations, due to a severe risk of false negatives.
If this holds up to scrutiny, Gebharter’s approach could be used as a means to
uncover the presence of constitution and causation, even if it does not reliably
exhibit their absence.

To investigate that question we set up a battery of inverse search trials test-
ing the reliability of PC’s analysis of data simulated from the mechanistic struc-
ture behind our amplifier example. We conduct the trials in R using the PC im-
plementation pcalg by Kalisch et al. (2012). (A replication script is available
in the paper’s supplementary material.) The trials have two objectives: (i) to
determine the false positive ratio both among unoriented and oriented edges is-
sued by PC when applied to data featuring deterministic dependencies, and (ii)
to determine the ratio among these false positives ascribable to determinism.

The quality of PC’s outputs is known to be sensitive to various factors, such
as the existence of unshielded colliders, the sample size, the joint normality of
the distribution or the linearity of the functional dependencies (see, e.g., Spirtes
et al., 2000, 351). As deterministic dependencies induced by constitution shall
be the only obstacle for PC in our trials, we ensure that the trials are otherwise
favourable to PC. To this end, we do not directly simulate data from the ampli-
fier structure but expand it by two unshielded colliders, one on A and one on
S.

The false positive ratio will, of course, depend on what we take the true
data-generating structure to be. Thus, in a first test series pursuing objec-
tive (i) we grant Gebharter his epiphenomenalism* and assume that the true
structure does not comprise arrows in and out of G. The true graph over
G∗

= {I,G,S,A,B,X ,Z} shall hence be the one in Figure 4a. We simu-
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Figure 5: Completeness ratios, false positive ratios, and recovery rates for the oriented
edges from A and B to G.

late 1000 data sets with a (large) sample size of 10’000 observations from the
respective data-generating structure. We draw normally distributed values for
all variables and for all (mutually independent) error terms, all being centred
around 0 and having randomly sampled standard deviations. All variables are
related by linear functions. To avoid that our results are sensitive to any nu-
meric elements of those linear functions, we randomly draw—for each of the
1000 simulated data sets—numeric constants for exogenous variables and pa-
rameters for endogenous variables (both from the interval [−5,5]). In the first
test series, G is aggregated from A and B deterministically, that is, without er-
ror terms. All other variables are pseudoindeterministic, that is, sampled with
error terms.

The second test series pursues objective (ii). It differs from the first only
in that G is a pseudoindeterministic function, too, meaning that G is aggregated
from A and B with an error term. The true structure in the second test series
is the same as that depicted in Figure 4a, with the difference that it is now
interpreted as a purely causal structure in which the edgesAÐ→ G andB Ð→ G
are causal and not constitutive.

We cull false positive ratios for unoriented edges and orientations from both
tests. In an individual trial, these ratios correspond to the number of unori-
ented/oriented edges contained in the output graph but not in the corresponding
true graph of Figure 4a, divided by the total number of edges in the output
graph. We additionally report completeness (or recall) ratios, that is, the num-
ber of unoriented/oriented edges contained both in the output graph and the
true graph divided by the total number of edges in the true graph, as well as the
recovery rates for the oriented edges A Ð→ G and B Ð→ G. The bar chart in
Figure 5 shows the means of all of the above ratios over all 1000 trials in the
first test series on the left-hand side and of the second series in the middle.

We find a significant difference in false positive ratios. Under determinism,
on average 16.4% of the edges and 21.5% of the orientations are false. Under
pseudoindeterminism, those numbers go down to 1.5% and 10.0%, respectively.
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That is, G being a deterministic function of its constituents increases the false
positive ratio for edges by a factor of 11 and for orientations by a factor of 2.
Under the conditions favourable to its performance, PC performs almost fault-
lessly when it comes to identifying (unoriented) edges and satisfactorily when it
comes to identifying orientations. The presence of only one deterministic vari-
able leads to 1 of 5 orientations being wrong, which is a performance hardly
describable as satisfactory (under otherwise ideal discovery conditions). Im-
portantly, the difference in false positive ratios is not imputable to the fact that
altogether fewer edges would be recovered in the pseudoindeterministic case.
In fact, whether G is a deterministic or pseudoindeterministic function ofA and
B does not significantly affect the completeness ratios. In the first test series,
on average 75.2% of the edges and 53.8% of the orientations are recovered. In
the second, those ratios go up slightly to 77.5% and 55.5%, respectively.

Figure 5 also shows that, under determinism, PC finds the A Ð→ G con-
nection in 51.0% of the trials but B Ð→ G in only 26.0%.9 Hence, the prospect
of discovering that B is a constituent of G is almost the same as the risk of
inferring a false orientation. In sum, even though PC is reasonably success-
ful at identifying A as a constituent of G in the first series, the fact that the
false positive ratio is almost as high as the recovery rate of the other constituent
B under these—apart from determinism—ideal conditions for PC, suggests a
negative answer to the question whether PC could reliably infer the presence
of causal/constitutive dependence relations in mechanistic systems complying
with Gebharter’s background metaphysics. In our (paradigmatic) test structure,
the prospect of correctly identifying the constituents of G is too low to counter-
balance the risk of committing a false positive.

Of course, in light of our previous findings that epiphenomenalism* is in-
sufficient to reconcile CFC with deterministic dependencies in mechanistic sys-
tems, Gebharter might renounce his endorsement of epiphenomenalism*. Ac-
cordingly, we re-analysed the data simulated in the first series against the differ-
ent background assumption of non-reductive physicalism. The only difference
between the first series and the re-analysis is the presupposed true graph. While
we joined Gebharter in assuming G to be causally isolated in the first series, we
now assume that G is on a causal path from I to S, as depicted in Figure 4b.

The results are plotted in the right-hand chart of Figure 5. The numbers
from the re-analysis differ from the original numbers only insofar as, upon
assuming that the edges I − G and G − S are present in the true graph, the false
positive ratio for edges and orientations drops significantly from, respectively,
16.4% and 21.5% in the epiphenomenalist* case to 2.9% and 10.4% in the non-
reductive physicalist case. These results appear to suggest that switching to
non-reductive physicalism is a promising move. It is, however, essential to note
where this reduction of false positives comes from. In general, false edges are

9Under indeterminism, the recovery rates for A Ð→ G are roughly the same (51.3%) but
those for B Ð→ G are significantly higher (44.6%).
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contained in BNs if the data feature spurious dependencies or independencies
that the independence tests applied by PC fail to detect. The re-analysis now
shows that such a detection failure is the dominant source of the false edges in
the first series. When G is sampled as a deterministic function ofA and B, these
two variables raise the probability of G to 1, meaning they de facto screen G off
from all other variables in our simulated data. Yet, those screen-off relations
induced by determinism are not systematically detected by PC’s independence
test—Fisher’s Z in our chosen implementation. What changes between the
original analysis and the re-analysis is merely that this detection failure—which
is in both cases due to the unreliability of PC’s independence tests—is counted
as incorrect in the former case and as correct in the latter.10 Thus, the drop
in false positive ratios under non-reductive physicalism does not establish that
PC is a reliable tool for constitutive-and-causal inference under non-reductive
physicalism but simply that PC’s independence tests—presently—happen to be
unreliable under determinism.

In sum, we take the above arguments to cast severe doubts on Gebharter’s
proposed use of PC for constitutive discovery, and in particular, to show that
treating constitution as a form of deterministic direct causation is not a promis-
ing way of bringing PC to bear on constitutive discovery. An alternative ap-
proach is required, which rejects the basic assumption that constitution is for-
mally analogous to causation, such that PC cannot be applied to variable sets
including phenomena and their constituents.

5 AN ALTERNATIVE

We cannot develop a full-blown theory of mechanistic constitution in the re-
mainder of this paper. Instead, we limit ourselves to establishing a basis for
bringing PC to bear on constitutive discovery in a way that avoids the aforemen-
tioned problems. To this end, we devise a sufficient condition for constitution,
which, on the one hand, captures a pre-theoretic intuition many associate with
constitution and, on the other, can be exploited by PC in a way that keeps false
positive ratios low while still uncovering constitution sufficiently frequently.

Our starting point is the view, widespread in the philosophy of the special
sciences, that phenomena are causally identifiable (Fodor, 1974; Kim, 1999;
Fazekas and Kertész, 2011; Soom, 2012). Here are two well-known examples
from Kim (1999). Being in pain is “being in some state (or instantiating some
property) caused by tissue damage and causing winces and groans” (13). Being
a gene is, roughly, “the property of having some property (or being a mecha-

10The source of these errors is not the particular software implementation of PC in the pcalg
package. Other software such as bnlearn (Scutari, 2010) or Tetrad (http://www.phil.
cmu.edu/tetrad/) also fail to systematically detect these screen-off relations. Correctly
detecting conditional independencies entailed by determinism using current conditional inde-
pendence tests is an intricate and error-prone matter, even when the system is linear and the
sample size is large.
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Figure 6: Causal structures (a) over G ∖ {A,B} and (b) over G ∖ {G}.

nism) that performs a certain causal function, namely that of transmitting phe-
notypic characteristics from parents to offsprings” (10). Or, to come back to our
guiding example, amplification is that behaviour caused by voltage input and
causing signal distortion. The causal identifiability of mechanistic phenomena
entails a radically different metaphysical picture from epiphenomenalism*, viz.
all mechanistic phenomena have causes and effects.

A phenomenon’s causal identification, however, does not explain why that
phenomenon has its characteristic causal role in a particular system. This is the
job of a mechanistic explanation. In short, the leading intuition underwriting
our proposal is that, if a part (partially) accounts—in a sense to be qualified—
for why the phenomenon has its characteristic causal role, that part is a con-
stituent. We henceforth make this intuition precise within the formalism of
causal BNs over variable (sub)sets complying with CMC and CFC.

Our results from §4 show that PC should not be applied to variable sets
comprising both phenomena and their parts. Before variable sets over mech-
anistic systems can be processed by PC, they must be partitioned into subsets
free of mereological relations and, thereby, free of constitutive relations.11 Con-
trary to the variable set over the whole system, such constitution-free subsets
(in the amplifier example, G ∖ {A,B} and G ∖ {G}; see Figure 6) can safely
be assumed to comply with CMC and CFC, which, in turn, makes them PC-
processable.

Throughout our ensuing discussion we rely on the following conventions.
V1 denotes a phenomenon in a variable set V; and P1 denotes the set of all and
only the spatiotemporal parts of V1 in V—meaning that for all Vi in P1, the
spatiotemporal region occupied by an instance of V1 contains the spatiotempo-
ral regions occupied by the instances of Vi. For simplicity, we assume that no
other variable besides V1 has parts in V—entailing that P1 is free of mereo-
logical relations. Moreover, In1 ∪Out1 denotes the set of inputs and outputs
identifying V1’s characteristic causal role, by which we mean the causal rela-
tions between the elements of In1∪Out1 and V1, viz. the directed edges in and
out of V1 in the true causal graph over a variable set including In1 ∪Out1 and
V1 but no variables in P1. Since every phenomenon is (assumed to be) causally
identifiable, every phenomenon has at least one cause and one effect. It follows
that In1 ≠ ∅ and Out1 ≠ ∅. Finally, Anc(Vi) and Des(Vi) denote the sets

11Generating these mereology-free partitions presupposes knowledge of parthood relations
but not of constitutive relations.

18



of, respectively, ancestors and descendants of Vi. Then, in the true graph over
V ∖P1, it holds that In1 ⊆Anc(V1) and Out1 ⊆Des(V1).

A necessary condition for a part of V1 accounting for the characteristic
causal role of V1, crucial for our leading intuition, is that that part contributes
to V1’s role in screening off In1 and Out1. That means the part belongs to a
set of parts Z, such that Z is substitutable for V1 in every Sepset(In1,Out1)
containing V1, that is, in every set containing V1 and rendering In1 and Out1
conditionally independent. Clearly, V1 may not suffice to screen off In1 and
Out1 (cf. G in our amplifier example). What is important, though, is that Z
contributes to the screening off just as much as V1 does.

Contributing to screen off In1 and Out1 is not sufficient for a set of parts
Z to contain only constituents of V1. A variable set screening off In1 and
Out1 may contain parts of V1 such that, when these parts are removed from
it, the remaining variables still screen off In1 and Out1. Such parts are re-
dundant for the off-screening. They do not contribute to accounting for V1’s
role in screening off In1 and Out1 and, hence, are not constituents. In order
to exclude redundant parts, Z must be minimally sufficient to play V1’s role
in screening off In1 and Out1, meaning that no variables can be removed
from Z such that remaining variables can still be substituted for V1 in ev-
ery Sepset(In1,Out1). There are two ways in which a variable can non-
redundantly contribute to screen off two (sets of) other variables, namely by
being a common cause of them or by being on a directed path from one to the
other. Only the latter case applies to V1’s parts: since these parts are located
temporally after In1 and before Out1, they cannot be common causes of In1

and Out1, which are prior to both. Consequently, all variables in Z must be
on a path from In1 to Out1. Of course, P1 ⊂ V may not be rich enough to
comprise a subset Z that plays V1’s role in screening off In1 and Out1. Yet,
even if no such set Z is in P1, it nonetheless holds that all variables in P1 on a
causal path from In1 to Out1 belong to some such minimal set Z and, hence,
contribute to V1’s role in screening off In1 and Out1. All of those variables
constitute V1.

We do not want to stipulate that all constituents account for the causal role
of their phenomena. A phenomenon may have constituents making a difference
to it but not contained in a minimal set Z sharing all of its characteristic causes
and effects. For instance, a phenomenon may have parts causing its character-
istic effects without being caused by its characteristic causes, viz. without being
on a directed path from the latter to the former. That is, our amplifier could fea-
ture parts of G causally influencing the gainsA and B without being on directed
paths from I to S. As causes of A and B, such parts would make a difference
to G without accounting for G’s characteristic causal role because they do not
contribute to G’s role in screening off I and S. Since we do not want to rule
out a priori that such parts count as constituents, we do not elevate being on
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a directed path from a phenomenon’s characteristic causes to its characteristic
effects to the status of a necessary condition of constitution.

Overall, the above considerations yield the following, causal-role (CR)
based, sufficient condition for constitution:

(CR) Let V1’s causal role be identified by In1 ∪ Out1, where In1 ≠ ∅ and
Out1 ≠ ∅. Let the (true) causal graph in V ∖ P1 be such that In1 ⊆

Anc(V1) and Out1 ⊆ Des(V1), where V1 is the only variable in V
with parts in V, and P1 is the set of spatiotemporal parts of V1 in V.
Then, Vi constitutes V1 if:

(i) Vi ∈ P1; and

(ii) in the (true) causal graph over V ∖ {V1}, Vi ∈ Des(In1) and Vi ∈
Anc(Out1).

Less formally, a part Vi of a phenomenon V1—whose characteristic causal role
is identified by the existence of directed paths from In1 to Out1 in the causal
structure over V∖P1—constitutes V1 if, in the causal structure over V∖{V1},
Vi is on a directed path from In1 to Out1. For instance, A and B constitute G,
because there exists a variable set G, which may be partitioned into two subsets
G ∖PG and G ∖ {G} without mereological relations, such that the structures
over those subsets contain, respectively, a path from I to S via G, and paths
from I to S via A and via B (cf. Figure 6).

Our account lends itself to a straightforward methodological implementa-
tion using PC. Given an overall set of analysed variables V, the search target
of a PC-based discovery procedure inspired by our proposal is a set C1 of
constituents contained in the set P1 ⊂ V of spatiotemporal parts of a target
phenomenon V1 ∈ V, which is causally identified by its characteristic causes
In1 ⊂ V and effects Out1 ⊂ V. According to CR, a variable Vi in P1 is con-
tained in C1 if Vi is located on a directed path from In1 to Out1 in V ∖ {V1}.
To find a suitable C1 along these lines, V must first be partitioned into two
distinct subsets free of mereological relations, to the effect that V1 and P1 are
assigned to different partitions. Both of these partitions will be free of consti-
tutive relations and, thus, of deterministic dependencies. It follows that they
will both be PC-processable. Assuming that V1 is a causally well-defined phe-
nomenon, it follows that we know (e.g., from previous studies) that V1 is caused
by In1 and causes Out1. A causal analysis of the partition V ∖P1 can then
be used as a sort of quality benchmark for the processed data or study design.
If the paths from In1 to Out1 via V1 are not correctly recovered, one can infer
that there is a problem with the analysed data (e.g., too much noise) or with
the set V (e.g., missing unshielded colliders), such that a causal search over
V ∖ {V1} is unlikely to recover the causal roles of constituents of V1, either.
By contrast, if this quality benchmark turns out positive, a causal analysis of
the partition V ∖ {V1} should identify elements of C1 insofar as it recovers
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directed causal paths from In1 through P1 into Out1. All parts on such paths
belong to C1.

By rejecting the basic assumption that constitution behaves like determinis-
tic direct causation, CR solves the problems incurred by Gebharter’s procedure.
Since CR is formulated in terms of mereology-free partitions of the total vari-
able set V, it is not affected by deterministic dependencies in V generating
CFC violations. This, in turn, allows for a suitable causal embedding of mech-
anisms both on the macro and the micro level, which, contrary to Gebharter’s
epiphenomenalism*, is much more in line with the mainstream convictions in
the mechanistic literature. Likewise, a PC-implementation of CR is not subject
to the problem that deterministic dependencies significantly increase the false
positive ratio. CR-based inferences to constitution by PC are subject to the
same false positive ratios as standard causal inferences by PC. Finally, while
Gebharter’s procedure is only applicable if an analysed variable set V features
complete constituting sets, which behave like a complete set of common causes
and thus satisfy Sufficiency, CR may be applied also when an incomplete set of
constituents are in V. Provided a phenomenon’s part is on a directed path from
the phenomenon’s characteristic inputs to outputs, that part is a constituent by
the lights of CR.

To demonstrate the performance of our approach when implemented with
PC, we conduct another series of inverse search trials by simulating data from
the non-reductive physicalist version of our amplifier structure in Figure 4b.
The trials are set up analogously to those in §4.3. (A detailed replication script
is again available in the paper’s supplementary material.) We draw 1000 data
sets with 10’000 observations each; all variables in G∗

= {I,G,S,A,B,X ,Z}

are Gaussian; all variables in G∗
∖{G} are pseudoindeterministic with mutually

independent error terms; G is a deterministic function ofA and B; all functional
dependencies are linear; all numeric elements of those linear functions are ran-
domly drawn.
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In a first series of analyses of these 1000 data sets, PC is run on the partition
of G∗ without the parts, viz. on G∗

∖ {A,B}, and in a second series on the
partition without the phenomenon G∗

∖{G}.12 In addition to completeness and
false positive ratios for both edges and orientations, we now cull the recovery
rates for the directed paths from I to S via G and viaA/B from our test results.
The bar chart in Figure 7 presents the means of all of these ratios over all 1000
trials in the series over G∗

∖ {A,B} and the series over G∗
∖ {G}.

The first and most important finding is that in both series the false positive
ratios are very low. In the partition G∗

∖ {A,B}, PC produces 0.4% false
edges and 1.5% false orientations, on average, while these numbers go up to
1.4% and 4.4%, respectively, in the partition G∗

∖ {G}. Importantly, these
low false positive rates are not due to PC being overly cautious in drawing
inferences, as reflected by the high completeness ratios for edges (81.2% and
82.0% in G∗

∖{A,B} and G∗
∖{G}) and orientations (72.7% in G∗

∖{A,B},
67.6% in G∗

∖{G}), nor are they due to PC’s independence tests failing to spot
conditional independencies induced by determinism, for the simple reason that
there aren’t any deterministic dependencies over G∗

∖ {A,B} and G∗
∖ {G}.

Secondly, the benchmark test in G∗
∖ {A,B} shows that the recovery rate

for the macro-level path from I to S via G, which identifies the phenomenon to
be mechanistically explained, is not impressively high (55.8%). This indicates
that the discovery conditions for PC are not ideal in our test design, which
explains why the recovery rates for the causal paths from I to S viaA (61.5%)
and B (42.5%) are likewise not impressive. We presume that these recovery
rates could be improved by, for instance, adding a further unshielded collider on
B or another variable on the directed edge I Ð→ S, but we need not investigate
these variations of our test design here. What matters for us is to demonstrate
the reliable applicability of CR. Whenever a PC-based implementation of CR
uncovers paths from a phenomenon’s inputs to its outputs via its parts, one can
interpret these paths in terms of causation at a very low false positive risk, and
thus reliably infer that the parts are constituents in virtue of CR.

6 CONCLUSION

Alexander Gebharter has suggested that the PC algorithm may be fruitfully
brought to bear on the task of constitutive discovery. He proposes that it be
used to infer causal as well as constitutive dependencies in one go, despite the
widespread view that causation and constitution are fundamentally different.

The first part of this paper argued that Gebharter’s proposal incurs severe
problems. First, one background assumption of PC, viz. CFC, is often violated
in mechanistic contexts, meaning that PC cannot be reliably applied. Second,

12Albeit these data are generated from the same mechanistic structure (Figure 4b) used to anal-
yse Gebharter’s procedure in §4.3, they are evaluated relative to different true graphs. Therefore,
the results of the two analyses are not directly comparable.
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the problem cannot be remedied by employing a modified version of PC, viz.
PCD, that is designed for contexts of CFC violations induced by determinism.
The reason is that constitutive dependencies tend to generate probabilistic inde-
pendencies that are unfaithful even by PCD’s weakened faithfulness standards.
Third, only interpreting the presence (and not the absence) of edges in PC out-
puts produced in CFC-violating contexts does not amount to a promising weak-
ening of Gebharter’s proposal. We showed, in a series of inverse search trials,
that determinism induced by constitution prevents PC from reliably inferring
the presence of causal/constitutive dependencies. From all this, we concluded
that Gebharter’s starting point, viz. treating constitution as a form of determin-
istic direct causation, and directly applying PC to mixed sets of causal and
constitutive dependencies, is not a promising way of bringing PC to bear on the
task of constitutive discovery.

As an alternative, the second part of the paper proposed to exploit the intu-
ition that, in a mechanistic explanation, a phenomenon’s characteristic causal
role is explained by the more fundamental causal roles of some of its parts.
We cashed this general intuition out in the framework of BNs. More precisely,
we offered a sufficient condition for constitution: if a part of a phenomenon is
located on a directed path from the phenomenon’s characteristic causes to its
characteristic effects, that part is a constituent. We showed that this condition
can be tested by means of PC without assuming CFC of variable sets including
both phenomena and their parts. Our proposal avoids the problems of Gebhar-
ter’s proposal in a simple and elegant way, which provides a theoretically sound
foundation for applying PC to constitutive discovery.
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