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Epistemic decision theory (EDT) employs the mathematical tools of rational choice theory
to justify epistemic norms, including probabilism, conditionalization, and the Principal
Principle, among others. Practitioners of EDT endorse two theses: (1) epistemic value is
distinct from subjective preference, and (2) belief and epistemic value can be numerically
quantified. We argue the first thesis, which we call epistemic puritanism, undermines the
second.

§

Epistemic decision theory (EDT) is a reform movement within Bayesian episte-
mology that refashions rational choice theory into a wide-ranging defense of epis-
temic norms, including probabilism, conditionalization, and the Principal Princi-
ple.1 Disciples of EDT endorse two theses: epistemic puritanism, which asserts
that epistemic value should be absolved of subjective preferences, and numerical
quantifiability, which maintains that epistemic value is numerically quantifiable.
The problem, so we shall argue, is that puritanism puts the kibosh on quantifiabil-
ity. For the soundness of the representation theorems that EDT must appropriate
from traditional decision theory depend on features of a rational agent’s subjective
preferences. Take away those subjective features, as puritanism demands, and EDT

is left without the means to establish a numerical representation of epistemic value.

1 The Origins of Epistemic Puritanism

It is one thing to say that your belief in p is stronger than your belief in q and quite
another to say that your partial beliefs have precise numerical values. Probabil-
ism is the even stronger thesis that a rational agent’s synchronic partial beliefs are
representable by a probability function.

The original argument for probabilism, given independently by Ramsey (1926)
and, in greater detail, by de Finetti (1937), is that if an agent’s partial beliefs are
identified with the prices at which she is willing to buy and sell a finite number

†This paper was written in 2014 and presented to audiences at Bristol, Columbia, and the
MCMP in Munich that year. This version of the paper, archived in August 2019, is longer than
the original, for it includes the best of our failed attempts to appease journal referees over the years
along with a few turns of phrase that pleased us. But our argument remains the same. In preparing
this archived version, we have attempted to add references that have appeared since 2014 that di-
rectly fit into the paper, but have decided against refashioning the paper to reflect the hindsight that
5-plus years provides.

1Contemporary advocates include Jim Joyce (1998, 2005); Richard Pettigrew (2012, 2012,
2013b, 2016b) and Hannes Leitgeb with Pettigrew (2010); Hillary Greaves and David Wallace
(2006); Jason Konek and Ben Levinsten (2016); Marcello D’Agostino and Corrado Sinigaglia
(2010), although epistemic utility is not a new notion (Levi 1963; Levi 1967).
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of gambles, then she exposes herself to the possibility of sure loss if and only if
her partial beliefs fail to satisfy the axioms of (finitely additive) probability. The
customary complaint about the Ramsey-de Finetti “Dutch Book” argument is that
it relies on the prudential criterion of sure-loss avoidance. Since it is unclear that
gambling losses are symptomatic of epistemic irrationality, this criterion may set
the bar for rationality too high. Conversely, avoiding sure loss may arguably set
the bar too low, as anyone with probabilistic beliefs is deemed rational regardless
of the available evidence and truth.

De Finetti later developed a second criterion for rational belief, one that as-
sesses the accuracy of an agent’s elicited credences by proper scoring rules (de
Finetti 1974). According to this scheme, an agent announces a number to express
how strongly she believes a proposition p, and she does so on the understanding
that she will be penalized by how far her announced “forecast” diverges from the
truth-value, zero or one, of p. Such an agent has an incentive to report a number
that accurately represents her credence in p, which is the expected truth-value of p.
Here then is a purportedly epistemic criterion—accuracy—for rational belief. De
Finetti further showed that these two methods for eliciting beliefs, the traditional
Dutch Book argument and the Accurate Forecasting argument, are equivalent in
the sense that partial beliefs that avoid sure loss are undominated by rival forecasts
and vice versa.

Nonetheless, de Finetti’s accuracy condition leaves many epistemologists un-
satisfied.2 Loss functions specify penalties that an agent pays in a particular cur-
rency, and de Finetti’s theorem relies on a specific scoring rule, namely squared-
error loss. But it is neither clear why epistemic rationality requires minimizing loss
in some currency nor why one should minimize squared-error loss rather than loss
measured by some other function.3 An alternative account is needed.

This is the motivation for securing what Jim Joyce calls a “non-pragmatic” jus-
tification for probabilism. Joyce argues that any epistemic loss function, which he
calls a measure of gradational inaccuracy, ought to satisfy certain axioms, and he
goes on to show that an agent’s beliefs are undominated with respect to such a mea-
sure of epistemic loss only if they satisfy the probability axioms. Joyce stresses that
constraints on measures of gradational accuracy are justified by objective, purely
epistemic arguments, in that they do not depend on any particular agent’s prefer-
ences or subjective interests.4 The recent rise in epistemic puritanism stems from

2See (Joyce 1998). Another case, albeit incomplete, for non-pragmatic foundations for proba-
bilism is given by Roger Rosenkrantz (1981).

3Recent work has extended de Finetti’s representation theorem for coherent forecasts beyond
Brier’s score. See (Predd, Seringer, Lieb, Osherson, Poor, and Kulkami 2009) for an extension to a
large class of strictly proper scoring rules, and also (Schervish, Seidenfeld, and Kadane 2014) for
an extension to general random variables.

4See (Joyce 1998, p. 586). As a second example, Easwaran claims, “[Joyce] is able to justify
the probability axioms as constraints on rational credence without assuming any constraint on ra-
tional preference beyond dominance” (Easwaran 2015, p. 15, our emphasis). Similar claims that
epistemic reasons cannot be grounded in subjective interest or preference are common throughout
epistemology. For instance, Tyler Burge claims, “Reason has a function in providing guidance to
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this non-pragmatic or accuracy-first defense of probabilism.
Underlying all of EDT, however, is the assumption that epistemic loss, or epis-

temic value, is numerically quantifiable. While epistemic decision theorists are
keen to discuss which constraints an epistemic loss function should abide by—
whether it should be continuous, convex, and the like—few defend the assumption
that epistemic loss is a genuine quantity, and the arguments offered so far are un-
convincing.

Leitgeb and Pettigrew, for instance, maintain that the distance between belief
and the truth is quantifiable because both can be represented on the same scale.

Since truth and falsity [are] represented by real numbers, too, degrees
of belief and truth values are comparable—they occupy the same quan-
titative or geometrical scale.5

This argument is dubious, however, as two quantities can be represented within
a single numerical scale without being comparable. By an appropriate choice of
units, both wavelengths of light in the visible spectrum and audible frequencies
of sound are representable by numbers between zero and one. Yet that hardly es-
tablishes there is a meaningful sense in which the color red is closer to the pitch
Middle C than to the color blue. Isomorphic mathematical structures arise every-
where. Meaningful comparisons do not.

Joyce, who concedes that epistemic value may not be a precise quantity, never-
theless argues that it is useful to assume quantifiability:

I will speak as if gradational accuracy can be precisely quantified.
This may be unrealistic since the concept of accuracy for partial beliefs
may simply be too vague to admit of sharp numerical quantification.
Even if this is so, however, it is still useful to pretend that it can be so
characterized since this lets us take a “supervaluationist” approach
to its vagueness. The supervaluationist idea is that one can under-
stand a vague concept by looking at all the ways in which it can be
made precise, and treating facts about the properties that all its “pre-
cisifications” have as facts about the concept itself. In this context a
“precisification” is a real function that assigns a definite inaccuracy
score I(b,ω) to each set of degrees of belief b and world ω .6

The problem with this argument is that there are many ways of making inaccu-
racy “precise” that do not require using real numbers; degrees of inaccuracy might
be represented by members of any ordered set, for example. To argue that any
precisification of accuracy is numerical is to put cart before horse.7

truth, in presenting and promoting truth without regard to individual interest. This is why epistemic
reasons are not relativized to a person or to a desire” (Burge 1993, p. 475).

5Leitgeb and Pettigrew (2010, pp. 211–212).
6Joyce (1998, p. 590).
7An additional challenge for Joyce is to reconcile his dual commitments to set-based Bayesian-

ism and accuracy-based probabilism (Mayo-Wilson and Wheeler 2016).
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Nevertheless, suppose for a moment that every precisification of accuracy were
numerical. It still does not follow that epistemic value would be quantifiable. For
instance, two people might both prefer oranges to apples but do so for very different
reasons. One may prefer the taste of oranges to apples, while the other prefers
the greater health benefits from eating oranges to eating apples. That oranges are
a better fruit on a number of subjective dimensions does not establish there is an
objective quantity, “distance from the best fruit”, to compare apples and oranges by.
Similarly, a precisification argument would not reveal anything about an objective
epistemic quantity called “accuracy” that is independent of any agent’s preferences.

Epistemic decision theorists might respond that it is simply a conceptual truth
that accuracy is numerical. After all, measures of accuracy are intended to represent
“distance from the truth,” and various types of distance are fruitfully represented
by real numbers.

Expressions like “their views are miles apart” and “he has a long way to go,”
however, are ubiquitous in natural language, and such metaphors provide no mo-
tivation for representing “distance” between opinions, guesses, or steps of a plan
using real numbers. More still, it makes little sense to say one person’s view is
two-and-a-half times closer to the truth than another’s. So even if accuracy is de-
fined as “distance to the truth,” it is not an obvious conceptual truth that accuracy
is numerical. An argument is necessary.

One might concede the arguments for quantifying pure epistemic value are bad
but still maintain that quantifiability is an innocent assumption. Surely, with a little
effort, the standard representation theorems from decision theory could be amended
to show that epistemic loss is numerical. We think not, and we shall argue that
EDT founders on the irreconcilable demands of epistemic puritanism and numerical
quantifiability. Although a modified EDT with non-puritanical foundations might
be possible, substantial assumptions would need to be made about how credence
and accuracy are measured along with some serious mathematical work. A simple
repackaging of traditional decision theory that swaps “loss” for “accuracy” will not
do.

Our central argument, presented in Section 3, is that comparisons of epistemic
value fail to satisfy two different groups of conditions that are necessary for canon-
ical representation theorems of value. The first group consists of a pair of assump-
tions that any numerical representation theorem of epistemic value must satisfy:
totality and transitivity. The second group includes conditions that are required for
EDT’s devotion to proper scoring rules: continuity and independence. To set up our
central argument, we review von Neumann and Morgenstern’s (1944) canonical
representation theorem in Section 2, and we return in Section 4 to make clear why
EDT’s commitment to making comparisons of expected epistemic value depends
on the four axioms we target. In Section 5 we consider what would be involved
in formulating an alternative representation theorem that avoided all of the axioms
we target. Finally, we close in Section 6 with an overall assessment of EDT.
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2 Representation Theorems for Numerical Utility

Why is numerical utility important to EDT? Isn’t it possible to forgo numerical
utility altogether and justify probabilism by cobbling together a list of intuitively
compelling axioms for qualitative judgments of uncertainty? This was de Finetti’s
aspiration, who, in the course of proving a probability representation theorem from
qualitative axioms and a cardinal utility function (de Finetti 1931), asked whether
his qualitative postulates alone might entail the probability axioms. They do not
(Kraft, Pratt, and Seidenberg 1959), and three options for augmenting de Finetti’s
qualitative axioms emerged: Savage’s (1954), Anscombe and Aumann’s (1963),
and de Finetti’s (1937). All of EDT’s existing mathematical arguments use de
Finetti’s framework, however, and neither of the other two options are viable al-
ternatives.8 At the heart of de Finetti’s framework is the assumption that beliefs
can be scored in terms of cardinal utility.

Although de Finetti justified his use of cardinal utility by identifying monetary
value and utility “within the limits of ‘everyday affairs’” (de Finetti 1974, p. 82),
viewing the utility of money as linear in monetary value is not a requirement of
rationality.9 Rather, what is required of a theory within the de Finetti tradition is a
method for constructing an utility scale where numerical utilities on that scale have
a clear-cut interpretation. The problem is that EDT uses de Finetti’s framework
without accounting for how to construct a meaningful scale for epistemic utility.

How might EDT construct such a scale? For traditional theories of rational
choice the steps for constructing an effective scale for comparative judgments of
value (preferences) are spelled out by von Neumann and Morgenstern’s (1944)
theory of utility: (1) identify preferences with choices, (2) postulate rationality
axioms governing choices, and (3) prove a representation theorem showing that,
when an agent’s choice behavior satisfies those rationality postulates, she can be
modeled as if she attached numerical utilities to the different options. We review
these three steps in order.

8The first option, Savage’s, extends de Finetti’s qualitative axioms by enriching the state space.
But Savage assumes that the state space is infinite and that an agent’s probability judgments are de-
rived from her subjective preferences. EDT rejects both assumptions, and adopting this line would
require abandoning all existing mathematical arguments of EDT. The second option, Anscombe and
Aumann’s, enriches the outcome space from basic outcomes to von Neumann and Morgenstern lot-
teries. Unlike Savage, Anscombe and Aumann use roulette lotteries as an objective public standard
to measure individual credences. But their approach is like Savage’s in deriving numerical proba-
bility from subjective preferences. That leaves de Finetti’s strategy, which effectively enriches the
set of acts an agent considers—called gambles—to yield comparable real-valued rewards.

9For instance, probability currency (Smith 1961) is a common method for constructing a cardi-
nal utility scale in which the value of rewards have an operationalizable interpretation. However,
even the traditional coherence scheme admits a formal notion of constrained coherence (Vicig 2016)
to mitigate against non-linear distortions introduced by varying the size of a stake.

5



2.1 Identifying Preference with Observable Choices

Within traditional decision theory an agent’s (i) observable behavior (choices) are
identified with (ii) her unobservable comparative value judgments (preferences)
by way of (iii) an operationalizable protocol that explains which preferences are
identified with which choices. Although authors in this tradition place different
weight on these three components,10 a behavioristic interpretation which identifies
choice and preference remains commonplace.

According to one protocol, an agent is said to prefer an option x to another
option y precisely if she chooses x in situations in which x and y are the only two
available options and exactly one of x and y must be chosen.11 If she would also
choose y in these situations, then the agent is said to be indifferent between x and
y. Otherwise, her preference of x to y is strict. Here x and y might be objects,
like apples and oranges; they might be actions, like buying an apple or eating an
orange; or they might even be states of affairs, such as whether there are apples in
the bowl or oranges on the tree. For now, all that matters is that an individual can
either indicate which of two options she prefers or be indifferent between the two.

There are two upshots of identifying preferences with observable choices. First,
learning an individual’s preferences requires observing her behavior, not her inter-
nal mental states. Second, for any two options x and y, an individual has a well-
defined strict preference between x and y or is indifferent between the two. For
either one chooses x when y is available or she does not. In the former case the
agent prefers x to y, by the definition of preference, and in the latter she strictly
prefers y to x.

We can put this succinctly by introducing some notation. Let x � y abbreviate
the claim that an individual—say you—prefers y to x or is indifferent between the
two. The above argument shows that, if preference is identified with your choices,
then for any options x and y, either x� y or y� x. This property is called totality.12

One may object that in practice you are not forced to make choices and that not
all of your choices can be observed. Indeed, some decision theorists do not assume
totality but rely instead upon weaker representation theorems, which with the other
axioms below, entail that your options are assigned a range of numerical utilities
rather than a single number. We postpone discussion of these weaker theorems

10For instance, Von Neumann and Morgenstern identify preference with a subjective feeling,
available via introspection (von Neumann and Morgenstern 1944, §3.3.2), a position Ramsey (1926)
among others flatly rejects; Sen (1982) views choice behavior to reveal rather than constitute prefer-
ence; while others, particularly in economics, view the protocol to apply broadly enough to simply
identify choice and preference. See for example (Gilboa 2009).

11This definition of preference is more restrictive than what is used in more recent research on
“choice functions,” as systematized by Amartya Sen (1971). In this more general setting binary
preferences are derived from decisions in which more than two options are available. We restrict
our attention to choices among two options for simplicity of exposition only.

12Authors who maintain that forced choices “reveal” but do not constitute preferences cannot
justify totality unless one adopts the non-empirical assumption that when “a person chooses x rather
than y, it is presumed that he regards x to be at least as good as y, and not that maybe he has no clue
about what to choose and has chosen x because he had to choose something” (Sen 1973).
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until Section 2.3, and return again in Section 3.1 to discuss their incompatability
with EDT.

2.2 Axioms of Rational Choice

The totality of � follows from the definition of preference, but decision theorists
typically argue that an individual’s preferences ought to satisfy additional rational-
ity postulates. We will focus on three: transitivity, continuity, and independence.

Most agree that preference ought to be transitive: if you prefer x to y and you
prefer y to z, then you ought to prefer x to z. Transitivity is often justified by
“money pump” arguments, which make two assumptions: if you strictly prefer x to
y, then you would be willing to pay a small price to exchange y for x; and if you are
unwilling to pay anything for a trade, then you are indifferent between the two. It
is easy to show that if you have intransitive preferences and these two assumptions
hold, then a clever trader can cause you financial ruin through a package of trades
that you consider to be fair. Hence, rational preferences are transitive.13

Suppose now we wished to determine how much more you value an orange to
an apple. To meaningfully quantify the degree to which you prefer an orange to an
apple, the options of choice presented to you must be expanded to include not just
apples and oranges but options like the following:

(L1) A die will be rolled. If a one is observed, you will be given an apple. Other-
wise, you will receive an orange.

(L2) A fair coin will be tossed. You will get an apple if the coin lands heads, and
an orange otherwise.

(L3) A die will be rolled. If a six is observed, you will receive nothing. Otherwise,
you will receive an orange.

These three options are called lotteries. Lotteries are options in which different
objects are awarded to an agent with different “objective” probabilities, which are
determined by chance devices like coins, dice, and roulette wheels. The reason lot-
teries are important is because they allow an observer to determine how much more
you prefer one option to another. If you prefer oranges to apples, then you will also
prefer the first lottery to the second, as the first gives you a higher probability of
getting an orange. However, depending upon how much you prefer oranges to ap-
ples, you might not prefer the third lottery to the second. In the third lottery there
is some chance you get nothing. If you enjoy oranges much more than apples, get-
ting nothing might be a risk you are willing to take. On the other hand, if you only
slightly prefer oranges to apples, that chance might be unacceptable. Von Neu-
mann and Morgenstern’s idea was that by appropriately changing the probabilities

13The axioms of rational choice impose synchronic consistency constraints on preference, but
there is a compelling case for rational violations of transitivity of preferences over time (Wheeler
2018, §1.2).
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with which you are awarded different basic options, such as apples and oranges, an
experimenter can determine how much you prefer one to the other.

Equipped with the concept of a lottery, we can now state the next rationality
axiom: continuity. Consider two options x and y and some probability α between
zero and one. Let αx⊕ (1−α)y denote the lottery in which you win x with prob-
ability α and win y with probability 1−α . Then the continuity axiom says that if
you strictly prefer y to x and you strictly prefer z to y, then there are probabilities
α1 and α2 between zero and one such that (i) you strictly prefer y to the lottery
α1x⊕ (1−α1)z, and (ii) you strictly prefer the lottery α2x⊕ (1−α2)z to y.

What the continuity axiom rules out is that preference can be “infinitely” strong.
If you think apples are awful but oranges are outstanding, then you might not prefer
any lottery in which there is a chance, however small, of ending up with only an
apple. If so, your preferences violate the continuity axiom.

However, if you are unwilling to take a gamble involving apples, then surely
you ought not take the same gamble if the apple prize is replaced by your own
death. Yet we routinely make choices that raise our risk of death—we drive cars
and walk across busy streets—often in exchange for a small reward like an orange.
Yet if death is only so bad, how bad could an apple be? On closer inspection, seem-
ingly infinite losses (and gains) are really not infinite at all. Such is the empirical
argument given for the continuity axiom.14

The last rationality postulate is independence.15 Suppose you prefer oranges
to apples and you are offered a choice between two lotteries. In the first, a fair
coin is flipped and you get an orange if it lands heads. Otherwise, you receive
a banana. The second lottery is exactly like the first except that you receive an
apple if the coin lands heads. Because you prefer oranges to apples, intuitively you
ought to prefer the first lottery to the second. This is what the independence axiom
says. In symbols, if you prefer y to x, then for any probability α less than one and
any third option z, you should also prefer the lottery αy⊕ (1−α)z to the lottery
αx⊕ (1−α)z.

With these four necessary conditions in hand—totality, transitivity, continuity,
and independence—we now turn to the last step of the canonical argument that
utility is numerical: proving a representation theorem.

2.3 Representation Theorem

Von Neumann and Morgenstern prove that if an agent’s preference relation � sat-
isfies the above core axioms (and technical fusses) then every simple option a can

14We are not committed to the continuity axiom, and in fact we think there are compelling argu-
ments that rational agents must occasionally violate it. See Arthur Paul Pedersen (2014). Neverthe-
less, we discuss the axiom because EDT needs to provide a purely epistemic argument for it or an
equivalent condition.

15The remaining axioms necessary for von Neumann and Morgenstern’s result are technical
fusses, including a reduction axiom for compound lotteries (i.e., lotteries of lotteries are lotter-
ies), axioms about sure events (you should be indifferent to an apple and the lottery with the sure
chance of winning an apple) and null events. For brevity, we omit these.
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be assigned a numerical utility U(a), and moreover, for any options b and c

b� c if and only if EU [b]≤ EU [c],

where EU [b] is the expected utility of the option b. For any option b that is not a
lottery, its expected utility is defined to be U(b), i.e., its utility simpliciter. The ex-
pected utility of a lottery 〈α,b,c〉 is then defined (recursively) to be αEU [b]+(1−
α)EU [c]. Von Neumann and Morgenstern further show this numerical function is
unique up to a linear transformation, which means that if U1 and U2 are two differ-
ent ways of assigning numerical utilities to options, then there exist real numbers r
and s such that U1(a) = r ·U2(a)+ s for every option a.

This uniqueness property is important and requires some explanation. Suppose
we wish to quantify an agent’s preferences among a finite number of basic options;
no lotteries are considered. Then, assuming only that the agent’s preferences are
total and transitive, there is a trivial way to assign utilities: assign the least pre-
ferred object zero utility, the next utility one, the next two, and so on. However,
there are many other ways of assigning numerical utilities: assign the least object
utility two, the next utility four, the third utility eight, and so on. In fact, any in-
creasing function will do. What we have described is a numerical utility function
that preserves only so-called ordinal preferences.

Von Neumann and Morgenstern’s theorem shows that the set of numerical util-
ity functions that represent an agent’s preferences is far narrower if one also as-
sumes the continuity axiom. Why care? Suppose an experimenter has elicited your
preferences among fruit and wants to predict whether you will go to a supermar-
ket or to a local bodega this afternoon. Here, your choice depends not only upon
your preferences among fruits, but also upon your judgments about the likelihood
of finding those fruits in the two stores. Finally, suppose you maximize your ex-
pected utility, and that the experimenter knows your judgments about the likelihood
of finding various fruits in the two stores. If the experimenter knows your utility
function up to an affine transformation, then she can determine which store you
will choose. In contrast, if only your ordinal preferences are known, then your
choice cannot be determined.

This uniqueness is important for normative as well as for predictive purposes.
If the experimenter wants to recommend a store to you and if her recommendation
is for you to maximize subjective expected utility, it suffices for her to know your
utility function up to linear transformation. Conversely, she might be unable to
make a recommendation without such knowledge, as two utilities not related by
a linear transformation might disagree about which options have higher expected
value. This point is important for the remainder because epistemic decision theo-
rists typically require that epistemic utility is measured by a proper scoring rule,
and the definition of a proper scoring rule involves comparisons of expected utility.

Von Neumann and Morgenstern’s theorem can be generalized in several ways,
but perhaps the most important generalizations drop the totality assumption.16 Drop-

16See R. Duncan Luce (1956) and Peter Fishburn (1991) for arguments to drop transitivity.
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ping totality allows one to avoid identifying preference with behavior. But decision
theorists must assume there is some relationship between preference and choice,17

as a lack of procedural constraints on measuring preference translates into a lack
of justification for the axioms of representations theorems.18 Crude behaviorism is
implausible, but on pains of abandoning decision theory’s mathematical framework
entirely, one cannot reject the fundamental pragmatist insight: how preference is
measured determines the axioms we may justifiably assume it satisfies (or should
satisfy).

Importantly, theorems that drop totality do not yield a unique numerical rep-
resentation of preference, and they require other technical assumptions that are
inimical to EDT. For example, Aumann assumes that the options of choice form
a finite-dimensional vector space; Fishburn assumes that the set of equivalence
classes of options modulo indifference is countable or that it contains a dense sub-
set; similar results are obtained by Dubra, Maccheroni and Ok, and also by Seiden-
feld, Schervish and Kadane.19 These technical assumptions are not substantial in
the original case concerning preferences, in which there are typically only finitely
many basic options to choose. But they are substantial in the epistemic case, as we
will see.

So much for the numerical representation of preference. We now turn to the
question of whether epistemic value is likewise numerical.

3 Epistemic Decision Theory’s Number Problem

Now what is the point of this numerical comparison? How is the number used?
– F. P. Ramsey (1929, p. 95)

EDT claims that every belief state can be assigned a numerical epistemic utility.
In particular, many advocates of EDT identify “utility” with “accuracy”, where ac-
curacy is understood as the “distance” between one’s belief and the truth. Can
epistemic puritans adapt the arguments used in traditional decision theory to jus-
tify numerical measures of epistemic utility in general or accuracy in particular?
We argue not. By Von Neumann and Morgenstern’s theorem, if epistemic utility
were numerical, then comparisons of epistemic value must satisfy all four postu-
lates discussed in the previous section. We consider the axioms in order and argue
that puritans can justify none of them.

17See chapter one of Walley (1991) for a perspicuous discussion.
18Before the late twentieth century, the only way to measure preference was via choice behavior,

but neuroeconomics now proposes many alternative methods, including fMRI scans, eye-tracking
studies, response-time analysis, and more. These alternative procedures for measuring preference
could be used to justify numerical representations theorems, but then quantifiability of preference
would be a descriptive fact (or idealization) rather than a normative thesis about avoiding incoherent
behavior. Moreover, neuroeconomists’ alternative measures of preference are often justified by
showing they are correlated with measurements of choice behavior.

19Robert Aumann (1962); Peter Fishburn (1979, p. 18 and pp. 29–30); Juan Dubra, Fabio Mac-
cheroni, and Efe A. Ok (2004); and Teddy Seidenfeld, Mark J. Schervish, and Joseph B. Kadane
(1995).
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3.1 Totality

First, there is totality. Generally, EDT presumes that an epistemic utility function
takes as arguments pairs of the form 〈b,ω〉, where b is a belief and ω is a truth-
value assignment.20 The intended interpretation of 〈b,ω1〉 ≺ 〈c,ω2〉 is “b is strictly
more accurate in world ω1 than c is in ω2.” We consider the special case of when
b and c are compared in the same world ω , in which case we write b ≺ω c if b
is strictly more accurate than c in ω , and write b �ω c if b is at least as accurate
as c in ω . For the moment, we remain agnostic about what a belief state is and
whether beliefs are best represented by sets of propositions, probability functions,
qualitative likelihood orderings, or some other type of mathematical object. The
point of this setup is to deal EDT the strongest hand it can play.

The epistemic analog of totality of preference is that, for any two belief states b
and c and any state of the world ω , either b�ω c or c�ω b (or both). What could
justify this assumption? Puritans cannot resort to the decision theorist’s argument
that totality follows from the definition of preference, for there is no epistemic ana-
log of a forced-choice scenario. Consider for example those who identify epistemic
utility with accuracy. Accuracy is intended to represent the distance between b and
the truth, and this distance is supposed to be a fact about the world, not about some-
one’s preferences. It does not matter whether an agent would choose to have beliefs
b rather than c if she knew the truth ω . So the pragmatic argument for totality does
not extend naturally to the epistemic domain.

Is there any argument that comparisons of accuracy are total? Take the “dis-
tance to the truth” metaphor seriously for a moment and consider the following
question: how far is Berlin from Paris and London? Even though this question is
about distance, most readers would be tempted to answer not with a single number
but with two: one to quantify the distance (in some specified unit of length) be-
tween Berlin and Paris, and another for the distance between Berlin and London.
You may have reasons to collapse the pair of numbers into a single one—if you
were a travelling salesperson tallying your miles, say—but there is no canonical
way of doing so. How two numerical distances are combined into a single number
depends upon ones interests and values.

An analogous situation arises in epistemology. Consider two propositions, p
and q. Suppose p is the proposition “Most elements are metals” and q is the propo-
sition “Taft wore a handle-bar mustache.” Suppose Alison is skeptical of p but
strongly believes q. How close are Alison’s beliefs to the truth? A reasonable an-
swer is, “Alison’s beliefs about basic chemistry are off the mark, but her beliefs
about the 27th President of the United State’s facial hair are surprisingly accurate.”
Just as with distance, quantifying the accuracy of Alison’s views will require spec-
ifying the relative importance of having accurate beliefs about chemistry to having
accurate beliefs about Taft. This specification is easy for a pragmatist: one’s prefer-

20Alternatively, Pettigrew conceives the pair to consist of your credal function, b, and the ideal
credal function of an oracle that assigns 1 to a truth and 0 to a falsehood. Our argument does not
hang on this distinction.
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ences determine the relative importance of different propositions. But for puritans,
there is no purely epistemic grounds for attaching weights to different propositions
and averaging their accuracy.

Here is why. Epistemic goods, traditionally understood, are few in number;
they include acquisition of true beliefs, avoidance of error, and justification. Fur-
ther, epistemic decision theorists claim that credences can be accurate but unjusti-
fied and vice versa.21 Thus, to show that numerical measures of accuracy are non-
epistemic, it suffices to show that they encode values other than acquisition of truth
and avoidance of error. As we have shown, numerical measures of accuracy quan-
tify how a gain in accuracy with respect to one proposition is to be weighed against
loss in accuracy with respect to another. Thus, numerical measures of accuracy,
even those that weight all propositions equally, implicitly quantify the relative im-
portance of the contents of different propositions, which is a value judgment about
something other than proximity to truth.

What does this have to do with totality? Suppose Bill strongly believes “Most
elements are metals” but doubts that “Taft wore a handle-bar mustache.” If epis-
temic goods do not determine which proposition is more important or determine
that they are equally important, then Alison’s and Bill’s beliefs are incomparable
in terms of accuracy: Alison’s views about Taft are more accurate than Bill’s, but
her beliefs about chemistry are less so. Thus, epistemologists who maintain that
accuracy is the sole epistemic aim cannot defend the claim that comparisons of
accuracy are total unless there is only one proposition under consideration.22

Puritans who wish to employ von Neumann and Morgenstern’s theorem, there-
fore, must expand the list of epistemic goods to defend the claim that the relative
importance of all propositions can be compared. Candidate epistemic goods in-
clude evidential support, explanatory breadth, fruitfulness, and other theoretical
virtues discussed in the philosophy of science. But there are two reasons to doubt
this strategy will yield a justification of the totality axiom for comparisons of epis-
temic utility. Neither of these arguments is new, but they are worth repeating.

First, new goods create new incomparabilities. Suppose it is more important
to have accurate beliefs about p than q if p has greater explanatory breadth than
q. Then to argue that comparisons of epistemic utility are total, one must show
that considerations of explanatory breadth eliminate all incomparabilities. This
is doubtful. Do true hypotheses of particle physics have more or less explana-
tory breadth than ones about spacetime? Both types of hypotheses explain a wide
variety of phenomena, but of different sorts. In general, it is not meaningful to
compare the evidential support, explanatory breadth, and other features of scien-
tific hypotheses that are supported by widely different types of evidence and that
explain completely different phenomena.

Second, different epistemic goals conflict. A proposition may have greater ex-
planatory breadth than another but less evidential support. Even if different dimen-
sions of epistemic value are always comparable, which is doubtful, one confronts

21See (Joyce 1998, pp. 591–592).
22See Pettigrew (2013a) for a defense of the view that accuracy is the sole epistemic good.
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one of two dead-ends: either comparisons are exclusively ordinal and one faces
Arrow-style impossibility results for combining different dimensions of epistemic
value, or comparisons are “beyond ordinal” in which case the question of whether
epistemic value is numerical is begged and answered.23

Epistemic decision theorists might try to employ one of the representation the-
orems that do not require totality. However, recall from Section 2.3 that these theo-
rems require additional technical assumptions, like that the set of options is count-
able (modulo indifference), or forms a finite dimensional vector space, or contains
a countable dense subset. The first assumption is false if belief states include—
as most epistemic decision theorists assume—all uncountably many probability
functions on an algebra. The most plausible defense of the second and third as-
sumptions is to argue that belief states are numerical; in Section 3.4, we show such
an argument is unavailable to puritans.

Representation theorems that drop totality also do not yield a unique utility
function up to linear transformation, and that uniqueness is necessary to justify
meaningful comparisons of expected utilities, as we shall return to argue in Sec-
tion 4. One might object that EDT does not claim there is a unique epistemic utility
function (even up to linear transformation), and in fact, proponents of EDT are
quick to point out that their arguments work for any proper scoring rule. However,
this response raises a question that goes to the heart of EDT: how ought we inter-
pret the lack of uniqueness of an epistemic utility function? If accuracy is the sole
epistemic good, yet the measurement of accuracy is not unique, what are the purely
epistemic grounds for choosing one measure of accuracy over another? Pettigrew
answers by endorsing subjectivism: “Each continuous and additive strictly proper
inaccuracy measure is an acceptable measure for an agent to adopt as her own sub-
jective inaccuracy measure” (Pettigrew 2016a, p. 75). Yet, if one concedes that
accuracy is a function of an individual’s subjective interests, the game is up; for
then EDT collapses to traditional decision theory, where the contrast between “sub-
jective inaccuracy” and “subjective preference” expresses a distinction without a
difference.

Puritans, however, might retort that there is an important difference between
value and preference. Even granting this response, it does not explain why value
judgments must be total. To see why, consider Sousa’s (1974) “small-improvement”
criterion for incomparability.24 Even if you prefer viewing Rembrandt’s paintings
of apples to listening to George Gershwin’s An American in Paris, you are likely
reluctant to say one experience is more valuable than the other. So either they are
equal in value, or they are incomparable. To show that that they are not equal in
value, consider a slight improvement to a given performance of An American in
Paris, one where the kettledrums are ever so slightly better in tune. Suppose this
slightly improved performance of Gershwin is more valuable to you than the orig-
inal performance. But then if the first Gershwin performance were equal in value
to a given viewing of Rembrandt’s work, the improved performance of Gershwin

23See Samir Okasha (2011).
24See (Chang 2002) for a discussion and history of this argument.
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would be more valuable than viewing the Rembrandt. That strikes many as un-
intuitive: many are reluctant to judge any sufficiently competent performance of
Gershwin to be more valuable than a viewing of Rembrandt’s work. So the original
reluctance in comparing Gershwin and Rembrandt is better explained by incompa-
rability of value, rather than equivalence.

Analogous examples work in the epistemic case. Let p be a true proposition of
mechanics and q a true proposition of genetics. Suppose Alison’s credences in p
and q are representable by the numbers .4 and .6 respectively, whereas Bill’s cre-
dences are exactly reversed. One might lack a firm judgment that Alison’s credal
state is more accurate than Bill’s or vice versa. So Alison and Bill’s credences
might be equally accurate, or they might be incomparable. Now consider Carole
whose credences in p and q are representable by the numbers .4 and .61 respec-
tively. Carole’s beliefs are more accurate than Alison’s, but it’s not clear they are
more accurate than Bill’s. After all, Bill’s credence in p is still more accurate than
Carole’s. But if Carole’s beliefs are not obviously more accurate than Bill’s, then
this provides good evidence that our original lack of judgment about the relative
accuracy of Alison and Bill’s credences was motivated by incomparability rather
than equivalence.

The following simplification of Anderson’s (1987) theory of values explains
why some values are incomparable and behave in the way Sousa’s criterion de-
scribes. Say one values some object, person, or state of affairs S if one (1) acts in
particular ways to acquire, preserve, promote, or bring about S and (2) feels partic-
ular emotional responses upon acquiring and losing S. For example, we value our
friendships because we act in certain ways to promote them (e.g., talking by phone,
writing letters, etc.) and we would feel sad and nostalgic upon losing friends.
We value our jobs differently: professors, for example, publish papers and teach
classes. And we would feel anxious and fearful about the future upon loss of our
jobs.

This simplification of Anderson’s theory can explain why certain values seem
comparable whereas others do not. Consider two apples, which are identical except
that one is a bit sweeter than the other. Intuitively, the two apples are comparable,
and Anderson’s theory explains why. We would take similar actions to enjoy them,
and our feelings upon acquiring or losing them would be similar. We might pay
more for the sweeter apple, enjoy the taste of it more than the taste of the other
apple, or feel more upset bruising it than the other.

In contrast, our friendships and our careers sometimes seem incomparable in
value, and Anderson’s theory again explains why. We take qualitatively different
actions to promote our friendships than we do to promote our careers. We also feel
differently upon losing friends than we do upon losing our jobs. These differences
are not of intensity, but of kind. Of course, sometimes we do choose (and have
preferences) among careers and friendships; we might move across the country to
maintain our careers, thereby undermining our friendships. But that does not entail
that we value our careers more than our friends, as choice is but one way that value
is measured. Thus, while some might value a friendship more than a career or vice
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versa, it is not rationally mandated to have a totally-ordered value relation over
careers and friends.

Let’s return to EDT. Must the accuracy of two belief states be comparable? Not
at all. Suppose Alison is a physicist. How might she value accurate belief about
a mathematical conjecture versus that of an empirical hypothesis about particle
physics? Consider the actions Alison might take to promote accurate beliefs in the
two cases. In the mathematical case, Alison will prove theorems, find intermediate
lemmas, and develop novel definitions. In the experimental case, Alison will test
measuring devices, record data, and perform statistical analyses. Alison’s actions
in the two cases differ fundamentally, and so the value of accuracy in the two cases
differs.

Puritans might object that Anderson’s theory is not well-suited for comparing
epistemic value, as emotions are irrelevant in epistemology. However, our argu-
ment focused exclusively on value-promoting actions, not emotions. So at this
point, we think the burden is on EDT to develop a coherent theory of epistemic
value and to explain why comparisons of such value are total. We have considered
the most plausible arguments for totality, and none works.

To recap, we first observed that the decision theorist’s traditional defense of
totality of preference does not extend to matters of pure epistemic value. We then
noted that, using a restricted set of epistemic goods (i.e., truth, justification, and
error-avoidance), beliefs in different propositions may not be comparable. Then
we argued that widening the set of candidate “epistemic” goods (e.g., fruitfulness,
simplicity, etc.) only complicates the matter. After that, we argued that criteria
often used to show two values are incomparable (e.g., Sousa’s) speak against the
totality of ordering of epistemic value, and finally we summarized a variant of
Anderson’s theory of value that explains when and why incomparability arises.

3.2 Transitivity

p q r

Alison 1
2

1
4

1
2

Bill 3
4

1
2

1
4

Carole 1
4

3
4

3
8

Consider transitivity next. If a �ω b and b �ω c, does
it follow that a �ω c? Money-pump arguments used
to justify transitivity of preference are inapplicable, as
these take for granted pragmatic incentives that puri-
tanism forgoes. So to investigate the plausibility of tran-
sitivity in EDT, consider again the case in which epis-
temic utility is identified with accuracy.

Pick three true propositions, p, q and r. Imagine
that, for all that Alison, Bill, and Carole know, the three
propositions might all be false, some true and some
false, or all true. Suppose the probabilities that Alison, Bill, and Carole assign
to the three respective propositions are as described in the table above. Whose
beliefs are most accurate?

A natural thought is that one probabilistic belief state is more accurate than
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another if the former is closer to the truth-values of most of the propositions.25

When comparisons are made in this fashion, Bill’s beliefs are closer to the truth
than Alison’s. Alison believes p to degree 1

2 whereas Bill believes it to degree 3
4 ,

and the truth-value of p is one. Moreover, Alison believes q to degree 1
4 , whereas

Bill believes it to degree 1
2 ; again, the truth-value of q is one. Since Bill’s degrees

of belief are closer on two of three dimensions, it follows that his beliefs are closer
to the truth than hers according to this scheme. By similar reasoning, Carole’s
beliefs are closer to the truth than Bill’s: Carole has more accurate beliefs than
Bill with respect to q and r. The problem is that Alison’s beliefs are closer to the
truth than Carole’s, as Alison has more accurate beliefs with respect to p and r. So,
transitivity fails.26

One might counter that this example does not show that comparisons of in-
accuracy are intransitive but instead shows that naive tallying procedures violate
transitivity. We agree. However, in order to avoid violations of transitivity, one
needs to specify how acquiring an accurate belief with respect to one proposition
is balanced against inaccuracies elsewhere, and this balancing act must be done
carefully to avoid “accuracy cycles” like the one above. Yet it is precisely these
trade-offs that make little sense to puritans, since they explicitly deny the impor-
tance of an agent’s subjective preferences about whether an accurate belief with
respect to p is more or less important than the same for q.

One may continue to press, however, by proposing an alternative to tallying
which avoids intransitivity. For each investigator, one might instead calculate the
degrees to which her beliefs in p,q and r are inaccurate and sum the result. Calcu-
lating a sum does not require appealing to an agent’s subjective preferences about
which propositions are most important because an unweighted sum may be viewed
as treating the propositions “equally.” Although we think that treating propositions
“equally” is an ambiguous requirement, let us grant for now that this proposal for
combining degrees of inaccuracy is privileged. The problem is that doing so runs
afoul of another axiom: independence.

3.3 Independence

Recall that the independence axiom for preferences requires that the space of op-
tions contain lotteries. What is the epistemic analog of a lottery? At the most
abstract level, a lottery is a triple, 〈α,x,y〉, where α is some number between zero
and one, and x and y are options. In the traditional, pragmatic case, the number α

represents a probability that determines how likely different prizes are awarded in
the lottery.

25An analogous notion of closeness has been used in the case of full-belief by (Easwaran and
Fitelson 2015).

26This type of example is familiar to decision and social choice theorists. The former sometimes
use similar examples to argue that there are intuitively acceptable violations of transitivity when
objects have several different dimensions of value. The latter use it to show how cycles may arise
in social preference if pairwise majority rule is used to rank options.
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What about the epistemic case? Here the options x and y are replaced by belief
states b and c. Whatever α represents, the resulting epistemic lottery 〈α,b,c〉must
be an object whose accuracy can be compared to that of beliefs, in the same way
that preferences are defined among lotteries. If lotteries were belief states, then
this would be straightforward. So one proposal is to identify an “epistemic lottery”
involving b and c with a belief state that is “intermediate” between b and c.27

The concept of an intermediate belief state makes sense in some contexts. Sup-
pose b = .6 and c = .4 are the probabilistic credences that two agents assign to the
proposition that it will rain tomorrow. Then an intermediate belief state between
b and c is some number between .4 and .6. In particular, one might identify the
“epistemic lottery” 〈α,b,c〉 with the belief state αb+(1−α)c. If α is close to
one, then the intermediate state is close to b. If α is close to zero, then it is close
to c. So one can assess the epistemic utility of such lotteries in the same way one
assesses the utility of probabilistic credences.

Unfortunately, the suggestion to treat propositions “equally” by summing accu-
racy scores violates independence if an epistemic lottery is understood in this way.

p q

Alison 3
4

1
4

Bill 1
4

1
2

Carole 1 0

Suppose Alison, Bill, and Carole’s credences are as in-
dicated in the table to the left. Further, assume both p
and q are true. Now consider the policy that proposi-
tions ought to be treated “equally” by summing degrees
of inaccuracy. According to the epistemic decision theo-
rist’s favorite measure of inaccuracy, squared-error loss,
Alison’s beliefs are more accurate than Bill’s. Alison’s
beliefs are inaccurate to degree (1− 3

4)
2+(1− 1

4)
2 = 5

8 ,
whereas Bill’s inaccuracy score is (1− 1

4)
2+(1− 1

2)
2 =

13
16 , and 5

8 < 13
16 . Thus, if the independence axiom were

true, any belief state that is “intermediate” between Alison’s and Carole’s would
be more accurate than the corresponding intermediate state between Bill’s and Ca-
role’s beliefs. But if α = 1

25 , then the mixture of Alison’s and Carole’s beliefs is
less accurate than the corresponding mixture of Bill’s and Carole’s.28

The epistemic decision theorist thus faces a trilemma. One way of treating
propositions equally is by our tallying method, but this violates transitivity. An-
other way of treating propositions equally is to sum inaccuracy scores, but that
violates independence. Lastly, there are strategies that assign variable weightings
to propositions which would satisfy both transitivity and independence, but there is

27Of course, in the same way that a pragmatic lottery with fruit prizes need not be itself a fruit,
an epistemic lottery need not be a belief state. We return to this point at the end of the next section.

28If α = 1
25 , then the belief state intermediate between Alison’s and Carole’s beliefs has a cre-

dence of ( 1
25 ·

3
4 )+ ( 24

25 · 1) =
99

100 in p and a credence of ( 1
25 ·

1
4 )+ ( 24

25 · 0) =
1

100 in q. The inac-
curacy of that belief state is (1− 99

100 )
2 +(1− 1

100 )
2 = .9802. In contrast, the state intermediate

between Bill’s and Carole’s has a credence of ( 1
25 ·

1
4 ) + ( 24

25 · 1) =
97
100 in p and a credence of

( 1
25 ·

1
2 )+( 24

25 ·0) =
1
50 in q. The inaccuracy of that state is (1− 97

100 )
2 +(1− 1

50 )
2 = .9613 < .9802.

Similar counterexamples can be generated for any strictly proper scoring rule, as propriety entails
strict convexity.
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no purely epistemic motivation for assigning such unequal weights to propositions.

3.4 Continuity

We now turn to the continuity axiom. A quick gloss of this axiom might provide the
epistemic puritan with some confidence that its analog is satisfied in the epistemic
case. Recall, in the pragmatic case, the continuity axiom says roughly that no
option is infinitely preferable to another. In the epistemic case, the rough analog
is that no belief state is infinitely more accurate than another. A puritan might be
perfectly content with such an assumption, as intuitively the worst belief state is to
be maximally confident in all the false propositions, and such an epistemic state,
while regrettable, surely does not seem “infinitely” bad.

Unfortunately, this argument assumes that there is some state of “maximal”
confidence. Accuracy-first arguments for probabilism, however, often assume that
belief is real-valued (and hence, unbounded) and attempt to prove that a rational
belief is bounded.29 Furthermore, some have argued that, in order to avoid lottery-
like paradoxes, rational belief states must be “tiered” in the sense that some beliefs
must be “infinitely” stronger than others.30 But if some belief state is infinitely
stronger than others, degrees of inaccuracy might likewise be infinitely better or
worse than others. Finally, if there are infinitely many propositions under con-
sideration, the assumption that epistemic loss is always finite is less plausible,31

and it is inconsistent with weighting the inaccuracy of propositions “evenly” in
calculations of the total inaccuracy of a belief state.

There is, however, an even more substantial problem with justifying the con-
tinuity and independence axioms. The epistemic analog of these axioms requires
an epistemic analog of a lottery. Above, we identified an epistemic lottery with
an intermediate belief state, and to define an intermediate belief state, we assumed
that beliefs were probabilistic. Unfortunately, the entire point of EDT is to justify
epistemic norms, probabilism being chief among the lot. Thus, on pains of circu-
larity, one cannot argue that epistemic utility is numerical by assuming that beliefs
are probabilistic.

Of course, one might argue that the above justification of the existence of in-
termediate belief states works under the weaker assumption that beliefs are numer-
ical; one can take weighted-averages among numbers, even if those numbers are
not probabilities. But why assume that belief is numerical? Unlike Ramsey and
de Finetti, epistemic puritans do not identify degrees of belief with betting odds or
fair prices.

Puritans might try to argue that rational agents make qualitative comparisons of
probability, such as “Rain tomorrow is more likely than snow.” Moreover, there are
theorems showing that, as long as those qualitative, comparative judgments satisfy

29See (Joyce 1998, p. 598) and Richard Pettigrew (2016a, §4.2).
30See Horacio Arlo-Costa and Arthur Paul Pedersen (2012).
31This criticism was suggested to us in personal conversation by Jonathan Livengood. Mikayla

Kelley has since looked at extending epistemic loss to infinite option sets (Kelley 2019)
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certain rationality axioms, then degrees of belief will be numerical. But there are
two problems with this proposal. First, those rationality axioms (e.g., that com-
parative judgments of probability are transitive) are typically justified by the same
pragmatic arguments that puritans disavow (e.g., money pumps). So epistemic de-
cision theorists must argue that the axioms of qualitative, comparative probability
embody purely epistemic constraints.

More importantly, the most uncontroversial axioms of comparative probability
(e.g., totality, transitivity, and qualitative additivity) do not guarantee that degrees
of belief admit unique numerical representation. Thus, even if belief states b and
c are numerically representable, one cannot define the epistemic lottery αb⊕ (1−
α)c to be the weighted average of the numbers representing b and c, as such an
average may not be unique. Yet without uniqueness, comparing of the accuracy of
epistemic lotteries is meaningless.

To see why, consider a simple case with one proposition under investigation,
p, and let a, b, and c be three belief states such that p is: (1) less likely than
its negation according to a; (2) equally likely as its negation according to b; and
(3) more likely than its negation according to c.32 Although all three belief states
are numerically representable, there is no reason to prefer representing c by the
probability function c(p) = 9

15 or c(p) = 3
4 . So even if a were uniquely represented

by the function a(p) = 1
3—putting aside for the moment that it is not—it would be

indeterminate whether the intermediate belief state d = 1
2a⊕ 1

2c assigned greater
credence to p than does b, as d can be represented by both the credence function
d(p) = 1

2 ·
1
3 +

1
2 ·

9
15 < 1

2 = b(p) and by d(p) = 1
2 ·

1
3 +

1
2 ·

3
4 > 1

2 = b(p).
Why does this matter for EDT? Suppose p is true. Then, according to EDT,

b is more accurate than d if and only if b assigns greater credence to p than does
d. Thus, b might be more or less accurate than d, depending upon how c is repre-
sented. Because the uncontroversial axioms of qualitative probability do not guar-
antee a unique numerical representation, it follows that they do not allow one to
compare the accuracy of b with that of d.

Can EDT justify axioms of qualitative probability that guarantee uniqueness?33

None of the axioms we know have plausible epistemic defenses that would not
simultaneously further undermine the motivation for EDT. Some axioms guaran-
teeing uniqueness entail the number of propositions under consideration is infinite,
and this consequence is inconsistent with EDT’s current mathematical framework.
Other assumptions guaranteeing uniqueness require intricate constraints on both
one’s qualitative probability judgments and the richness of propositions under in-
vestigation; these axioms have no plausible epistemic defense.34

32Formally, a, b, and c are represented respectively by the three orderings -a,-b and -c on the
set of propositions {⊥, p,¬p,>} such that (1) ⊥ ≺a p ≺a ¬p ≺a >, (2) ⊥ ≺b p ∼b ¬p ≺b >, and
(3) ⊥≺c ¬p≺c p≺c >.

33See (Fishburn 1986, p. 338-339).
34For instance, (Luce 1967) shows that uniqueness is guaranteed if for every quadruple of events

A,B,C, and D such that A∩ B = /0, A � B, and B � D, there are events C′,D′ and E such that
E ∼ A∪B, C′∩D′ = /0, C′∪D′ ⊆ E, C ∼C′, and D∼ D′.
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Finally, even if the standard axioms guaranteeing unique numerical representa-
tion of belief could be given a purely epistemic defense, they entail not only that
degrees of belief are numerical; they entail probabilism. So epistemic decision
theorists face another dilemma. If they accept only the uncontroversial axioms
of qualitative probability, belief need not be uniquely numerically representable,
and it is unclear how to define an “intermediate belief state” or “epistemic lottery.”
If they accept the controversial axioms of qualitative probability that guarantee
uniqueness, then Joycean-style arguments for probabilism are redundant.

There is one last possible out for the puritan, namely, to deny that an epistemic
lottery should be interpreted as an intermediate belief. But this proposal only adds
to EDT’s woes.

For consider the general case of comparing accuracy of belief/world pairs. How
should one interpret epistemic lotteries α〈b,ω1〉 ⊕ (1−α)〈c,ω2〉 of such pairs?
Imagine an experimenter can pick a green or red apple to show a subject, and
suppose that, via an independent method of adjusting the ambient lighting, she can
control the subject’s beliefs about the proposition p, “The apple is red.” Such an
experimenter could offer her subject the choice of (i) having belief b in world ω to
(ii) having belief c in world ω1 with objective chance α and having belief d in world
ω2 with objective chance 1−α . In such limited and highly artificial experimental
conditions, a subject could say which lottery she prefers, and her preferences over
such lotteries would be well-defined and total because her preferences would be
her choices.

For puritans, however, the subject’s preferences are irrelevant: puritans must
justify why option (i) can be said to be more or less objectively accurate than op-
tion (ii). But does the subject who always has credence 3

5 that the apple is red have
more or less accurate beliefs than the subject who has a fifty-fifty objective chance
of being in a red-apple world with credence one in p and of being in a green-apple
world with credence one in ¬p? One cannot, without begging the question, say
that the accuracy of an epistemic lottery so-described is an average of the numeri-
cal inaccuracies of its components. If epistemic lotteries are not belief states, what
justifies the claim that comparisons of inaccuracy are meaningful, let alone that
comparisons satisfy totality, transitivity, continuity, and independence? It is EDT’s
burden to say how to interpret an epistemic lottery if not as an intermediate be-
lief and to show that the proposed interpretation satisfies the axioms necessary for
some representation theorem.

4 Proper Scoring Rules and Expected Epistemic Value

Given the multitude of representation theorems,35 why focus on von Neumann
and Morgernstern’s theorem? Disciples of EDT generally assume not only that
epistemic value is quantifiable, but that it is also measured by a proper scoring

35David H. Krantz, Duncan R. Luce, Patrick Suppes, and Amos Tversky (1971) prove represen-
tation theorems for all sorts of quantities, such as length, pitch, color, among others.
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rule. However, proper scoring rules work in the manner that EDT requires only
if comparisons of expected epistemic value are meaningful. In this section, we
argue that, given the theoretical commitments of EDT, all of the available options to
justify meaningful comparisons of expected epistemic value employ von Neumann
and Morgenstern’s framework.

What is a proper scoring rule? Proponents of EDT assume (i) that every belief-
world pair 〈b,ω〉 can be assigned a numerical degree of epistemic utility U(b,ω),
and (ii) every belief state b assigns a numerical strength of belief b(ω) to every state
of the world ω . So given two belief states b and c, we can calculate the expected
epistemic value of c relative to b as follows:

EU,b(c) = ∑
ω∈Ω

b(ω) ·U(c,ω)

Then the measure of epistemic value U is called proper if EU,b(b)≥EU,b(c) for any
two distinct belief states b and c. A score is called strictly proper if the inequality in
the last sentence is always strict. EDT devotees often claim that if epistemic value
is measured by a strictly proper scoring rule, then from the perspective of someone
who in belief state b, it looks uniquely rational to be in b, as all other beliefs will
be judged to have strictly lower expected epistemic value.36

This last move, however, is too quick, for it assumes there is some relation-
ship between epistemic rationality and subjective expected epistemic utility. In
traditional decision theory, the close link between expected value and rational pref-
erence is justified by representation theorems. These theorems often contain von
Neumann and Morgenstern’s postulates, which is precisely why we have focused
on von Neumann and Morgenstern’s theorem. However, perhaps one can get away
with weaker assumptions. To argue that proper scoring rules are relevant to epis-
temic rationality, puritans must endorse the following principle:

Bridge Principle. If an agent’s beliefs and values are represented by the functions
b and U , respectively, then she ought to value belief state c above d if and only if
the expected epistemic value Eb,U(c) of c is greater than that of d.37

Without this principle, proper scoring rules seem irrelevant, as they are defined
in terms of comparisons of expected epistemic value. Why endorse the bridge
principle? Here’s one thought: given a belief state b, we can think of any belief
state c as if it were a lottery over various belief-world pairs. For instance, sup-
pose there are two states of the world, ωH = Heads and ωT =Tails. Let b be the
credence function such that b(ωH) =

1
3 . The epistemic lottery associated with be-

lief state c is 1
3〈c,ωH〉⊕ 2

3〈c,ωT 〉. The bridge principle follows immediately from
the conjunction of von Neumann and Morgenstern’s theorem and two additional
principles:

36See (Oddie 1997; Greaves and Wallace 2006; Gibbard 2007; Joyce 2009).
37(Pettigrew 2015) defends the Bridge Principle, which he calls EUC, in a different way than we

consider here. Space prevents us from critiquing Pettigrew’s argument in detail, but we think there
is no purely epistemic argument that justifies the additivity assumptions of the theorem he employs.
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A1. If an agent’s beliefs and values are represented by the functions b and U ,
respectively, then she ought to value belief state c over d if and only if she
values the epistemic lottery associated with c over the epistemic lottery as-
sociated with d.

A2. The agent’s beliefs and values are represented by the functions b and U ,
respectively, and her judgments of epistemic value obey von Neumann and
Morgernstern’s axioms.

Although A1 is fairly intuitive, the Bridge Principle might still be false if A2
fails. This is why von Neumann and Morgenstern’s theorem is so important to EDT.
Suppose there are two epistemic lotteries L1 and L2 such that an agent values L2 at
least as much as L1, or in symbols, L1 � L2. However, if the agent’s values violate
the continuity or independence axiom, by von Neumann and Morgenstern’s theo-
rem, it is possible that the expected epistemic utility of L2 is nonetheless lower than
L1, or in symbols, EU(L2)< EU(L1). So higher expected epistemic value may not
correspond to the agent’s comparative judgments of epistemic “betterness.” Be-
cause there are belief states b1 and b2 that can be identified with epistemic lotteries
with L1 and L2, A1 entails that judgments about which of two belief states is more
rational to adopt will therefore also not correspond to judgments about which has
higher expected epistemic value. But that’s precisely what is required for proper
scoring rules to have normative implications.

5 Alternative Representation Theorems

Is there an alternative to von Neumann and Morgenstern that avoids all four of the
axioms we target? In short, No.

Of the four axioms we have discussed, two—totality and transitivity—are nec-
essary assumptions of every representation theorem that could be used to show
that inaccuracy is numerical. The reason is simple: if degrees of inaccuracy are
numerical, then they are always comparable because two numbers can always be
compared. Comparisons of inaccuracy must be transitive for the same reason. If
our arguments against these two axioms are successful, abandoning von Neumann
and Morgenstern’s framework is of no avail.

The independence and continuity axioms are not, however, essential to other
representation theorems. In showing that length and pitch are numerical, for exam-
ple, the concept of a “lottery” is irrelevant, and hence, the independence and conti-
nuity axioms above play no role. Employing one of these alternative representation
theorems, however, faces difficulties. While some alternative representation theo-
rems would guarantee uniqueness of inaccuracy up to some type of transformation,
the type of transformation may not justify the meaningfulness of expected utilities,
which EDT requires for its use of proper scoring rules.

Furthermore, alternative theorems may also require axioms that are equally im-
plausible in the epistemic case. In the case of preference, the set of options is
closed under a ternary operation (α, ·, ·), which forms a lottery 〈α,x,y〉 for any two
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options x and y and any probability α . Such a structure is called a mixture space.
By contrast, in the case of length, the set of objects is closed instead under an asso-
ciative, commutative, and binary operation +, which represents the concatenation
of two objects. Although this structure is not a mixture space, there must be some
operation on belief states that behaves like concatenation if the representation the-
orem for length is to be employed in representing epistemic accuracy. But it is
hard to see what believing that p plus believing that q could be, setting aside the
difficulties any alternative representation scheme will face in satisfying the simple
ordering condition entailed by totality and transitivity. Similar remarks, we main-
tain, apply to other representation theorems about pitch, color, and so on.38

Let’s sum up our discussion of the continuity and independence axioms. To jus-
tify these axioms, epistemic decision theorists need to find an analog of a lottery.
To steer around this requirement involves representation theorems for structures
that are not mixture spaces, and therefore either include an operation that is im-
plausible for beliefs, such as concatenation, or is otherwise too weak to carry EDT.
The obvious epistemic analog of a lottery is an “intermediate” belief state. The
most plausible justification for the existence of intermediate belief states is that
belief itself is numerical. But the only known reasons to think belief is numerical
require either (i) endorsing the pragmatic arguments that puritans reject or (ii) ac-
cepting controversial axioms of qualitative probability that render the accuracy-first
defense of probabilism irrelevant.

6 The Reckoning

They criticize what you say, but they never give you credit for how loud you say it.
—Stephen Colbert (2007)39

Rational choice is a normative theory about choice. It furnishes norms to guide
your actions, and its axioms are justified by showing that a failure to heed them
leads to incoherent behavior judged by your own lights. The logic of sure-loss
avoidance—coherence—concerns internal rationality, but the theory operational-
izes how to assess whether acting on your commitments would undermine your
interests.

EDT, by contrast, describes rational belief rather than coherent commitments.
It purports to give normative standards to evaluate your judgments vis-à-vis the
state of the world, but it provides no means for measuring credence or epistemic
utility and therefore no mechanism for assessing whether your beliefs are deficient.
Puritans often emphasize that severing judgments of uncertainty from preference

38There is a final reason that some epistemic decision theorists would have difficulty rejecting the
claim that belief states form a mixture space. Namely, some also argue that a measure of inaccuracy
ought to be convex or “weakly” convex, and such axioms implicitly assume that a set of belief states
are closed under at least some types of mixtures. See (Joyce 1998, p. 596).

39EDTists follow the good Reverend Colbert’s Wørd when they seek to measure inaccuracy by
strength of conviction, not content.
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allows you to repudiate the overly-pragmatic doctrines of traditional decision the-
ory.40 However, without some procedure for measuring credence or epistemic util-
ity, EDT lacks an alternative justification for the axioms of decision-theoretic rep-
resentation theorems. Calling EDT “decision theory” does nothing to establish that
standard representation theorems apply to epistemic value any more than the appel-
lation “flight” warrants thinking the mathematical model describing the motion of
jumbo jets applies to hummingbirds. An argument, not equivocation, is necessary.

We recognize that it is difficult for EDT to back off from its commitment to
puritanism. For to concede that quantifying epistemic loss depends on an individ-
ual’s interests undercuts the central motivation for supplying probabilism with a
non-pragmatic justification. To those who maintain that epistemic value cannot be
relativized to a person, an impure EDT is indistinguishable from traditional decision
theory and “accuracy-first” is reduced to accuracy cant. So, either EDT is a specu-
lative metaphysical program entirely without foundations or EDT enjoys sound but
pragmatic foundations and is subsumed by, rather than an alternative to, traditional
decision theory.

The choice should be clear. The pragmatic, ecunemical view about the rela-
tionship between belief and preference has been tremendously fruitful. It yields
an axiomatic approach to rationality that unifies research in several disciplines, in-
cluding philosophy, psychology, economics, and statistics. This unified view sees
pragmatic decision-making and scientific inference as lying on a continuum, in
which the rationality of both the everyday decision-maker’s actions and the seem-
ingly disinterested scientist’s inferences are influenced by subjective preference,
but to widely differing degrees, and to widely differing standards of transparency
and criticism. EDT is part of an epistemological tradition of striving for objectivity,
but its puritanical creed is inconsistent with its quantitative rites.

40For example, Briggs (2015, pp. 630-631) claims, “Epistemic representation theorems are on
more secure footing. It may be implausibly pragmatic to claim that partial beliefs are nothing over
and above the preferences they (and utilities) give rise to. However, it is more plausible that there
is nothing more to degrees of belief than the comparative probabilities they encode – that utilities
simply measure certain features of comparative belief.”
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