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In this paper, I describe a general strategy for deriving Newtonian mechan-
ics from Bohm’s theory in the classical macroscopic regime. The strategy is
based on two main steps: (i) the use of open systems, leading to the forma-
tion of independent subsystems; (ii) the analysis of the quantum potential
for the emergent subsystems. The first step leads to and explains (within
the Bohmian framework) the well-known phenomenon of decoherence. The
second one provides a precise criterion for the emergence of Newtonian tra-
jectories. In particular, I will show that, under reasonable classicality condi-
tions, the quantum potential of the emergent subsystems become negligible
and, consequently, they will follow an approximately Newtonian dynamics.
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1 Introduction: the classical limit problem

Quantum mechanics is a fundamental physical theory: it describes the behavior of the
microscopic constituents of matter, like molecules, atoms, nuclei. The quantum world has
very peculiar features: systems are intrinsically indeterministic, can be in superposition
of different states, and non-locally connected with each other. On the other hand, the
classical macroscopic world, described by Newtonian mechanics, has a more familiar
ontology: classical systems have well-defined positions in space and their dynamics is
fully deterministic. Nevertheless, every classical object (tables, chairs, human beings,
etc.) is composed of a collection of quantum objects. Therefore, we expect the quantum
description of matter approaching the classical one under specific conditions, i.e. under
the conditions fulfilled by systems at macroscopic scale.1 This problem is known as the
classical limit problem, and the standard answer is given by decoherence theory.
Decoherence theory describes the interaction between a quantum system and external (or
internal) degrees of freedom. Usually - and especially in the classical limit - one considers
the interaction with the external environment (e.g., light photons, air molecules). If the
system is initially in a coherent superposition of different states, the interaction will
(locally) destroy the superposition,2 and the system will be represented by an improper
mixture of localized states.3 The loss of coherence between the different relative states
is called decoherence, and the theory is named after this characteristic physical effect.
However, decoherence theory alone does not provide a satisfactory explanation for the

1These are generally called “classicality conditions”.
2The relative phase of the superposition is delocalized, after the interaction, from the level of the system
(now subsystem of an entangled state) to the level of the entangled system-environment state.

3The reduced density matrix of the system, even if diagonal, does not represent a mixed state.

2



emergence of classical objects: classical systems have well-defined positions in space and
move according to Newtonian trajectories, while subsystems described by decoherence -
mathematically described by reduced density matrices - do not have well-defined positions
and do not move according to trajectories in space, due to the Heisenberg’s uncertainty
principle. That is: the connection between the quantum systems emerging from the
decoherence process and the classical objects of the macroscopic world is far from being
trivial. The classical limit problem is therefore not just a technical problem but also
(maybe especially) a conceptual one. This aspect of the problem is well-captured in the
following passage by Ballentine (2015, p. 388):

Bohr and Heisenberg stressed the analogy between the limits c → ∞ and
~→ 0, both of which supposedly lead back to the familiar ground of Newto-
nian mechanics, in the attempt to convert Einstein to their view of quantum
mechanics. Einstein was unmoved by such arguments, and indeed the pro-
posed analogy seriously oversimplifies the problem. Newtonian mechanics
and relativistic mechanics are formulated in terms of the same concepts: the
continuous trajectories of individual particles through space-time. These tra-
jectories differ quantitatively between the two theories, but the differences
vanish in the limit c → ∞. But quantum mechanics is formulated in terms
of probabilities, and does not refer directly to trajectories of individual par-
ticles. A conceptual difference is much more difficult to bridge than a merely
quantitative difference.

The conceptual bridge between quantum and classical mechanics can be filled by adopt-
ing a clear interpretation of quantum mechanics. In this paper, in particular, I will
analyze the problem of the classical limi in Bohm’s theory, which is basically a quantum
theory of particles in motion. This way, we will have a common structure for quantum
and classical mechanics (individual particles following trajectories in three-dimensional
space) and the approach to the classical limit will be much clear from the conceptual
point of view.4

In Bohm’s theory, a general N-particle entangled system is described by the usual wave
function together with an actual configuration of N point-particles in three-dimensional
space. The wave-function evolves in time according to the Schrödinger equation, and the
particles evolve in time according to the the guiding equation: v = ∇S

m , which fixes the
velocity of the particles, and the quantum Newton’s law: −(∇V + ∇Q) = ma, which
fixes the acceleration of the particles.5

Within Bohm’s theory, the quantum to classical transition is conceptually completely
equivalent to the transition from relativistic to Newtonian mechanics: Bohm’s theory

4However, I am not suggesting here that this is the only strategy/approach one can pursue to set
the classical limit problem on a rigorous basis. Relevant work has been done, for example, in the
Everett/Many Worlds Interpretation (e.g. Wallace (2012, ch. 3) and GRW theory (e.g. Bassi et al.
(2016)).

5Q represents the quantum potential associated to the wave fucntion.
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describes quantum systems as individual particles following continuous and deterministic
trajectories in space, together with the wave function. The problem of the classical limit
reduces therefore to the following questions:

1. Why does the wave function disappear in the classical limit?
The answer to this question is strictly related to the emergence of subsystems from
entangled states. In fact, the formation of dynamically independent subsystems
- mathematically described by effective wave functions - destroys the typical non-
local connections between Bohmian particles, enabling the passage from a “holistic”
regime (characteristic of the quantum world) to a“local” regime (characteristic of
the classical world). In this regard, I will show that the formation of effective wave
functions is usually produced by the interaction with the environment, i.e. by the
process of decoherence. For this reason, we expect in the classical limit a continu-
ous emergence of effective wave-functions, and this explains why ordinary classical
objects are not quantum mechanically correlated. The main role of decoherence in
the Bohmian framework is, in other words, that of producing separate subsystems
from the general holistic quantum description.

2. Why do the Bohmian trajectories become (approximately) Newtonian?
To answer this question, I will follow a two-step strategy, showing that:

• In the decoherence regime, the effective wave functions are well-localized wave
packets (typically Gaussian wave packets);

• When the systems are macroscopic, the quantum potential (a physical param-
eter associated to the wave function) of such wave packets becomes negligible,
and consequently the dynamics becomes (approximately) Newtonian. There-
fore, macroscopic quantum systems (in interaction with the environment) will
move according to the classical Newtonian dynamics.

The structure of the paper is as following: in sections 2 and 3, I shall discuss two of
the most common standard strategies proposed in the literature to solve the classical
limit problem, namely the ~ → 0 approach and the Ehrenfest theorem, and show why
they are not sufficient to the scope. In section 4, I shall describe the process of effective
factorization, i.e. the process leading to the formation of independent subsystems in
the decoherence regime. In section 5, based on the analysis of the quantum potential
for the emerging subsystems, I will show that the Bohmian subystems will undergo an
approximately Newtonian dynamics under reasonable classicality conditions.

2 Negligible quantum action: ~→ 0

A common strategy for the classical limit is to say that, when the Planck constant “goes
to zero”, i.e., when the quantum action is negligible with respect to the classical action,
the quantum system moves according to Newton’s second law of dynamics.6 This comes

6Sometimes the condition ~ → 0 is said to be unphysical since the Planck constant ~ is a constant
and does not go to zero. However, this argument misses the physical meaning of the formula, that
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from the consideration that, for example, the (quantum) commutators becomes math-
ematically equivalent to the (classical) Poisson brackets, or that the quantum discrete
energy levels becomes continuous. The problem with this strategy is that it works only
for special states. In fact, it is possible to consider quantum states whose behavior is
not characterized by the quantum action. These states will be basically unaffected by
this strategy. One example is that of the Einstein’s box (1953). He consider a textbook
example, the infinite potential well, and ask the following question: when does the stan-
dard quantum description - a stationary wave inside the box - turns into a classical state
- a particle moving with a well-defined velocity between the walls?
The problem here is that, as far as the system is described by the stationary wave
Ψ(x) = Bsin(kx), it will not become classical even for big mass and small de Broglie
wavelength.7 Einstein was certainly right: until this system is isolated, it is impossible
to derive from it a classical state, even when the system is macroscopic. The strategy
~→ 0 simply does not apply in this case, since the spatial part of the wave function does
not depend on ~ and the quantum interference between the plane waves composing the
stationary wave is never turned off. It is worth noting that this problem is not alleviated
in Bohm’s theory, where the particle remains at rest inside the box (because v = ∇S

m = 0
for each point inside the box).
The example of the Einstein’s box shows that the criterion ~ → 0 is not sufficient for
recovering the classical limit, and, moreover, that the interaction with the environment
is a necessary conditions for the emergence of classical states.

3 Ehrenfest theorem

Ehrenfest theorem shows that the mean value of the position operator follows a pseudo-
Newtonian flow:

d2

dt2
〈X̂〉 = 〈∇V (x)〉 (1)

where V is the potential term in the Hamiltonian of the Schrödinger equation describing
the evolution of the system. This relation looks like a quantum analogue of Newtonian
dynamics (in terms of position and momentum operators rather than position and mo-
mentum of a material object) when the mean value of the gradient of the potential can
be approximated with the gradient of the potential of the mean value of the position
operator. That is:

d2

dt2
〈X̂〉 = 〈∇V (x)〉 ≈ ∇V (〈x〉) (2)

is basically a shorthand to indicate the physical condition: ~� Acl ≡ ~
Acl
� 1, that in the limit for

the classical action going to infinity becomes limAcl→∞
~
Acl

= 0.
7Einstein considered these conditions as the genuine classicality conditions. The importance of the
interaction with the environment, and thus decoherence, came only after some decades.
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This approximation holds whenever one of the three following conditions is satisfied8:
a. The potential term in the Hamiltonian operator is at most quadratic;
b. The wave function of the state is a well-localized wave packet;
c. The scale of variation of the potential V is much bigger than a suitable estimate of
the width of the wave packet.
To see this, we expand ∇V in Taylor series up to the third order around 〈x〉 = x0:

∇V (x) = ∇V (x0) + (x− x0)∇2V (x0) +
1

2
(x− x0)2∇3V (x0) (3)

and take the mean value of both sides:

〈∇V (x)〉 = ∇V (x0) +
1

2
σ2∇3V (x0) (4)

where σ2 = 〈(x− x0)2〉 is the (mean value of the) variance of the position operator.
From eq. (3), we see that condition (2) is satisfied whenever the third order term of the
potential is negligible with respect to the first order term, and this happens when one
of the conditions (a) (b) (c) apply. Conceptual remark: it is sometimes said that the
problem with Ehrenfest theorem is that it applies only to well-localized wave packets,
whereas the wave functions generally spread in time. Nevertheless, we see that this is
not a problem for Ehrenfest, insofar either condition (a) or (c) is satisfied. For example,
we can apply Ehrenfest theorem to a plane wave, since, for this kinds of states, the third
order derivative of the potential is exactly zero, and therefore the (enormous) spread of
the wave function does not affect the condition (2).
However, the most serious problem with the Ehrenfest theorem is that it only applies
to isolated systems, which is not a realistic condition for the classical limit9. As it is
well understood from the literature, a fundamental classicality condition is given by the
ubiquitous interaction with the environment (open systems), which leads to decoherence
effects. In these situations, the standard Ehrenfest theorem is not applicable, and we must
find other solutions. Of course, there is an equivalent version of the Ehrenfest theorem
for open systems, where the condition (2) holds not for the wave function but for the
reduced density matrix of the system. However, the connection between this formalism
and the emergence of a classical system is quite problematic: while the wave function
mathematically represents the state of a system, and its physical meaning in terms of
probability density is commonly accepted as the standard view in quantum mechanics,
the density matrix does not have a simple (and conceptually clear) connection with the
state of the system, being it best regarded as a mathematical tool for extracting statistical
predictions on the measurement outcomes.10

8These conditions come from a Taylor expansion of the formula (1), and imposing the condition
〈∇V (x)〉 ≈ ∇V (〈x〉). For a complete mathematical derivation, see for example Shankar (1994)

9For a critique to the Ehrenfest theorem as useful tool to characterize the classical regime, see in
particular Ballentine et al. (1994), Ballentine (1996) and Ballentine (2015, ch. 15).

10For example, Schlosshauer (2009).
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4 The emergence of autonomous subsystems

After having analyzed the condition ~→ 0 and the Ehrenfest theorem and their limits for
recovering the classical states from quantum mechanics, I will start now my approach to
the classical limit in Bohm’s theory. In this section, in particular, I describe the process
of effective factorization, i.e. a physical process leading to the formation of emergent
autonomous subsystems from general entangled states. This process is the physical basis
of decoherence in Bohm’s theory and an important step towards the classical limit: it
explains why, in the macroscopic classical regime, different systems are not quantum me-
chanically correlated with each others. In the next section, I will show that the emergent
subsystems, when macroscopic, will follow an approximately Newtonian dynamics.

4.1 Real factorization

Consider a 2-particle system: if the wave function of the total system can be written as
a product of two wave functions associated to each particle, we will say that the system
is factorizable, and we can write the total state as a factorized state of the subsystems:

ψAB(x1, x2) = ψA(x1)ψB(x2)

Factorizability expresses the physical independence of particle 1 and particle 2. Indeed,
according to the above formula, it is easy to show that the velocity of particle 1(2) depends
only on ψA(ψB). For example, the guiding equation of particle 1 will be:

dX1

dt
=

~
m1

Im
∇1(ψA(X1)ψB(X2))

ψA(X1)ψB(X2)
=

~
m1

Im
∇1ψA(X1)

ψA(X1)

The physical independence can also be seen in the Hamilton-Jacobi formalism.11 In
particular, the velocity and the quantum potential of particle 1 will be:

dX1

dt
=
∇1SA(X1)

m1

QA = − ~2

2m1

∇2
1RA(X1)

RA(X1)

where R and S are, respectively. the amplitude and phase of the wave function written
in polar form: ψ(x, t) = R(x, t)e

i
~S(x,t). Therefore, if the wave function is factorized, the

trajectory of particle 1(2) will depend only on the wave function ψA(ψB). In particular,
the position of the particle 2(1) will not affect the motion of particle 1(2). In short,
particle 1 and particle 2 will become dynamically independent (at least, from the quantum
mechanical point of view: they will continue to interact through classical potentials). In
general, the possibility to write an N-particle system into a factorized state of N different
1-particle systems directly implies that each particle of the total configuration will behave
autonomously. It is worth noting that the condition of factorizability, while useful to

11E.g., see Holland (1993, p. 288).
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derive a separable dynamical regime for subsystems, is not sufficient to derive the classical
motion, i.e., to yield Newtonian trajectories for the systems. Indeed, each factorized
system will follow its own Schr0̈dinger equation, and each particle will move according to
the usual Bohmian trajectories, which are generally different from the Newtonian ones.
Moreover, there is a further problem: factorizability is a very fragile condition: as soon
as two particles interact through a classical potential, the Schrödinger evolution will
generally transform an initial factorized state into an entangled state:

ψA(x1)ψB(x2)
H(x1,x2)→ ψAB(x1, x2)

where the entangled state ψAB(x1, x2) will be in general a superposition of product states.
Since the macroscopic world is characterized by ubiquitous interactions between systems,
the condition of real factorization is totally unrealistic in the classical limit. In fact, I
will take the opposite view: what is essential for the emergence of subsystems is not a
real factorization between isolated systems, but an effective factorization between open
interacting systems.

4.2 Effective factorization

Consider now that particle 1 and particle 2 have interacted with each other and thus
formed the following entangled state:

Ψ(x1, x2) = ψA(x1)ψB(x2) + ψC(x1)ψD(x2)

If the summands do not overlap in configuration space,12 i.e., the relative states ψAψB
and ψCψD have (approximately) disjoint supports, the evolution of the wave-function
will be such as to form two non-overlapping channels or branches, and the particles
will enter just one of them. For example, suppose they enter into the first channel
ψA(x1)ψB(x2). From now on, if the overlap continues to be negligible, we can effectively
describe the further evolution of the system just using the relative state ψA(x1)ψB(x2).
In this case, the wave function ψ(x1, x2) reduces effectively to a mixture of states, and we
call ψA(x1)ψB(x2) the effective wave function of the 2-particle system (and ψA(x1) and
ψB(x2) the effective wave functions of, respectively, particle 1 and particle 2). Moreover,
since the effective wave function of the 2-particle system is an (effectively) factorized
state of system A (particle 1) and system B (particle 2), the motions of the particle 1
and 2 are independent with each other.
We call such a state effectively factorizable. These states are generally produced during
measurement-like interactions, i.e. interactions between systems that produce separation
of the total entangled wave function in different wave packets whose overlap is negligible
in configuration space. Think, for example, of a typical system-apparatus interaction: the
initial state is generally a factorized state between the system, ψ(x), and the apparatus,
φ(y), i.e Ψ(x, y) = ψ(x)φ(y). During the measurement interaction, the Schrödinger
evolution will transform the initial state into an entangled state, generally a superposition
12Since the support of a wave function is typically unbounded, the condition is more precisely expressed

as negligible overlap in configuration space.
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of eigenstates of the observable associated with the physical quantity we are measuring
through that interaction:

ψ(x)φ(y)→
∑
i

ciψi(x)φi(y)

If the different pointer states of the apparatus φi(y) have (approximately) disjoint
supports in the apparatus configuration space, then the final state

∑
i ciψi(x)φi(y) re-

duces to an effectively factorized state. Suppose, for example, that the result of the
measurement is the eigenvalue s associated with the eigenstate φs(y) of a certain ob-
servable measured by the apparatus: this means that the final superposition effectively
reduces to the factorized state ψs(x)φs(y), where ψs(x) and φs(y) are, respectively, the
effective wave functions of the system and the apparatus. Therefore, at the end of the
measurement, the system and the apparatus will become independent from each other
and the further evolution of the system particle will not be affected by the position of
the apparatus particles. In short, system and apparatus will be no longer dependent of
each other after the measurement. The main point here is: the production of effectively
factorized states - and, therefore, of effective wave functions for the subsystems - is the
key to understand why, in the classical regime, the typical non-local quantum behavior
disappears and why different systems behave autonomously with each other (apart from
interactions through classical potentials, that do not depend on the wave function and,
indeed, they remain in classical mechanics.).

4.3 Effective factorization via environmental interaction

The effective factorization of the wave function, that is commonly associated to the mea-
surement interaction with a macroscopic device, is naturally produced by the interaction
between a system and its external environment, e.g., with external (or internal) degrees
of freedom. In fact, a strong interaction with the environment is generally a function of
position, and it will generate a process similar to the interaction with the measurement
apparatus described above. In the same manner, these sort of interactions will produce
an effectively factorized state of the total system-environment entangled state and, con-
sequently, an effective wave function for the system and for the environment13.
We can represent the interaction between an entangled 2-particle system and an external
system (the “environment”) as follows:

Ψ(x, y)(Ξ1(z1) . . .ΞN (zN )) =
∑
i

ψi(x)φi(y)(Ξ1(z1) . . .ΞN (zN ))→
∑
i

ψi(x)φi(y)ξi(z1, . . . , zN )

Question: how much is plausible that an effectively factorized state will be created in
this interaction? In the case of the interaction with the measurement apparatus, it was
the condition of distinct macroscopic pointer states that guaranteed a final factorized

13From a computational/pragmatic point of view, these correspond to the reduced density matrices used
to describe subsystems in decoherence theory.
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state. In this case, the situation is much more subtle, because it is not obvious that the
different relative states of the environment will create disjoint branches in configuration
space. However, the possibility to have effectively factorized states is high when the
environment is composed of a huge number of particles, condition that usually applies to
the classical limit, where the environment has typically an Avogadro number of particles.
Higher is the number of particles interacting with the system, higher the possibility that
the total entangled state will generate effective wave functions. After all, this kind of
reasoning is similar to that one usually employed in standard decoherence to justify the
assumption of orthogonality of states. Two different relative environmental states have
not to be orthogonal with each other; however, it is possible to show that this condition
will be generally satisfied in the long run, i.e. when the environment is composed of a
huge number of particles.

That environmental interactions destroy the Bohmian non-locality and describe the for-
mation of physically autonomous subsystems was already stressed by Bohm (1987, p.
344):

Quantum non-local connection is fragile and easily broken by almost any dis-
turbance or perturbation. [. . . ] we may expect that non-local connection
will not normally be encountered under ordinary conditions, in which ev-
ery system is bathed in electromagnetic radiation and is subject to external
perturbations of all kinds as well as random thermal energies.

Effective factorizability of the wave function, and the simultaneous emergence of the
effective wave function, is a direct consequence of the interaction between systems.
The classical local regime of dynamically separable systems will tend to emerge from
measurement-like interactions between systems (typically system-environment interac-
tions). The macroscopic world is certainly characterized by the fact that systems inter-
act with each other14: under this condition, effective wave functions for subsystems are
continuously produced. Thus, it is natural that classical systems behave autonomously:
they just reflect, at the macroscopic scale, the physical independence between systems
that is described by effective wave functions at the microscopic scale.

5 Newtonian dynamics

In this section, I describe why macroscopic Bohmian subsystems, mathematically de-
scribed by effective wave functions, follow an approximately Newtonian dynamics in the
classical limit.

5.1 Well-localized effective wave functions

The process of effective factorization through environmental interactions produces a spe-
cial type of effective wave functions, namely well-localized wave packets. We know this
14After all, this is the main lesson of decoherence theory.
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from decoherence theory: when a system interact with the environment, the coherence
length of the reduced density matrix shrinks (in opposition to this, the ensemble width
becomes larger, since the environment provides new energy to the system). The coherence
length describe the minimum length over which it is possible to measure quantum inter-
ference between different positions of the system. If the coherence length is very short,
this means (indirectly) that the wave function of the system is pretty well-localized in
position (and momentum, if this effect remains stable in time).
In particular, Zurek, Habib & Paz (1993) show that the pointer states of the system,
i.e. those states that “survive” undisturbed to the interaction with the environment, are
minimum uncertainty wave-packets, i.e. Gaussian wave packets. In Bohm’s theory, the
pointer state of the system is clearly the effective wave function. Based on this result, we
assume that the effective wave functions in Bohm’s theory produced by the interaction
with the environment are mathematically described by Gaussian wave packets. This is an
important result: starting from it, it is possible to analyze the dynamics of the emergent
subsystems in the classical regime. This will be the scope of the next section.

5.2 The emergence of Newtonian dynamics

Here, I shall describe the dynamics of the emergent subsystems, showing that it becomes
Newtonian under reasonable conditions characteristic of the classical regime. Starting
point is the important result of the last paragraph: the effective wave functions generated
by the interaction with the environment are (likely to be) Gaussian states. Therefore, I
assume that a typical effective wave function be described by the following state:

ψ(x) = Ae−
x2

4σ2

where A is the amplitude and σ the standard deviation of the Gaussian. In order to
connect the wave function of the system with its dynamics, we may compute the quantum
potential Q = − ~2

2m
∇2R
R and, from it, the total acceleration of the particle through the

formula (the so-called quantum Newton’s law):

Fcl + FQ = −∇V −∇Q = mẍ

The quantum potential of the Gaussian state above is given by:15

Q =
~2

4mβ2
(1− x2

β2
)

where β2 = σ2[1 + ( ~t
2mσ2 )2] and m is the mass of the system.

We note that that the quantum potential of the Gaussian state tends to zero for large
mass: m → ∞ and for negligible quantum action: ~ → 0, which are exactly the condi-
tions characteristic of a macroscopic body for which we expect a Newtonian dynamics.
This suggests that an open Bohmian system interacting with the environment, and so

15Ballentine (2015, ch. 14).
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described by a Gaussian effective wave function, will undergo an approximately Newto-
nian dynamics when it is macroscopic, i.e. when it is characterized by a large mass and
high energy. The final scheme of the dynamics may be summed up as follows:

Bohm’s theory =


ẍ = 1

m(Fcl + FQ) Quantum Newton’s law

ẋ = ∇S
m Guiding equation

becomes, in the classical macroscopic regime (when m→∞ and ~→ 0 apply):

Newton’s theory (plus guiding equation) =


ẍ ∼= 1

m(Fcl) Second Newton’s law

ẋ = ∇S
m Guiding equation

That is: a macroscopic Bohmian system in interaction with the environment will move
according to Newtonian dynamics.

Final remark: the velocity in Bohm’s theory and Newtonian mechanics.
It is worth noting, however, that the velocity plays a different role in Bohm’s theory and
Newtonian mechanics. While in the former it is fixed by a dynamical law (the guiding
equation), in the latter it becomes a free parameter (initial condition). Why the velocity
plays such a different role in these two theories remains, for the moment, an interesting
open question.
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