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Abstract

In this paper we dispel the supposed “admissibility troubles” for Bayesian accounts of direct
inference proposed by Wallmann & Hawthorne (2018), which concern the existence of surpris-
ing, unintuitive defeaters even for mundane cases of direct inference. We show that if one
follows the majority of authors in the field in using classical probability spaces unimbued with
any additional structure, one should expect similar phenomena to arise and should consider
them unproblematic in themselves: defeaters abound! We then show that the framework of
Higher Probability Spaces (Gaifman, 1988) allows the natural modelling of the discussed cases
which produces no troubles of this kind.

1. Introduction: defeaters for direct inference
There is a number of ways in which the term “defeater” has been used in philosophy. We can divide
them into two families: nonprobabilistic and probabilistic. The former typically involves speaking
about some piece of evidence defeating the justification a subject has for believing some proposition
(Kelly, 2016). The latter involves conditional probability, interpreted as degree of belief; however,
it is still internally divided. Sometimes, e.g. in some corners of the intersection of philosophy of
religion and philosophy of science1 the term is used so that a subject acquires a defeater for his or
hers belief A if he or she acquires a belief B such that P (A | B) is low or inscrutable (see Plantinga
(2003) and Merricks (2002)). The topic of this paper is, however, the usage of the notion familiar
for readers of modern formal epistemology: it also involves conditional probability, albeit in a little
bit more complicated way.

The context in which the notion of defeater we are concerned with appears is usually that of
direct inference (Levi, 1977): roughly, if a subject knows that the chance of A is x, and if he or
she knows no other relevant information, then he or she should assign to A the degree of belief
x. That is, with the “relevant information” proviso in mind, the rational degree of belief in A
conditional on that the chance of A is x should be x. A defeater is then a proposition such that
if it is additionally conditionalized upon, that is, if it is added to the proposition about chance to
form the body of propositions given which the conditional subjective probability of A is considered,
then that probability becomes something else than x. In other words, we call a piece of evidence a

1 But not only there: see Pollock (1983).
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defeater if a certain conditional probability is not resilient under it.2 This is how Hawthorne et al.
(2017) formulate the idea (where P is a subjective probability function):

“[Suppose] X says that the chance (...) of A is x (...) We shall take the claim that E is
not a defeater to hold just when P (A | XE) = x = P (A | X).” (Hawthorne et al., 2017,
p. 123-124)

It is typical to discuss the notion in the context of the Principal Principle (“PP”, Lewis (1986)),
which is where the notoriously vague notion of admissibility comes into play: using the notation as
before, P (A | XE) = x provided E is admissible. Without going into the jungle of details about
admissibility, we hope it is evident at this point that whatever the notion really comes down to, we
can agree that (keeping the notation introduced so far and being somewhat charitable with implicit
quantification) if something is a defeater, then it is inadmissible, which is exactly the route taken
in the recent paper by Wallmann & Hawthorne (2018).

The prevailing intuition among the authors writing about admissibility seems to be that inad-
missibility should be somewhat rare, since it involves impacting the credence in A by some other
way than impacting the credence about the chance of A (Lewis, 1986, p. 92). For examples, barring
some very special cases, historical information and hypothetical information about chance should
be admissible. The clear examples of inadmissible evidence occurring in the literature invariably
involve some sort of soothsaying device. This is from where the results in Wallmann & Hawthorne
(2018) receive at least a part of their bite: seemingly, defeaters abound! A key example concerns
Maria, a craps player, who by way of direct inference assigns credence 1/6 to the proposition that
the outcome of the next toss of two fair dice will be seven, based on her knowledge of the chances
involved. It turns out, Wallmann & Hawthorne claim, that something so seemingly innocent as the
proposition uttered by John, who is standing nearby and says “I’ll buy you dinner this evening if
and only if the next toss comes up seven”, is a defeater for that credence: given Maria’s knowledge
about the relevant chances, and that the next toss comes up seven if and only if John buys her
dinner this evening, her credence that the next toss comes up seven is not equal to 1/6. And so in
this situation this biconditional is a defeater—an inadmissible proposition.

If Wallmann & Hawthorne—who proceed to generalize the above example to a theorem about
inadmissible biconditionals—are right, then inadmissibility is a lot more frequent than everyone
assumed. This may pose some troubles for Bayesian accounts of direct inference (though, it has to
be mentioned, the two authors disagree on the import of their results).

In this paper we will argue that this view is mistaken: the fact that defeaters for direct inference
are so easy to come by should come as no surprise, and is actually a consequence of using the
traditional, Kolmogorovian notion of probability whereas a different approach should better be
employed. The key problem is that the event algebra3 of a classical probability space does not
contain events which would in any formal sense be related to the idea that the probability of some
event has some value. That is, for any event A, the probability space assigns it some probability
P (A), but if we want to use that space to model a degree of belief function of an agent who not only
has a credence in A but also in that the probability of A is, say, .3, we seemingly have no structural
features to turn to which would help us in identifying which of the elements of the event algebra is
the proposition “that the probability of A is .3”. Some additional structure involving higher order
probabilities seems needed at this point.

2 This is essentially how Lewis (1986) uses the notion of resiliency, see e.g. p. 85-86.
3 We will be using the notions “event” and “proposition” interchangeably in this paper, always refering to an

element of the second element of some probability space (the field of sets).
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Still, many authors in modern formal epistemology proceed to, in a completely informal move,
claim that some element of the event algebra is “the proposition that the chance of A is x” and
then prove theorems which at their core are simply results about various conditional dependences
in classical probability spaces and not really about propositions about probabilities (see e.g. the
discussion of the Hawthorne et al. (2017) paper in Gyenis & Wroński (2017)).

In the following section we will show that if we stick to the classical probability space approach
then in quite frequent cases we should expect defeaters to abound, and so it is doubtful whether
the results by Wallmann & Hawthorne (2018) should really surprise us. This suggests that a
serious discussion of probabilistic defeaters for direct inference should take place in some non-
classical setting. In Section 3 we recall one such proposal by Gaifman, that of Higher Order
Probability spaces (HOPs). Then, in Section 4, we return to Wallmann & Hawthorne’s result
about biconditionals and show how to model the phenomena under discussion using HOPs: no
“unwanted” defeaters appear, and so, we believe, no admissibility troubles for Bayesian accounts
are encountered in this way.

2. Defeaters in classical probability spaces
We will first show that if one wishes to use classical probability spaces to non-trivially speak about
defeaters, one should better consider certain cardinality features (virtually never discussed in the
literature) of the events in question. We are assuming that the traditional notion of a classical
probability space is to be used, that is, a triple (W,F , P ) consisting of a nonempty set, a field
of its subsets, and a probability measure. Wallmann & Hawthorne could perhaps respond that
the phenomena we will be describing disappear if we consider probability functions defined not on
fields of sets, but on languages, which they seem to suggest (see e.g. p. 2 of their paper). However,
carrying out this move would require its proponents to precisely define an algebra of statements on
which the probability function is defined on, and this in turn would require a formulation of some
condition linking the proposition A with the proposition that the probability of A is (say) .3. None
of this is present in the discussed paper.

When it comes to notation, assume the following: AB means A∩B; |A| is the cardinality of A;
A′ is the complement of A.

We will now define a general notion of defeater, applicable also outside of the context of direct
inference. (To reiterate the point, from the perspective of a classical probability space unimbued
with any additional structure the phenomenon of direct inference is essentially invisible, because
no events are really events about probabilities: so, there is — at least not until the structure
is carefully interpreted or extended — no defeat for direct inference, there is just non-resilient
conditional probability.)

Definition 1. Assume a probability space (W,F , P ) is given. For any A,B ∈ F such that
P (B) > 0 an event D ∈ F is called a:

• non-trivial defeater for P (A | B) if P (BD) > 0 and P (A | B) 6= P (A | BD);

• trivial defeater for P (A | B) if P (BD) = 0.

D is a defeater for P (A | B) if it is either a trivial or a non-trivial defeater for P (A | B). If D is
neither a trivial nor a non-trivial defeater for P (A | B) we say that it is a non-defeater for P (A | B).
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If there is no risk of confusion about the measure, we will use the terms “defeater for P (A | B)”
and “defeater for A and B” interchangeably. Just to be sure concerning how negation works here: if
something is not a non-defeater for A and B then it is a defeater for those events; also, any defeater
for A and B is not a non-defeater for those events.

Are defeaters rare? Should we expect conditional probabilities to be resilient? We will now
argue that in finite uniform probability spaces, for (literally) most pairs of events, (literally) most
events are defeaters. Therefore in general we should be surprised if something is not a defeater for
some given two events, and not when it is.

Suppose a finite probability space (W,F , P ) is given with P uniform, |W | = N . Take two events
A,B ∈ F , such that P (B) > 0. By uniformity of P this latter condition amounts to B 6= ∅. First,
we determine the number of non-defeaters for A and B. We have two main cases depending on
whether or not A and B are disjoint. Let us write |AB| = k, |A′B| = l.

Case #1: Suppose A ∩ B = ∅. D is a non-defeater (for A and B) if |AB|/|B| = |ABD|/|BD|. As
the numerators are zero, in order to have this equality we need to make sure |BD| > 0 (other-
wise the left-hand side is zero, the right-hand side is undefined). Therefore each D which overlaps
B is a non-defeater. The number of such events is (2|B|−1)2|B

′|, which we can write as 2N−l(2l−1).

Case #2: Suppose A∩B 6= ∅. Let D be an event and put |ABD| = n, |BD| = n+ c. That D is
a non-defeater means |AB|/|B| = |ABD|/|BD|, i.e. k/k+l = n/n+c. Suppose D is a non-defeater. Then
k > 0 and the previous equality implies n > 0. We have two subcases.

Subcase #1: suppose l = 0 (that is, B ⊆ A). Then D is a non-defeater if and only if ABD 6= ∅.
Thus, D should contain arbitrarily many but at least one element from AB, and any number of
elements from (AB)′. The number of such D’s is (2|AB| − 1)2|(AB)′| = 2N−k(2k − 1).

Subcase #2: suppose l > 0. That D is a non-defeater, in particular the condition k/k+l = n/n+c,
is equivalent to 0 < n 6 k and c = nl/k ∈ N. Let us write

G(k, l) = {0 < n 6 k : nl/k ∈ N}.

Now, D is a non-defeater for A and B if and only if for some n ∈ G(k, l), D contains

• n elements from A ∩B;

• nl/k elements from A′ ∩B;

• arbitrary many elements from B′.

Therefore the number of non-defeaters for A and B in this case is

2N−(k+l)
∑

n∈G(k,l)

(
k

n

)(
l
nl
k

)
.

Summing up, let NonDef(N, k, l) denote the number of non-defeaters for A and B, where k =
|AB| and l = |A′B| and N is the size of the sample space. Given the uniform probability over the
sample space, combining the cases above we obtain

NonDef(N, k, l) =


2N−l(2l − 1) if k = 0, l > 0;
2N−k(2k − 1) if k > 0, l = 0;

2N−(k+l)
∑

n∈G(k,l)

(
k
n

)(
l
nl
k

)
if k > 0, l > 0.

(1)
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(Note that NonDef(N, 0, 0) is undefined as we require P (B) > 0).

Let us return to the original question: for given N, k, l, which of the two, NonDef(N, k, l) or
Def(N, k, l), is higher? (Def(N, k, l) is the respective number of defeaters).

In the case of disjoint A and B (i.e. k = 0) or the case of B ⊆ A (i.e. l = 0), almost all events are
non-defeaters. If one of the sets |AB| and |A′B| is large enough (but the other is empty), then the
proportion of the cardinality of the set of nondefeaters to 2N is very close to 1. (It is approximately
0.97 already if that cardinality is as low as 5.) However, we can dismiss these cases as unimportant
to our argument, for two reasons.

First, in the context of direct inference, we are interested in nontrivial conditionalization, where
some proposition A and some proposition specifying the chance of A are such that, first, they are
in general not mutually exclusive, and second, the latter does not logically imply the former. We
are pursuing here a general mathematical question about the resiliency of conditional probability,
but the two cases outlined above will not be important for the philosophical goal.

Second, such cases are in a precise sense rare. Suppose we chose two subsets (at random with
uniform probability) A and B of W . What is the probability that they are disjoint (respectively,
B ⊆ A)? We have 3N possibilities to choose a disjoint pair, as for each element in W we have
three choices: in A; in B; in neither A nor B (respectively, 3N possibilities to choose a pair with
B ⊆ A, as for each element in W we have three choices again: in A but not in B; in both; in
neither). There are 22N possibilities in total to choose a pair of events, therefore the probability
that A and B are disjoint (respectively, B ⊆ A) is 3N/22N = (3/4)N . As 3/4 < 1, for large enough N
this probability gets very close to 0. (It equals approximately 0.06 for N = 10 already.) This means
it is very unlikely to pick sets at random that are disjoint (resp. one contains the other), provided
the sample space is large enough.

To reiterate the point, in Section 3 we move away from classical probability spaces towards
structures tailored for meta-level probabilistic phenomena. There A and B are not chosen inde-
pendently: B will be the event pr(A,α) expressing “the probability of A is α” (cf. Definition 2). It
can be shown that A and pr(A,α) cannot be disjoint, provided Miller’s principle holds, which will
be the axiom (VIw) on p. 9 below. In the remainder of this section we concentrate, then, on the
“non-trivial” case only, when k, l > 0.

Let us then proceed, then, under assumption that A and B are not disjoint. We know how many
nondefeaters there are, namely, NonDef(N, k, l). Is this number lower or higher than the number
of defeaters, Def(N, k, l)? Take a non-defeater D; there is an n such that |ABD| = n. Consider the
family

DefD(N, k, l) = {E : ABE = ABD and |A′BE| 6= nl/k}

of defeaters “generated by D”. Note that:

• for distinct D1 and D2, DefD1(N, k, l) ∩DefD2(N, k, l) = ∅;

• |DefD(N, k, l)| = 2l −
(
l

nl/k

)
> 1.

Therefore
NonDef(N, k, l) < Def(N, k, l). (2)

Let us now assume that for given A and B (with |AB|, |A′B| > 0) we randomly choose an event
D with uniform probability Prob over all events. Which is more likely: that D is a defeater or
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a non-defeater? The probability that D is a non-defeater is the ratio of NonDef(N, k, l) and the
number of all events 2N . Since there are more defeaters than non-defeaters (inequality (2)), we
immediately get

Prob(D is a non-defeater for A,B) < Prob(D is a defeater for A,B). (3)

As every event D is either a defeater or a non-defeater for A and B, it follows that

Prob(D is a non-defeater for A,B) < 1/2. (4)

Our counting arguments above allow us to express the precise value of the probability in (4), namely,

Prob(D is a non-defeater for A,B) =

∑
n∈G(k,l)

(
k
n

)(
l
nl
k

)
2k+l

. (5)

Note that the probability of D being a (non)-defeater (for A and B) depends only on the size of
AB and A′B.

The gist of inequality (3) is this: assume a finite uniform probability space is given. Suppose
you are choosing two events at random. If you are not lucky, you will end up with two events A
and B such that a vast majority of events in the space will be defeaters for them.

By how much the probability of being a non-defeater is smaller than 1/2? The general answer
to this question seems hard4 so we discuss below a single easy-to-handle case which turns out to be
more likely than it’s not.

Assume k and l are coprime. Then G(k, l) = {k}, and thus∑
n∈G(k,l)

(
k

n

)(
l
nl
k

)
=

(
k

k

)(
l

l

)
= 1.

The only (and all) D’s which are not defeaters for A and B are such that B ⊆ D. The proportion
of non-defeaters for A and B is then

Prob(D is a non-defeater for coprime k, l) =

∑
n∈G(k,l)

(
k
n

)(
l
nl
k

)
2k+l

=
1

2k+l
=

1

2|B|
.

If B is a singleton, then 1
2|B| equals .5. But in this case every D avoiding B is a trivial defeater and

every D containing B is a non-defeater, thus, there are no non-trivial defeaters for singleton B’s.
In all other cases (|B| > 1) the value of the fraction is at most 1

3 . The value “quickly” diminishes if
the cardinality (of |B|) increases.

Among randomly selected integers two co-primes are not so hard to come by: If we consider
sets of integers {1, . . . , N}, then with N approaching infinity the probability of randomly selecting

4 Let us note that G(k, l) can be rewritten as G(k, l) = {x · k/gcd(k,l) : 0 < x 6 gcd(k, l), x ∈ N}, thus |G(k, l)| =
gcd(k, l). Assuming k = l the sum

∑
n∈G(k,l)

(k
n

)( l
nl/k

)
simplifies to

∑
n6k

(k
n

)2
which is equal to

(2k
k

)
. Calculus

shows limk→∞
(
2k
k

)
/2k+k = 0, consequently for large enough k = l the probability Prob(D is non-defeater for A,B)

is very close to 0, way much smaller than 1/2. We conjecture that limk+l→∞
∑
n∈G(k,l)

(k
n

)( l
nl/k

)
= 0 and thus the

argument that Prob(D is non-defeater for A,B) is negligible can be extended to all the cases, irrespective of the
value of k and l. We do not pursue this issue any further here.
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two co-primes from such a set is 6/π2 (Hardy & Wright, 2008, Theorem 332, p. 354), that is, about
.61. Elaborated number theoretical results5 show that this probability is always strictly larger than
.5. The situation, then, is more likely than not!

To recap: if you are choosing two events at random from a finite probability space (say, you go
over all elements of the sample space and individually decide to include them in the given event
or not depending on a fair coin toss) with the uniform measure, you should expect ending up with
two events such that whatever third event you draw, it is more often than not a defeater for them.

There is at least one obvious generalization which the Reader might feel to be needed at this
point, namely, one could loosen the uniformity assumption regarding the measure. This we have
not attempted. We do not wish to consider these issues here, because our results above already
persuasively suggest the main philosophical point we would like to make: before investigating any
defeater-related phenomena in classical probability spaces, and certainly before we allow ourselves
to be surprised by a general theorem regarding the apparent abundance or lack of defeaters, we
should make sure that the relationships between the events involved are not such that they would
trivialize the matters. Who knows? Maybe for some deep metaphysical reason the cardinalities of
the proposition A and any proposition about the chance of A are such that almost any event will be
a defeater for them (assuming uniformity of the measure; we already know that most of the events
are defeaters for them). Can we exclude that? Should we? We don’t know, but in our opinion
it seems a lot more fruitful to move away from classical probability spaces and towards structures
tailored for meta-level probabilistic phenomena. An example of such an approach is that of Higher
Order Probability spaces from Gaifman (1988), to which we now turn.6

3. Defeaters in Higher-Order Probability Spaces
We will abbreviate “Higher-order probability space” with “HOP”. To quote (Gaifman, 1988, p. 197),
a HOP is a 4-tuple (W,F , P, pr)—where F is a field of subsets of W , to be called “events”, P is a
probability over F and pr is a mapping associating with every A ∈ F and every real closed interval
∆ an event pr(A,∆)—which satisfies axioms (I)-(V) below. The initially intended interpretation is
that P is the agent’s subjective probability and pr(A,∆) is the event that “the expert probability
of A lies in ∆”.

We will adopt the convention that 1 = W and 0 = ∅ and will omit the curly brackets when
dealing with singletons without further commentary (e.g., pr(w1, [.5, .6]) means pr({w1}, [.5, .6])).
Also, closed intervals may be single points, and when talking about such cases we will use α instead
of ∆: pr(A,α) makes sense for α = .3 and means then the same thing as pr(A, [.3, .3]).

Each HOP satisfies the following five axioms, which are actually axiom schemes, with implicit
universal quantification over A:

(I) pr(A, [0, 1]) = pr(W, [1.1]) = 1;

5 Namely, results by Mertens 1874 and Erdős and Shapiro 1951. Mertens proves that the number of coprimes in
{1, . . . n} is S(n) = 6

π2 n
2 + O(n logn). The probability of two coprimes is then P (n) =

S(n)

n2 . According to Erdős
and Shapiro, the error function S(n)− 6

π2 n
2 is in between ±cn log log log logn for some constant c. Then, the error

of P (n) is smaller than log log log logn
n

, which is smaller than .005 for all n > 1. Thus P (n) is always larger than
6
π2 − .005 > .5.

6 Note that the paper, despite the identical title, is not a simple reprint of Gaifman (1986). We recommend
reading the later version, even if it is the earlier one which has been carefully LATEXed and recently reprinted in
Arló-Costa et al. (2016).
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(II) pr(A, ∅) = 0;

(III) If ∆1 ∪∆2 is an interval, then

pr(A,∆1 ∪∆2) = pr(A,∆1) ∪ pr(A,∆2);

(IV) ∩npr(A,∆n) = pr(A,∩n∆n);

(V) If, for all n 6= m, An ∩Am = ∅, then:

∩npr(An, [αn, βn]) ⊆ pr(∪nAn, [
∑
n αn,

∑
n βn]).

Let us briefly mention two points which might not be evident on first reading Gaifman’s paper:

• even though the author writes about extending the function pr so that it would deal with
arbitrary (Borel) subsets of R (p. 199), the axioms only work for convex sets, and in fact the
only generalization explicitly considered is one which allows the ∆ to be a half-open or open
interval (p. 201);

• Gaifman calls anything which satisfies axioms (I)-(V) a HOP, even if it does not satisfy (VI) or
(VIw), that is, even if no condition connecting P and pr is stipulated to hold in the structure
under consideration.

HOPs become workable when we deal with their kernels. A kernel of a HOP (having finite W )
is a |W |×|W | matrix of real numbers interpreted as a mapping p which associates with each x ∈W
a probability px over F such that

pr(A,∆) = {x : px(A) ∈ ∆}. (6)

In a kernel, a row corresponding to some x ∈ W contains the values of px for all singletons of
elements of W (in effect defining px as a probability on F ; a kernel is, then, a stochastic matrix,
that is, each entry is non-negative and the sum of each row is 1). That axioms (I) - (V) suffice
for the existence of kernels so understood, with px’s connected with pr as stated in equation (6),
is the subject of Gaifman’s Theorem 1. For later purposes we introduce the notion of a reduced
kernel. Let W ′ contain x ∈ W if and only if P (x) = 0. The reduced kernel is obtained from the
kernel matrix by deleting columns and rows corresponding to x ∈ W ′. The reduced kernel is thus
the kernel “modulo P -zero”.

For a formally trivial, but perhaps conceptually beneficial observation, note that for each choice
of A and ∆, pr(A,∆) is a single event (possibly the empty set). The answer to, say, “Is the fact
that the expert probability of B lies in [.2, .4] represented by one or more distinct events in F?” is
“By one and only one”.

We will now introduce formally the notion of a defeater in the context of HOPs—a “HOP-
defeater”.

Definition 2. Assume a HOP (W,F , P, pr) is given. For any A ∈ F and closed real interval ∆
such that P (pr(A,∆)) > 0 an event D ∈ F is called a

• non-trivial HOP-defeater for A and ∆ if P (pr(A,∆) ∩D) > 0 and

P (A | pr(A,∆) ∩D) /∈ ∆; (7)
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• trivial HOP-defeater for A and ∆ if P (pr(A,∆) ∩D) = 0.

D is a HOP-defeater for A and ∆ if it is either a trivial or a non-trivial HOP-defeater for A and
∆.
Note that the conventions we adopted dictate that a D is a HOP-defeater for A and α if P (A |
pr(A,α) ∩D) 6= α.

What questions can be meaningfully asked about defeaters in a given HOP depends on whether
it satisfies any of the following two axioms (p. 200), of which (VI) logically implies (VIw):

(VI) If C is a finite intersection of events of the form pr(Bi,∆i), and if P (pr(A,∆) ∩C) 6= 0, then:

P (A | pr(A,∆) ∩ C) ∈ ∆.

(VIw) If P (pr(A,∆)) 6= 0, then:
P (A | pr(A,∆)) ∈ ∆.

If we consider single point intervals, (VIw) becomes Miller’s Principle: P (A | pr(A,α)) = α.
Note that if a HOP satisfies (VI), then its reduced kernel is an idempotent matrix (i.e. it is

equal to its own square)7. The reduced kernel of a HOP satisfying (VI) is, then, an idempotent
stochastic matrix.8

Now, if any event C is a finite intersection of events of the form pr(Bi,∆i), then if the HOP
satisfies (VI), no non-trivial questions about defeaters can be asked. It will already be interesting
to consider which events are not of the form pr(A,∆) for any possible choice of A and ∆:

Definition 3. Assume a HOP H = (W,F , P, pr) is given. We will say that an event E ∈ F is
metarepresentable in H if and only if there exist A ∈ F and a closed real interval ∆ such that
E = pr(A,∆).

Example 1. Consider a HOP (W,F , P, pr) with W = {w1, w2, w3}, F = P(W ), P uniform, and
pr given by the following kernel:

.5 .5 0
0 .5 .5
.5 0 .5

(This is Gaifman’s Example 1, p. 208). A direct check will ensure the Reader that in this HOP
all events are metarepresentable. Axiom (VI) fails, while axiom (VIw), and so Miller’s principle,
holds.

It turns out that satisfaction of axiom (VI) is enough for some events not to be metarepre-
sentable, and what’s more, for some events not to be intersections of families of metarepresentable

7 We stress that the result predicates idempotence of the reduced kernel only. Example 2 (Gaifman, 1988, p. 206)
features a HOP which satisfies (VI) and has a kernel which is not idempotent but its reduced version is.

8 If the HOP satisfies axiom (VIw), then P (considered as a row-vector) is a left-eigenvector of the kernel matrix
corresponding to eigenvalue 1. There is a serious typo in (3d) of Lemma 1 in Gaifman (1988). The correct equation
is P (y) =

∑
x p(x, y) · P (x), thus P is a left-eigenvector of the matrix p, instead of being a (right-)eigenvector. A

HOP satisfies axiom (VI) if and only if its reduced kernel is idempotent and P is a left-eigenvector of the kernel
(Gaifman, 1988, Theorem 2).
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events. In what follows we recall (Högnäs & Mukherjea, 2011, Theorem 1.16) about the shape of
idempotent stochastic matrices. Let M be a d × d idempotent stochastic matrix of rank k > 0.
Then there is a unique partition of {1, . . . , d} into classes {T,C1, . . . , Ck}9 such that the following
hold (see Figure 1):

1. T = {i : the ith column of M is a zero column}

2. M �Cs×Cs has identical positive rows of sum 1 and M �Cs×Ct= 0 for s 6= t

3. If i ∈ T , then
Mij

Mjj
=
Mih

Mjh
, j, h ∈ Cs (8)





C1

C2

C3

T

M �C1×C1

M �C2×C2

1

0

0
Mij

Mjj
= Mih

Mjh

0

0

Figure 1: The form of an idempotent stochastic matrix of rank 3

(Notice that T or the Ci’s might contain non-consecutive numbers (rows). In this sense Figure 1
might be a little misleading, as the blocks M �C1×C1

might not be “connected”. On the other hand,
there always exists a permutation of {1, . . . , d} such that after it is applied to the rows and columns
of the matrix M , the matrix achieves the shape as displayed in Figure 1.)

The “partition” {T,C1, . . . , Ck} can be of course thought of as a set of sets of rows of M , which
will be the reading we ask the Reader to adopt in the proof of the following lemma.

Lemma 1. Assume a HOP (W,F , P, pr) is given. If this HOP satisfies (VI) and its reduced kernel
is not the identity matrix, then some event E in F with P (E) > 0 is not metarepresentable.

Proof. Since the HOP satisfies (VI), then, as already mentioned, its reduced kernel M is an idem-
potent stochastic matrix. Take the partition {T,C1, . . . , Ck} of the reduced kernel according to
(Högnäs & Mukherjea, 2011, Theorem 1.16). We note first that T of this partition must be empty.
As axiom (VI) is satisfied, P is the mixture of the rows of the kernel. Suppose the ith column of
the kernel is filled with 0’s. Then P (wi) must be zero as it is a mixture of 0’s. It follows that when
creating the reduced kernel we delete the ith row and column of the kernel.

9 Caveat : as will be clearly visible soon, T may be empty, so this is not a partition in the strict set-theoretic
sense.
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As the reduced kernel is not the identity matrix, it is impossible that |Cs| = 1 for all s. Thus,
there is at least one Cs having at least two elements, say i, j ∈ Cs. As rows of Cs are identical,
it is immediate to note from equation (6) that for any A and ∆, if wi belongs to pr(A,∆), then
wj ∈ pr(A,∆), too. Thus E = {wi} is not metarepresentable.

(Note that, in contrast with (VI), (VIw) does not imply non-metarepresentability: Example 1
describes a HOP which satisfies (VIw), whose kernel contains no linearly dependent rows, and in
which all events are metarepresentable.)

We now know that it follows from (VI) that some events are not metarepresentable. But to
assess whether the notion of a HOP-defeater is not trivialised, we need to check whether some
events are not finite intersection of metarepresentable events (which is a weaker condition, since
a priori some events which are not themselves metarepresentable might be finite intersections of
metarepresentable ones). Fortunately this is also the case in general. To see this, define a function
pr : W → F as follows:

pr(w) := {pr(A,∆) : w ∈ pr(A,∆)}. (9)

If in the given HOP’s kernel rows corresponding to distinct worlds w and v are identical, then
pw = pv and so for any A ∈ F and closed real interval ∆ it holds that w ∈ pr(A,∆) iff v ∈ pr(A,∆).
That is, when w and v correspond to identical rows, pr(w) = pr(v). Then the singleton {w} is
not only not metarepresentable but also is not an intersection of metarepresentable events: if it
was, then for some family of events of the form pr(Bi,∆i) the singleton {w} would be the set of
all elements belonging to each event from the aforementioned family, but then that singleton would
also contain v: contradiction. We know, then, that if a HOP satisfies (VI), then if its kernel contains
identical rows, it follows that some events are not intersections of metarepresentable events.

For the remaining case, assume a HOP satisfies (VI) but its kernel does not contain identical
rows. Consider its reduced kernel and its partition {T,C1, . . . , Ck} from (Högnäs & Mukherjea,
2011, Theorem 1.16) which we have just used. Recall that in this case, since we are talking about
the reduced kernel, T is empty. Since no rows are identical, the reduced kernel is the identity
matrix. We have, then, established the following Fact:

Fact 1. Assume a HOP (W,F , P, pr) is given. If this HOP satisfies (VI) and its reduced kernel
is not the identity matrix, then some event E in F with P (E) > 0 is not an intersection of
metarepresentable events.

On the one hand, Fact 1 brings a positive message: assuming (VI)—which, if P is interpreted
as degree of belief, is a requirement of rationality, for which a coherence argument in the form
of a Dutch Book construction is given in Gaifman’s paper on p. 201-204, and which is similar in
spirit to Lewis’ Principal Principle (see p. 201 of Gaifman’s paper and its 4th footnote)—guarantees
that problems regarding defeaters will not be trivialised just by structural infelicities. To be sure,
some cardinality-related troubles similar to the ones we talked about in the previous section might
probably be reformulated in the context of HOPs. Such problems, if they are found, will not, how-
ever, originate from the label “the proposition that the chance of A belongs to ∆” being slapped
on some more or less arbitrarily chosen event. On the contrary, in the context of HOPs we can say
something substantial about the relationship of A and pr(A,∆). A big part of it is captured by
(VIw): P has to satisfy a certain conditional probability requirement. Axiom (VI) adds to this the
requirement that certain events cannot be HOP-defeaters: namely, events of the form pr(Bi,∆i)
for some Bi and ∆i—that is, metarepresentable events—and finite conjuctions of them. (In the
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Lewisian parlance: chance information is always admissible.) All remaining phenomena regarding
HOP-defeating will depend on the particular HOP; at this moment it is not clear whether there are
any worrying general results on the horizon (that e.g. all events of some seemingly innocent form
would be HOP-defeaters, similarly to what Wallmann & Hawthorne suggest for the classical proba-
bilistic variant of the notion), while the interested parties can continue philosophizing assured that
they have a formal grasp of how a degree of belief function of a subject who satisfies the Principal
Principle looks like, without resorting to hand-waving about admissibility or being informal when
talking about how some events are actually “about” chances of other events.

On the other hand, if, as suggested by Gaifman himself (p. 193), we take rows to signify objective
chance functions at various possible worlds, we seem to have stumbled on a weird consequence: an
a priori constraint on the possible relationships between objective chance functions as considered
by a rational subject. We are planning to revisit these issues in a paper devoted exclusively to the
details of HOPs, and in the current article we will now return to the “admissibility troubles” which
according to Wallmann & Hawthorne supposedly plague Bayesian accounts of direct inference.

4. Admissibility troubles revisited
Recall the problem posed in Wallmann & Hawthorne (2018): Bayesian accounts of direct inference
seem to be in trouble, since seemingly innocent propositions turn out to be defeaters. In Section
2.1 of their paper the authors tell a story about supposedly inadmissible biconditionals. If a fair
pair of dice is tossed on a flat surface in a fair way, the chance that the outcome of the toss is seven
is 1/6. Maria, the subject, forms a direct inference, and sets her credence in that the outcome of
the next toss is seven conditional on that setup to 1/6. Nothing out of ordinary so far.

But now John says to Maria “I’ll buy you dinner this evening if and only if the next toss comes up
seven”. A surprising claim of Wallmann & Hawthorne is that if Maria conditionalises additionally
on that, her credence in that the next toss comes up seven moves away from 1/6. The result is that
the seemingly innocent biconditional ends up being a defeater for the probability that the next toss
comes up seven given that the chance setup is like described above—which is highly unintuitive.
Such biconditionals should not be defeaters for such probabilities; in this simple case, because we
can assume that Maria believes that having dinner with John in the future is not probabilistically
relevant for the outcome of the toss. We will now see that this biconditional is not a defeater if we
think about the situation using HOPs.

Example 2. We will capture the original example from Section 2.1 of Wallmann & Hawthorne
(2018) in a 4-world HOP. The worlds are as follows:

next toss is 7? John buys dinner?
w1 yes yes
w2 no yes
w3 yes no
w4 no no

and the kernel is as follows:
1/12 5/12 1/12 5/12
1/12 5/12 1/12 5/12
1/12 5/12 1/12 5/12
1/12 5/12 1/12 5/12
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with P being any mixture of the rows, ending up of course as the vector (1/12, 5/12, 1/12, 5/12). Call
the proposition “next toss comes up seven” N and “John buys Maria dinner” D. From the setup
we see immediately that N = {w1, w3}, D = {w1, w2}, N ↔ D = {w1, w4}, pr(N, 1/6) = W , and
so P (N | pr(N, 1/6)) = 1/6, in accordance with (VIw). What’s more, N ↔ D is not a HOP-defeater
for N and 1/6, since P (N | pr(N, 1/6) ∩N ↔ D) = 1/6, just like it should.

The approach is easily generalised in a number of natural aspects. For example, Maria can
entertain various hypotheses about the chance function, can have an arbitrary prior for D, and
may but also may not assume initially that D is probabilistically independent from the toss result
or from which chance function the dice are governed by. Since describing an appropriate HOP
at that level of generality would require the production of tediously detailed calculations which in
themselves would be quite mundane (which is as it should be, since the situation modelled falls
short of being spectacular), we will show now only a modest generalisation: it concerns Maria who
entertains two hypotheses about the possible chance function governing the dice, but keeps e.g. the
assumption that according to her prior John buying dinner is probabilistically independent from
the toss result, and that her prior of him buying dinner is .5. Both of these requirements can be
relaxed by the interested Reader.

Example 3. Assume the setup is similar, but now Maria considers two chance hypotheses: that
the dice are fair (which she gives credence 2/3) or that they are skewed so that the chance of the
next toss coming up seven is 1/4 (let us call it the “skewed chance function”). We will use 8 worlds,
which are as follows:

next toss is 7? John buys dinner? chance?
w1 yes yes fair
w2 no yes fair
w3 yes no fair
w4 no no fair
w5 yes yes skewed
w6 no yes skewed
w7 yes no skewed
w8 no no skewed

and the kernel is as follows:
1/12 5/12 1/12 5/12 0 0 0 0
1/12 5/12 1/12 5/12 0 0 0 0
1/12 5/12 1/12 5/12 0 0 0 0
1/12 5/12 1/12 5/12 0 0 0 0
0 0 0 0 1/8 3/8 1/8 3/8
0 0 0 0 1/8 3/8 1/8 3/8
0 0 0 0 1/8 3/8 1/8 3/8
0 0 0 0 1/8 3/8 1/8 3/8

with P being a mixture of the rows of the kernels with weights 1/6 (for the first four rows) and 1/12 (for
the next four rows), ending up with the vector (1/18, 5/18, 1/18, 5/18, 1/24, 3/24, 1/24, 3/24). As before, call
the proposition “next toss comes up seven” N and “John will buy Maria dinner” D. From the setup
we see immediately that N = {w1, w3, w5, w7}, D = {w1, w2, w5, w6}, N ↔ D = {w1, w4, w5, w8},
pr(N, 1/6) = {w1, w2, w3, w4}, pr(N, 1/4) = {w5, w6, w7, w8} and so P (N | pr(N, 1/6)) = 1/6 and
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P (N | pr(N, 1/4)) = 1/4, in accordance with (VIw). What’s more, N ↔ D is not a HOP-defeater
for N and 1/6, since P (N | pr(N, 1/6) ∩N ↔ D) = 1/6; it is also not a HOP-defeater for N and 1/4,
since P (N | pr(N, 1/4) ∩N ↔ D) = 1/4, just like it should.

In our opinion all the intuitive independencies are modelled by this HOP and no unintuitive
dependencies are introduced by conditionalising on the N ↔ D proposition. Consider, still, that D
is initially probabilistically independent of whether the chance function is fair or skewed, but ends
up being dependent after conditionalization on N ↔ D. This is as it should be: Maria may initially
think that whether John buys her dinner has no bearing on the toss result, and vice versa, but once
John makes his promise, the details of the chances start being relevant to the dinner plans!

5. Conclusion
In this paper we believe we have shown that the supposed “admissibility troubles” for Bayesian
accounts of direct inference proposed byWallmann & Hawthorne are an illusion. One possible source
of it might be the usage of classical probability spaces unimbued with any additional structure;
the practice which, as we argue in Section 2, should be abandoned in any discourse dealing with
probabilities of propositions about the probabilities of other propositions. We have pointed out
that there is at least one meta-probabilistic framework on the philosophical market, the HOP
approach by Gaifman, which can model the supposedly problematic situations without generating
the troublesome consequences.

Bayesianism may, of course, be deeply mistaken, but not for the reasons suggested by Wallmann
& Hawthorne (2018): it can model direct inference, given that we provide it enough structure for
that task.
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