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Abstract

We provide an elegant homological construction of the extended phase space for linear Yang-
Mills theory on an oriented and time-oriented Lorentzian manifold M with a time-like boundary
∂M that was proposed by Donnelly and Freidel [JHEP 1609, 102 (2016)]. This explains and
formalizes many of the rather ad hoc constructions for edge modes appearing in the theoretical
physics literature.
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1 Introduction and summary

Inspired by the work of Donnelly and Freidel [DF16], there is presently a revived and growing
interest in gauge and gravity theories on manifolds with boundaries, see e.g. [Gei17, BMV18,
GR18, FP18, FLP19] for some follow-up papers. One of the main observations of these studies is
that, in the presence of boundaries, there exist additional degrees of freedom (called edge modes)
that are localized at the boundary. These edge modes are then used to determine a gauge-invariant
symplectic structure on the relevant solution spaces and hence to define an appropriate concept of
extended phase space for the gauge or gravity theory of interest.

The goal of this short paper is to provide an elegant and rigorous construction of the extended
phase space of [DF16] for the case of linear Yang-Mills theory on an oriented and time-oriented
globally hyperbolic Lorentzian manifold M with a time-like boundary ∂M . Our construction
employs some basic techniques from homological algebra and the theory of groupoids, which are
necessary to describe the higher categorical structures featuring in gauge theory. We refer the
reader to [BS19, Section 3] for a rather non-technical introduction to these techniques and [Sch13]
for an extensive overview.

The main benefit of adopting this more abstract homological perspective is that many of the
ad hoc constructions for edge modes in [DF16] become very natural. For example, as we explain

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Philsci-Archive

https://core.ac.uk/display/295732788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in detail in Remark 2.2, the appearance of edge modes is a direct consequence of implementing
a topological boundary condition that identifies the bulk principal bundles with a fixed principal
bundle on the boundary. Our main novel observation is that the extended phase space of [DF16] can
be directly constructed from a very simple action functional (2.8), provided that one distinguishes
carefully between the time-like boundary ∂M of M and the space-like boundary that is introduced
by a choice of Cauchy surface Σ ⊂ M . This is in contrast to the construction in [DF16], which
introduces by hand additional terms to the ordinary symplectic structure in order to restore gauge-
invariance in the presence of a boundary.

Our construction of the extended phase space consists of two consecutive steps that allow us to
distinguish between the two different kinds of boundaries (time-like boundary ∂M vs. space-like
Cauchy surface Σ) that feature in [DF16]. In the first step, we construct the derived critical locus
of the action functional (2.8) and its canonical [−1]-shifted symplectic structure, which depends
on the time-like boundary ∂M but does not require a choice of Cauchy surface Σ ⊂ M . (In the
physics literature, derived critical loci are called BRST/BV formalism and the shifted symplectic
structure is called the antibracket.) In the second step, we obtain from this data and the choice of
a Cauchy surface Σ ⊂ M an unshifted symplectic structure by applying our simple construction
from Definition 4.1. We explain in detail in Remark 4.4 that the 0-truncation of our homological
construction reproduces the extended phase space of [DF16]. As a novel result, we obtain an
extension of the symplectic structure on the extended phase space to ghost fields and antifields,
whose explicit form is given in (4.5).

We would like to note that our approach differs from the BV-BFV formalism for gauge theories
on manifolds with boundaries developed by Cattaneo, Mnev, Reshetikhin and collaborators, see
e.g. the original paper [CMR14] and the more recent [MSW19]. The latter approach does not
consider the two distinct ways in which two respective types of boundaries feature in the models
discussed in [DF16], i.e. the boundary ∂M (on which one implements a topological boundary
condition) and the Cauchy surface Σ (on which one assigns initial data). In the case where the
boundary ∂M = ∅ is empty, our approach coincides with the BV-BFV formalism, see Remark 4.5.
We believe that it should be possible to generalize the BV-BFV formalism [CMR14, MSW19] to
encode this difference. This would provide a powerful framework for also studying the non-linear
gauge and gravity theories in [DF16].

The outline of the remainder of this paper is as follows: In Section 2 we introduce our model
of interest, namely linear Yang-Mills theory on an oriented and time-oriented Lorentzian manifold
M with a time-like boundary ∂M , together with a topological boundary condition (leading to the
edge modes, see Remark 2.2) and the novel action functional (2.8). In Section 3 we construct
explicitly the (linear) derived critical locus for our model (3.6) and its canonical [−1]-shifted
symplectic structure (3.7). In Section 4 we derive, from the choice of a Cauchy surface Σ ⊂M , an
unshifted symplectic structure (4.5) and show that the 0-truncation of our homological construction
reproduces the extended phase space of [DF16], see Remark 4.4.

Notation and conventions for chain complexes: The main constructions and results in this
paper are stated in the category ChR of (possibly unbounded) chain complexes of vector spaces
over the field of real numbers R. We use homological degree conventions, i.e. the differentials
d : Vn → Vn−1 lower the degree by 1. The tensor product V ⊗W of two chain complexes is given
by (V⊗W )n =

⊕
m∈Z Vm⊗Wn−m together with the differential d(v⊗w) = (dv)⊗w+(−1)|v| v⊗(dw)

determined by the graded Leibniz rule, where |v| ∈ Z denotes the degree of v. The tensor unit is
R ∈ ChR, regarded as a chain complex concentrated in degree 0 with trivial differentials. Given a
chain complex V and an integer p ∈ Z, the [p]-shifted chain complex V [p] is defined by V [p]n = Vn−p
and dV [p] = (−1)p dV .

The homology H•(V ) of a chain complex V is the graded vector space defined by Hn(V ) :=
Ker(d : Vn → Vn−1)/Im(d : Vn+1 → Vn), for all n ∈ Z. A chain map f : V → W is called a
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quasi-isomorphism if the induced map H•(f) : H•(V ) → H•(W ) in homology is an isomorphism.
Quasi-isomorphic chain complexes are considered as ‘being the same’, which can be made precise
by endowing ChR with the usual (projective) model category structure, see e.g. [Hov99]. We refer
to [BS19, Section 3] for a brief non-technical introduction to model categories in the context of
classical and quantum gauge theory.

2 Definition of the model

Let M be an oriented and time-oriented Lorentzian manifold with a time-like smooth boundary
∂M . Denote by ι : ∂M → M the boundary inclusion and by m = dim(M) ≥ 2 the dimension of
M . The orientation, time-orientation and Lorentzian metric on M induces on ∂M the structure of
an oriented and time-oriented Lorentzian manifold (without boundary) of dimension dim(∂M) =
m− 1. We interpret M as a physical spacetime whose boundary is another spacetime ∂M .

Let us now introduce the field content of our model of interest. As bulk fields on M we consider
principal R-bundles with connections, together with their gauge transformations. These data are
described by the groupoid

BRcon(M) :=

{
Obj : A ∈ Ω1(M)

Mor : A
ε−→ A+ dε with ε ∈ Ω0(M)

, (2.1)

whose objects are interpreted as gauge fields and morphisms as gauge transformations between
gauge fields. (Recall that every principal R-bundle is isomorphic to the trivial principal R-bundle.
Hence, up to equivalence of groupoids, one may consider only the trivial principal R-bundle, as
we have done in (2.1).) Take a principal R-bundle on the boundary ∂M , which is described by a
map of groupoids (i.e. a functor)

p : {∗} −→ BR(∂M) (2.2)

from the point {∗} to the groupoid

BR(∂M) :=

{
Obj : ∗
Mor : ∗ χ−→ ∗ with χ ∈ Ω0(∂M)

(2.3)

of principal R-bundles on ∂M and their gauge transformations. Observe that there is a map of
groupoids

res : BRcon(M) −→ BR(∂M) (2.4)

which forgets the bulk connection and restricts the bulk principal R-bundle to the boundary ∂M .
Concretely, this functor acts on objects as A 7→ ∗ and on morphisms as (ε : A → A + dε) 7→
(ι∗ε : ∗ → ∗), where ι∗ε ∈ Ω0(∂M) denotes the pullback of ε ∈ Ω0(M) along the boundary
inclusion ι : ∂M →M . We would like to impose a (topological) boundary condition that identifies
the restriction of the bulk principal R-bundle with the fixed principal R-bundle on ∂M . This is
formalized by considering the homotopy pullback (or equivalently a 2-categorical pullback)

F(M)

��

// BRcon(M)

h res

��

{∗} p
// BR(∂M)

(2.5)

in the model category (or 2-category) of groupoids. The resulting groupoid F(M) plays the role
of the groupoid of fields for our model of interest.
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Proposition 2.1. A model for the homotopy pullback in (2.5) is given by the groupoid

F(M) =

{
Obj : (A,ϕ) ∈ Ω1(M)× Ω0(∂M)

Mor : (A,ϕ)
ε−→
(
A+ dε, ϕ+ ι∗ε

)
with ε ∈ Ω0(M)

. (2.6)

Proof. This is a direct computation using the usual model for homotopy pullbacks of groupoids,
see e.g. [Hol08, Section 2]. Explicitly, an object in the homotopy pullback (2.5) is a pair of objects

(∗, A) ∈ {∗} × BRcon(M) together with a BR(∂M)-morphism p(∗) = ∗ ϕ−→ ∗ = res(A). Hence,
an object in F(M) is given by a pair (A,ϕ) ∈ Ω1(M) × Ω0(∂M). A morphism (A,ϕ) → (A′, ϕ′)
in the homotopy pullback (2.5) is a pair of morphisms (id∗ : ∗ → ∗, ε : A → A + dε = A′) ∈
{∗} ×BRcon(M) that is compatible with ϕ and ϕ′, i.e. the diagram

res(A) = ∗ ι∗ε // ∗ = res(A′)

p(∗) = ∗

ϕ

OO

id∗
// ∗ = p(∗)

ϕ′

OO
(2.7)

in BR(∂M) commutes. Hence, a morphism in F(M) is given by (A,ϕ)
ε−→ (A+dε, ϕ+ ι∗ε), where

ε ∈ Ω0(M).

Remark 2.2. Note that an object of the groupoid F(M) in (2.6) is a pair (A,ϕ) ∈ Ω1(M)×Ω0(∂M)
consisting of a gauge field A in the bulk M and a gauge transformation ϕ on the boundary ∂M .
Hence, the groupoid of fields F(M) contains both bulk and boundary fields. It is one of the main
goals of the present paper to explain that these ϕ are precisely the edge modes introduced in
[DF16]. As a first piece of evidence for this claim, we note that the morphisms of the groupoid
F(M) in (2.6) are precisely the gauge transformations on bulk and boundary fields in [DF16].

From our groupoid perspective, the origin of edge modes can be explained very naturally.
The groupoid of fields F(M) is obtained by identifying the restriction of the bulk principal R-
bundle with the fixed principal R-bundle on ∂M , i.e. we implement a (topological) boundary
condition via the homotopy pullback diagram (2.5). Boundary conditions in a gauge theory are
quite subtle because gauge fields are not compared by equality but rather by gauge transformations,
i.e. morphisms in the relevant groupoids. Hence, a boundary condition in a gauge theory is not a
property of the gauge fields but an additional structure given by gauge transformations acting as
witnesses of the boundary condition. The edge modes ϕ in (2.6) are precisely the witnesses for the
statement that the restriction of the bulk principal R-bundle is ‘the same as’ the fixed boundary
principal R-bundle. M

In the next step we introduce a gauge-invariant action functional in order to specify the dy-
namics of our model of interest. This is described by a map of groupoids S : F(M) → R from
our groupoid of fields (2.6) to the real numbers R, regarded as a groupoid with only identity
morphisms. We define

S(A,ϕ) :=

∫
M

1

2
dA ∧ ∗dA+

∫
∂M

1

2
dAϕ ∧ ∗∂dAϕ , (2.8)

where ∗(∂) denotes the Hodge operator on (∂)M and the affine covariant differential is given by

dAϕ := dϕ− ι∗A . (2.9)

Clearly, the action (2.8) is gauge-invariant because dA and dAϕ are invariant under the gauge
transformations in (2.6). (In the physics literature, the quantity dAϕ is also referred to as a
‘dressing’, see e.g. [AFLM18].)
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Upon varying the action with respect to compactly supported variations (α,ψ) ∈ Ω1
c(M) ×

Ω0
c(∂M), a straightforward calculation using Stokes’ theorem yields the expression

δ(α,ψ)S(A,ϕ) =

∫
M
α ∧ d ∗ dA+

∫
∂M

ι∗α ∧
(
ι∗(∗dA)− ∗∂dAϕ

)
−
∫
∂M

ψ ∧ d ∗∂ dAϕ . (2.10)

The corresponding Euler-Lagrange equations are

d ∗ dA = 0 (linear Yang-Mills equation on M) , (2.11a)

d ∗∂ dAϕ = 0 (inhomogeneous Klein-Gordon equation on ∂M) , (2.11b)

ι∗(∗dA)− ∗∂dAϕ = 0 (matching constraint on ∂M) . (2.11c)

Remark 2.3. We would like to emphasize that the third equation in (2.11) arises from the fact
that we also allow for bulk field variations α ∈ Ω1

c(M) with support on the boundary ∂M , which
is different from [DF16] where the usual linear Yang-Mills action

∫
M

1
2dA ∧ ∗dA is varied by

variations α ∈ Ω1
c(M) that are assumed to vanish on the boundary, i.e. ι∗α = 0. The advantage

of our approach is that it allows us to interpret the matching constraint in (2.11) as an Euler-
Lagrange equation of the action (2.8), while in [DF16] this constraint was implemented by hand
in the construction of the extended phase space. M

Remark 2.4. We would like to explain very briefly that, up to this point, our construction admits
a straightforward generalization to non-Abelian Yang-Mills theory. To simplify the presentation
in this remark, let us assume that M ∼= Rm−1× [0,∞) is diffeomorphic to a half-space. Let G be a
compact matrix Lie group and denote its Lie algebra by g. As a consequence of our assumptions,
there exist no non-trivial principal G-bundles on both M and ∂M , hence the groupoid of principal
G-bundles with connection on M reads as

BGcon(M) :=

{
Obj : A ∈ Ω1(M, g)

Mor : A
g−→ g−1Ag + g−1dg with g ∈ C∞(M,G)

(2.12)

and the groupoid of principal G-bundles on ∂M reads as

BG(∂M) :=

{
Obj : ∗
Mor : ∗ h−→ ∗ with h ∈ C∞(∂M,G)

. (2.13)

The two maps in the homotopy pullback diagram (2.5) exist also in the non-Abelian setting. An
explicit computation as in Proposition 2.1 yields the groupoid of fields

FG(M) =

{
Obj : (A, u) ∈ Ω1(M, g)× C∞(∂M,G)

Mor : (A, u)
g−→
(
g−1Ag + g−1dg, u ι∗g

)
with g ∈ C∞(M,G)

. (2.14)

Recalling the curvature F (A) = dA + A ∧ A and introducing dAlog u := u−1du − ι∗A, one easily
checks that

SG(A, u) :=

∫
M

1

2
Tr
(
F (A) ∧ ∗F (A)

)
+

∫
∂M

1

2
Tr
(
dAlog u ∧ ∗∂dAlog u

)
(2.15)

defines a gauge-invariant action. We will not develop this non-Abelian generalization of our model
any further, because linearity is crucial to simplify our constructions in the remainder of this
paper. M

Because our model of interest is a linear gauge theory, we can reformulate it in the language of
chain complexes of vector spaces. The key ingredient for this construction is given by the Dold-Kan
correspondence between simplicial vector spaces and (non-negatively graded) chain complexes of
vector spaces, see e.g. [BSS15] for an application in the context of gauge theory. Explicitly, the
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Dold-Kan correspondence assigns to (the nerve of) our groupoid of fields (2.6) the chain complex
(denoted with abuse of notation by the same symbol)

F(M) =
( (0)

F0(M)
(1)

F1(M)
Q

oo

)
=
( (0)

Ω1(M)× Ω0(∂M)
(1)

Ω0(M)
Q

oo

)
(2.16a)

concentrated in homological degrees 0 and 1, with differential given by

Q(C) =
(
dC, ι∗C

)
, (2.16b)

for all C ∈ Ω0(M). From now on, we shall denote gauge transformations by C ∈ Ω0(M). This
choice of notation is explained in Remark 3.2 below, where C will be interpreted as a ghost field.
Observe that elements (A,ϕ) ∈ Ω1(M)×Ω0(∂M) in degree 0 are the fields of the theory, elements
C ∈ Ω0(M) in degree 1 are the gauge transformations and the differential Q encodes the action
(A,ϕ)→ (A,ϕ) +Q(C) = (A+ dC,ϕ+ ι∗C) of gauge transformations. The variation of the action
(2.10) determines a linear differential operator

P : Ω1(M)× Ω0(∂M) −→ Ωm−1(M)× Ωm−2(∂M)× Ωm−1(∂M) (2.17a)

given by

P (A,ϕ) =
(

(−1)m−1 d ∗ dA, (−1)m−2
(
ι∗(∗dA)− ∗∂dAϕ

)
,−d ∗∂ dAϕ

)
, (2.17b)

for all (A,ϕ) ∈ Ω1(M)×Ω0(∂M). The signs in (2.17) are due to the following choice of conventions:
The codomain of P is given by the smooth Lefschetz dual

F0,c(M)∗ := Ωm−1(M)× Ωm−2(∂M)× Ωm−1(∂M) (2.18a)

of the degree 0 component F0,c(M) = Ω1
c(M)×Ω0

c(∂M) of the compactly supported analog of the
field complex (2.16). The evaluation pairing 〈 · , · 〉 : F0,c(M)∗ × F0,c(M)→ R reads as

〈(A†, a†, ϕ†), (A,ϕ)〉 =

∫
M
A† ∧A+

∫
∂M

(
a† ∧ ι∗A+ ϕ† ∧ ϕ

)
, (2.18b)

for all (A†, a†, ϕ†) ∈ Ωm−1(M)×Ωm−2(∂M)×Ωm−1(∂M) and (A,ϕ) ∈ Ω1
c(M)×Ω0

c(∂M). The lin-
ear differential operator P is defined by (2.10) and the equation δ(α,ψ)S(A,ϕ) = 〈P (A,ϕ), (α,ψ)〉,
for all (A,ϕ) ∈ Ω1(M)×Ω0(∂M) and (α,ψ) ∈ Ω1

c(M)×Ω0
c(∂M). Hence, the signs in (2.17) are a

consequence of graded commutativity of the ∧-product.

3 Derived critical locus and shifted symplectic structure

Instead of enforcing the Euler-Lagrange equations (2.11) in a strict sense, we consider their ho-
mological enhancement given by the (linear) derived critical locus construction. Our motivation
and reasons for this are twofold: 1.) Enforcing the Euler-Lagrange equations strictly as in (2.11)
is in general incompatible with quasi-isomorphisms in the category ChR of (possibly unbounded)
chain complexes, i.e. if one takes two different quasi-isomorphic field complexes, the naive solution
complexes assigned to them are in general no longer quasi-isomorphic. This is problematic because
it violates the main principle of homological algebra that all sensible constructions must respect
quasi-isomorphisms. 2.) Every derived critical locus carries a canonical [−1]-shifted symplectic
structure (see e.g. [PTVV13, CPTVV17, Pri18] for the corresponding results in derived algebraic
geometry) which has various physical applications. For instance, in the context of (quantum)
field theory, this shifted symplectic structure is the starting point for constructing a factorization
algebra [CG17] or an algebraic quantum field theory [BBS19]. Below, we give a novel application
of this [−1]-shifted symplectic structure: It will be used to construct the extended phase space
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introduced in [DF16]. We note that in physics terminology, derived critical loci are called the
BRST/BV formalism and the shifted symplectic structure is called the antibracket.

Our construction of the (linear) derived critical locus and its shifted symplectic structure is
a relatively straightforward generalization of the case of linear Yang-Mills theory on spacetimes
without boundaries presented in [BBS19, BS19]. To make the present paper self-contained, we
shall briefly explain this construction. By analogy with (2.18), we define the smooth Lefschetz
dual

F1,c(M)∗ := Ωm(M)× Ωm−1(∂M) (3.1a)

of the degree 1 component F1,c(M) = Ω0
c(M) of the compactly supported analog of the field

complex (2.16). The evaluation pairing 〈 · , · 〉 : F1,c(M)∗ × F1,c(M)→ R reads as

〈(C†, c†), C〉 =

∫
M
C† ∧ C +

∫
∂M

c† ∧ ι∗C , (3.1b)

for all (C†, c†) ∈ Ωm(M)× Ωm−1(∂M) and C ∈ Ω0
c(M). We denote by

Q∗ : Ωm−1(M)× Ωm−2(∂M)× Ωm−1(∂M) −→ Ωm(M)× Ωm−1(∂M) (3.2a)

the formal adjoint of the linear differential operator Q in (2.16), which is defined implicitly by
〈Q∗(A†, a†, ϕ†), C〉 = 〈(A†, a†, ϕ†), Q(C)〉, for all (A†, a†, ϕ†) ∈ Ωm−1(M)×Ωm−2(∂M)×Ωm−1(∂M)
and C ∈ Ω0

c(M). A straightforward calculation using Stokes’ theorem then provides the explicit
expression

Q∗(A†, a†, ϕ†) =
(

(−1)m dA†, (−1)m−1
(
da† + ι∗A†

)
+ ϕ†

)
, (3.2b)

for all (A†, a†, ϕ†) ∈ Ωm−1(M) × Ωm−2(∂M) × Ωm−1(∂M). The smooth Lefschetz dual of the
compactly supported analog of the field complex (2.16) is thus given by

Fc(M)∗ =
( (−1)

F1,c(M)∗
(0)

F0,c(M)∗
−Q∗
oo

)
=
( (−1)

Ωm(M)× Ωm−1(∂M)
(0)

Ωm−1(M)× Ωm−2(∂M)× Ωm−1(∂M)
−Q∗
oo

)
. (3.2c)

This chain complex is used to define the total space T ∗F(M) := F(M) × Fc(M)∗ ∈ ChR of the
cotangent bundle over the field complex (2.16) as a Cartesian product of chain complexes. The
variation of the action (2.10), or equivalently, the associated differential operator P in (2.17),
defines a section

F(M)

δS
��

T ∗F(M)

=


0

0

��

F0(M)
0oo

(id,P )

��

F1(M)
Q

oo

id
��

F1,c(M)∗ F0(M)× F0,c(M)∗
−Q∗π2
oo F1(M)

ι1Q
oo

 (3.3)

of the cotangent bundle. The zero-section of the cotangent bundle is given by

F(M)

0
��

T ∗F(M)

=


0

0

��

F0(M)
0oo

(id,0)

��

F1(M)
Q

oo

id
��

F1,c(M)∗ F0(M)× F0,c(M)∗
−Q∗π2
oo F1(M)

ι1Q
oo

 . (3.4)
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In order to enforce the dynamics encoded by the action functional (2.8), we intersect δS with the
zero-section 0 (in the derived sense) by forming the homotopy pullback

S(M)

��

// F(M)

h
δS
��

F(M)
0
// T ∗F(M)

(3.5)

in the model category ChR.

Proposition 3.1. A model for the homotopy pullback in (3.5) is given by the chain complex

S(M) =
( (−2)

F1,c(M)∗
(−1)

F0,c(M)∗
Q∗
oo

(0)

F0(M)
Poo

(1)

F1(M)
Q

oo

)
, (3.6)

with differentials defined in (2.16), (2.17) and (3.2).

Proof. The proof is completely analogous to the one of [BS19, Proposition 3.21] and will not be
repeated here.

Remark 3.2. The chain complex (3.6) admits an interpretation in terms of the BRST/BV
formalism. Elements C ∈ S1(M) = Ω0(M) in degree 1 are the ghost fields and elements
(A,ϕ) ∈ S0(M) = Ω1(M) × Ω0(∂M) in degree 0 are the fields of the theory. Furthermore,
elements (A†, a†, ϕ†) ∈ S−1(M) = Ωm−1(M) × Ωm−2(∂M) × Ωm−1(∂M) in degree −1 are the
antifields and elements (C†, c†) ∈ Ωm(M)× Ωm−1(∂M) in degree −2 are the antifields for ghosts.
The differential operator Q encodes the gauge symmetries and P encodes the equation of motion
of our model. In particular, the 0-th homology H0(S(M)) of (3.6) is the ordinary vector space of
gauge equivalence classes of solutions of the Euler-Lagrange equations (2.11). Note that, in con-
trast to the usual BRST/BV formalism on manifolds without a boundary, our model of interest
(3.6) also contains boundary fields ϕ and boundary antifields a†, ϕ† and c†. It is important to
emphasize that this field content is not arbitrary, but it is dictated (up to quasi-isomorphism) by
our homological approach, i.e. by the homotopy pullbacks in (2.5) and (3.5). M

To conclude this section, we explicitly write out the canonical [−1]-shifted symplectic structure
that exists on the (linear) derived critical locus (3.5). Denoting by Sc(M) the compactly supported
analog of the solution complex S(M) in (3.6), the [−1]-shifted symplectic structure is the chain
map ω−1 : Sc(M)⊗Sc(M)→ R[−1] defined in terms of the integration pairings (2.18) and (3.1)
by

ω−1

(
(C†, c†), C

)
=

∫
M
C† ∧ C +

∫
∂M

c† ∧ ι∗C , (3.7a)

ω−1

(
C, (C†, c†)

)
= −ω−1

(
(C†, c†), C

)
, (3.7b)

ω−1

(
(A†, a†, ϕ†), (A,ϕ)

)
=

∫
M
A† ∧A+

∫
∂M

(
a† ∧ ι∗A+ ϕ† ∧ ϕ

)
, (3.7c)

ω−1

(
(A,ϕ), (A†, a†, ϕ†)

)
= −ω−1

(
(A†, a†, ϕ†), (A,ϕ)

)
, (3.7d)

for all (C†, c†) ∈ Ωm
c (M) × Ωm−1

c (∂M), C ∈ Ω0
c(M), (A†, a†, ϕ†) ∈ Ωm−1

c (M) × Ωm−2
c (∂M) ×

Ωm−1
c (∂M) and (A,ϕ) ∈ Ω1

c(M)× Ω0
c(∂M).

4 Construction of the unshifted symplectic structure

From now on, we assume that M is globally hyperbolic in the sense of Lorentzian manifolds with
a time-like boundary, see e.g. [Sol06] and also [BDS18] for a review. Let us choose any Cauchy
surface Σ ⊂M and note that Σ is a manifold with boundary ∂Σ ⊂ ∂M . The aim of this section is
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to construct from the datum of a Cauchy surface Σ ⊂M and the [−1]-shifted symplectic structure
ω−1 in (3.7) an unshifted symplectic structure ωΣ

0 . We will then show that the extended phase
space proposed by Donnelly and Freidel in [DF16] is given by the 0-truncation of this homological
construction.

Before we can state our definition of the unshifted symplectic structure ωΣ
0 , we will need to

introduce some simple concepts from Lorentzian geometry. Let us denote by

Σ+ := J+
M (Σ) ⊆ M (4.1a)

the causal future of the Cauchy surface Σ ⊂ M , which is the set of all points p ∈ M that can be
reached from Σ ⊂ M via future-pointing causal curves, including all points p ∈ Σ in the Cauchy
surface. Note that, by definition, Σ ⊂ Σ+ is a subset. We denote by

(∂Σ)+ := Σ+ ∩ ∂M ⊆ ∂M (4.1b)

the intersection of Σ+ with the boundary of M . The following picture visualizes our geometric
setup

time

(∂Σ)+

Σ

Σ+

∂Σ

(4.2)

We observe that Σ+ has two different kinds of boundary components, given by the time-like
boundary (∂Σ)+ and the (space-like) Cauchy surface Σ, as well as a codimension 2 corner ∂Σ.

We now define a map ωΣ
−1 : Sc(M)⊗Sc(M)→ R[−1] of graded vector spaces by recalling the

definition of the [−1]-shifted symplectic structure in (3.7) and restricting the integrations therein
from M to Σ+ and from ∂M to (∂Σ)+. Explicitly, this gives

ωΣ
−1

(
(C†, c†), C

)
=

∫
Σ+

C† ∧ C +

∫
(∂Σ)+

c† ∧ ι∗C , (4.3a)

ωΣ
−1

(
(A†, a†, ϕ†), (A,ϕ)

)
=

∫
Σ+

A† ∧A+

∫
(∂Σ)+

(
a† ∧ ι∗A+ ϕ† ∧ ϕ

)
, (4.3b)

for all (C†, c†) ∈ Ωm
c (M) × Ωm−1

c (∂M), C ∈ Ω0
c(M), (A†, a†, ϕ†) ∈ Ωm−1

c (M) × Ωm−2
c (∂M) ×

Ωm−1
c (∂M) and (A,ϕ) ∈ Ω1

c(M) × Ω0
c(∂M). It is important to emphasize that, in contrast to

the [−1]-shifted symplectic structure in (3.7), the restricted integrations in (4.3) do not define a
chain map, i.e. the pre-composition ωΣ

−1 ◦ d⊗ 6= 0 with the differential d⊗ of the tensor product
chain complex Sc(M)⊗Sc(M) is non-zero. However, we obtain a chain map ωΣ

−1 ◦ d⊗ : Sc(M)⊗
Sc(M) → R to the unshifted real numbers, because the differential d⊗ has degree −1 and the
chain map property ωΣ

−1 ◦ d⊗ ◦ d⊗ = 0 is a consequence of nilpotency d⊗
2

= 0 of the differential.

We are now in a position to define the unshifted symplectic structure associated with a Cauchy
surface Σ.

Definition 4.1. The unshifted symplectic structure is the chain map

ωΣ
0 := ωΣ

−1 ◦ d⊗ : Sc(M)⊗Sc(M) −→ R . (4.4)

Proposition 4.2. The unshifted symplectic structure is explicitly given by

ωΣ
0

(
(A,ϕ), (A′, ϕ′)

)
=

∫
Σ

(
A ∧ ∗dA′ −A′ ∧ ∗dA

)
−
∫
∂Σ

(
ϕ ∧ ∗∂dA′ϕ

′ − ϕ′ ∧ ∗∂dAϕ
)

, (4.5a)

ωΣ
0

(
(A†, a†, ϕ†), C

)
= (−1)m

∫
Σ
A† ∧ C − (−1)m−1

∫
∂Σ
a† ∧ ι∗C , (4.5b)
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for all (A,ϕ), (A′, ϕ′) ∈ Ω1
c(M) × Ω0

c(∂M), (A†, a†, ϕ†) ∈ Ωm−1
c (M) × Ωm−2

c (∂M) × Ωm−1
c (∂M)

and C ∈ Ω0
c(M).

Proof. The proof is a straightforward calculation using Stokes’ theorem for manifolds with bound-
aries and corners, see e.g. [BMPR18]. Thus, we will not write out the details of this calculation.
However, for the benefit of the reader, we note that there are two different instances of Stokes’
theorem that enter this calculation (consider the picture in (4.2) for a helpful visualization). First,
for any ζ ∈ Ωm−1

c (Σ+) in the bulk Σ+, Stokes’ theorem with corners yields∫
Σ+

dζ =

∫
Σ
ζ +

∫
(∂Σ)+

ζ , (4.6)

because ∂(Σ+) = (∂Σ)+ ∪ Σ. Second, for any η ∈ Ωm−2
c ((∂Σ)+) on the time-like boundary

component (∂Σ)+, ordinary Stokes’ theorem yields∫
(∂Σ)+

dη = −
∫
∂Σ
η , (4.7)

because ∂((∂Σ)+) = −∂Σ is the boundary of Σ with the opposite orientation.

Corollary 4.3. Using the same formulas as in (4.5), the unshifted symplectic structure from
Definition 4.1 and Proposition 4.2 admits an extension to a chain map

ωΣ
0 : Ssc(M)⊗Ssc(M) −→ R , (4.8)

where Ssc(M) is the space-like compactly supported analog of the solution complex (3.6). (Recall
that a differential form ζ ∈ Ωp(M) has space-like compact support if supp(ζ) ⊆ J+

M (K) ∪ J−M (K),
for some compact subset K ⊆M .)

Remark 4.4. At first sight, it seems that our unshifted symplectic structure (4.5) is different
from the one proposed in [DF16]. However, upon closer inspection, one finds that this is not the
case and that the 0-truncation of our approach reproduces the results of [DF16]. Let us recall
that [DF16] are not working in a homological approach, which means that they are implementing
the Euler-Lagrange equations (2.11) in the strict sense. From our perspective, this means that
they are considering 0-cycles in the space-like compactly supported solution complex Ssc(M). For
every two 0-cycles (A,ϕ), (A′, ϕ′) ∈ Ω1

sc(M)×Ω0
sc(∂M), i.e. P (A,ϕ) = 0 = P (A′, ϕ′) with P given

in (2.17), one can write the unshifted symplectic structure (4.5a) equivalently as

ωΣ
0

(
(A,ϕ), (A′, ϕ′)

)
=

∫
Σ

(
A ∧ ∗dA′ −A′ ∧ ∗dA

)
−
∫
∂Σ

(
ϕ ∧ ∗∂dA′ϕ

′ − ϕ′ ∧ ∗∂dAϕ
)

=

∫
Σ

(
A ∧ ∗dA′ −A′ ∧ ∗dA

)
−
∫
∂Σ

(
ϕ ∧ ι∗(∗dA′)− ϕ′ ∧ ι∗(∗dA)

)
, (4.9)

where we used explicitly the matching constraint from the Euler-Lagrange equations (2.11). This
equivalent form of the unshifted symplectic structure on 0-cycles coincides with the proposal in
[DF16]. We note that the antifield-ghost component (4.5b) of our unshifted symplectic structure is
a novel feature of our homological approach that has no corresponding analog in the 0-truncation
studied in [DF16]. M

Remark 4.5. To compare our results to the BV-BFV formalism [CMR14], we specialize to the
case in which the time-like boundary is empty, i.e. ∂M = ∅. The solution complex (3.6) then
simplifies to

S(M) =
( (−2)

Ωm(M)
(−1)

Ωm−1(M)
(−1)m d
oo

(0)

Ω1(M)
(−1)m−1 d∗d
oo

(1)

Ω0(M)
doo

)
(4.10)
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and the [−1]-shifted symplectic structure (3.7) simplifies to

ω−1

(
C†, C

)
=

∫
M
C† ∧ C , ω−1

(
A†, A

)
=

∫
M
A† ∧A . (4.11)

Furthermore, the unshifted symplectic structure (4.5) simplifies to

ωΣ
0

(
A,A′

)
=

∫
Σ

(
A ∧ ∗dA′ −A′ ∧ ∗dA

)
, ωΣ

0

(
A†, C

)
= (−1)m

∫
Σ
A† ∧ C . (4.12)

We observe that both the [−1]-shifted and unshifted symplectic structure agree with the ones
obtained from the BV-BFV formalism applied to electromagnetism, see in particular [CMR14,
Section 5.1].

We further obtain as in [CMR14, Section 5.1.6] a [+1]-shifted symplectic structure in codimen-
sion 2 by iterating our construction in Definition 4.1. Concretely, let us choose any codimension 1
submanifold S ⊂ Σ of the Cauchy surface (i.e. S ⊂M is codimension 2) and cut Σ along S. This
defines two submanifolds S+, S− ⊂ Σ with boundary ∂(S±) = ±S which determine Σ by pasting
Σ = S+ tS S−. Analogously to (4.3), we define

ωS0
(
A,A′

)
=

∫
S+

(
A ∧ ∗dA′ −A′ ∧ ∗dA

)
, ωS0

(
A†, C

)
= (−1)m

∫
S+

A† ∧ C (4.13)

by restricting the integrations from Σ to S+ ⊂ Σ. The [+1]-shifted symplectic structure can then
be defined analogously to Definition 4.1 as ωS1 := ωS0 ◦ d⊗ : Sc(M) ⊗ Sc(M) → R[1]. By a
straightforward calculation using Stokes’ theorem, we obtain

ωS1
(
A,C

)
= −

∫
S
∗dA ∧ C = −ωS1

(
C,A

)
. (4.14)

Note that this matches the codimension 2 [+1]-symplectic structure in [CMR14, Section 5.1].
Finally, by a further iteration of our construction in Definition 4.1, one easily shows that the
[+2]-shifted symplectic structure in codimension 3 is zero. M
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