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Abstract Is change missing in Hamiltonian Einstein-Maxwell theory? Given
the most common definition of observables (having weakly vanishing Pois-
son bracket with each first-class constraint), observables are constants of the
motion and nonlocal. Unfortunately this definition also implies that the ob-
servables for massive electromagnetism with gauge freedom (Stueckelberg)
are inequivalent to those of massive electromagnetism without gauge free-
dom (Proca). The alternative Pons-Salisbury-Sundermeyer definition of ob-
servables, aiming for Hamiltonian-Lagrangian equivalence, uses the gauge gen-
erator G, a tuned sum of first-class constraints, rather than each first-class con-
straint separately, and implies equivalent observables for equivalent massive
electromagnetisms.

For General Relativity, G generates 4-dimensional Lie derivatives for solu-
tions. The Lie derivative compares different space-time points with the same
coordinate value in different coordinate systems, like 1 a.m. summer time vs.

1 a.m. standard time, so a vanishing Lie derivative implies constancy rather
than covariance. Requiring equivalent observables for equivalent formulations
of massive gravity confirms that G must generate the 4-dimensional Lie deriva-
tive (not 0) for observables.

These separate results indicate that observables are invariant under inter-
nal gauge symmetries but covariant under external gauge symmetries, but can
this bifurcated definition work for mixed theories such as Einstein-Maxwell
theory? Pons, Salisbury and Shepley have studied G for Einstein-Yang-Mills.
For Einstein-Maxwell, both Fµν and gµν are invariant under electromagnetic
gauge transformations and covariant (changing by a Lie derivative) under 4-
dimensional coordinate transformations. Using the bifurcated definition, these
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quantities count as observables, as one would expect on non-Hamiltonian
grounds.

Key words: gauge freedom, constrained Hamiltonian dynamics, problem of
time, observables

1 Introduction

When a Hamiltonian formulation of General Relativity was first undertaken
[56,59], the result was expected to be mathematically equivalent to the La-
grangian formulation. Similar expectations held when Bergmann and his school
reinvented comstrained Hamiltonian dynamics [3]. Thus these authors em-
ployed a quantity, now called the gauge generator G, which combined the
primary constraints (which express the impossibility of the Legendre trans-
formation) and the secondary and later generations of the constraints (which
are implied by the dynamical preservation of the primary constraints) in an
essential way. For example, in electromagnetism the gauge generator G is

∫

d3x[π0ξ̇(x, t) − πi,i ξ(x, t)],

from which one quickly infers that {Aµ(t, y), G} = ξ,µ , a familiar result. (For
the mathematical background, see [64].)

But soon novel Hamiltonian postulates were introduced that violated Hamiltonian-
Lagrangian equivalence to facilitate merging GR with quantum mechanics.
Bergmann and Schiller postulated that the constraints act separately, not
merely as a team, in producing gauge transformations [18, section 4]. It was
not long before the problem of time appeared: observables were said to be
constants of motion [14]. In reaching this conclusion, Bergmann and collab-
orators evidently assumed a similarity between electromagnetism (with its
internal gauge symmetry) and GR (with its external gauge, that is coordi-
nate, symmetry) [6,11] regarding a 0 Poisson bracket of observables under
gauge transformations. (It is sufficient for the vanishing Poisson brackets to
be achieved using the constraints themselves, a condition known as “weakly
vanishing.”) Analogously, Dirac was so impressed by his important trivializa-
tion of the primary constraints that he proposed shrinking the phase space
from 20∞3 to 12∞3 dimensions [21], dropping the momenta vanishing in the
primary constraints and, more worrisomely, their canonical coordinates, wind-
ing up with the spatial rather than spatio-temporal metric. That shrinkage
obscured foliation-changing coordinate transformations and prevented consid-
eration of the gauge generator G, which makes essential use of the primary
constraints.

A key issue is whether first-class constraints only as a team generate
changes of coordinates or other conventional redescription (gauge transfor-
mations) [56,3,19,54], or, as became the more popular view, does each first-
class constraint by itself generate a gauge transformation? Both Bergmann &
Schiller’s novel Hamiltonian postulates and Dirac’s shrinking the phase space
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pushed toward the separate first-class constraint view. The separate first-class
constraint view is supposed to be equivalent to the Lagrangian for “observ-
ables” [29]. But such equivalence depends upon a suitable definition of ob-
servables. If this definition is itself postulated rather than derived, then the
physical equivalence is itself merely a postulate rather than a result. Such a
postulate is not guaranteed to be consistent with more basic formulas.

Starting around 1980, the idea of recovering Hamiltonian-Lagrangianmath-
ematical equivalence was revived, leading to the 3 +1 gauge generator G that
generates 4-dimensional Lie derivatives of the metric and its concomitants for
solutions of Hamilton’s equations [39,19,63,25,62,51,60,53,65,46]. Barbour
and Foster also critique the claim that each first-class constraint generates a
gauge transformation, albeit without embracing the gauge generator [4].

Temporally overlapping with these reforms are some standard reviews (in-
cluding some by Kuchař) describing the supposed absence of change in canon-
ical quantum gravity [35,36,30]. Kuchař’s critique of the usual definitions
helped to inspire the author’s deviation from the weakly vanishing Poisson
bracket for observables in GR [47,48]. Gryb and Thébault revise the definition
of observables in a fashion more closely in line with Kuchař’s approach, but
still quite distinct from it [28]. Anderson’s extensive work also questions con-
ventional definitions and massively extends work in the tradition of Kuchař
and Barbour in many novel directions (e.g., [2]). An important question to
consider is whether whatever problem of time actually exists, exists already
at the classical level, or whether it appears at the quantum level after being
resolved classically due to Hamiltonian-Lagrangian equivalence.

An advantage of the approach adopted here is that as far as possible,
it avoids postulates and definitions about observables in favor of derivation
from the Archimedean point of requiring equivalent observables for equivalent
theories. A limitation of the work thus far is its primarily classical character.

This paper will further explore a recent redefinition of observables, a redef-
inition built upon the gauge generator G and the requirement that equivalent
theories have equivalent observables—i.e., fixing or un-fixing the gauge (using
the Stueckelberg trick or the like) does not alter the observables [47,48]. This
apparently novel principle (in the context of constrained Hamiltonian dynam-
ics) vindicates the gauge generator G over separate first-class constraints, but
also requires a largely novel distinction between internal and external gauge
symmetries (or something in that vicinity—see below), with invariance in the
former case (including electromagnetism) and covariance (a tensor transfor-
mation law or the like) in the latter case (including gravity). Thus observables
change by a 4-dimensional Lie derivative, not 0, under coordinate transfor-
mations, which are generated by G for solutions of Hamilton’s equations. Re-
quiring merely covariance, not invariance, under external (coordinate) trans-
formation laws matches a conclusion drawn previously by consideration of
the classical origins and meaning of the Lie derivative, especially the trans-
port term [45]. But this bifurcation raises the question whether mixed theories
such as Einstein-Maxwell receive a consistent definition of observables. Will
the 0 and non-zero Poisson brackets conflict? The purpose of this paper is to
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show that the mixed definition (invariance for internal symmetries, covariance
for external symmetries) indeed works for Einstein-Maxwell theory.

2 Definitions of Observables

Traditional conclusions involving the lack of change and being spatially global
[67] have drawn criticism even from general relativists without ties to the
reforming Hamiltonian-Lagrangian equivalence literature. Kuchař explicitly
denies that observables should have 0 Poisson bracket with what he takes to
generate temporal gauge transformations, the Hamiltonian constraint H0 [35,
36], though somehow he retains that condition for space with the momentum
constraint Hi. (E. Anderson explores systematization of Kuchař’s ideas not in
terms of space vs. time but rather linearity vs. nonlinearity [1]; unfortunately,
as Anderson notes, this does not work for supergravity.) Smolin’s requirement
that entities called observables be in fact observable in the ordinary sense by
observers within the universe [61] appears to conflict with the 0 Poisson bracket
condition at least implicitly. The failure of observables to play their expected
role has also led to circumvention with new concepts [58,57,22,66]. There are
interesting similarities between these replacement concepts and the reformed
definition of observables. Rovelli’s partial observables are measurable but not
predictable, whereas his complete observables are predictable. For many pur-
poses predictability-up-to-gauge might suffice; the notion of observables that
yields equivalence under gauge fixing involves predictability up to coordinate
choice [47], implementing invariance under internal transformations (to which
one cannot point) and covariance under external transformations (to which one
can point). It is striking that Rovelli finds that with test bodies, observables
include components of the metric tensor in a physically meaningful coordinate
system, akin to Komar’s conclusions [34] and not so different from the author’s
conclusion that the metric components (not referred to any special coordinate
system: covariant rather than invariant) are observable.

2.1 Bergmann vs. Bergmann on Observables

It is not widely known that Bergmann was of several minds on observables.
Indeed Bergmann seems not to have noticed the fact himself, but his ideas do
not all fit together. One widely recalled definition of his is that observables
should have (weakly) 0 Poisson bracket with each separate first-class constraint
[6,11]. Given what follows from this definition, Kiefer rightly notes that such
“observables” are a technical term, nonlocal, weakly tied to observation, and
aimed at quantum mechanics [32]. On the other hand, Bergmann (sometimes)
intended otherwise, as one sees in little-attended works including his Handbuch

der Physik article:

General relativity was conceived as a local theory, with locally well de-
fined physical characteristics. We shall call such quantities observables.
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. . . We shall call observables physical quantities that are free from the
ephemeral aspects of choice of coordinate system and contain informa-
tion relating exclusively to the physical situation itself. Any observation
that we can make by means of physical instruments results in the de-
termination of observables;. . . [12, p. 250].

Such observables are not constants of the motion and do not require integra-
tion over the entire universe. On occasion Bergmann wanted observables to be
independent of Hamiltonian formalism [11,12][15, p. 314], which would lead to
Hamiltonian-Lagrangian equivalence. Reading the bulk of his work on observ-
ables [6–18,40], one suspects Bergmann was looking for a general relativistic
analog of the transverse-traceless true degrees of freedom that one finds in
electromagnetism [49]. Unfortunately nothing have most of those properties
exists, though partial analogs, such as the use of transverse-traceless decom-
positions, are of course possible. Given that Bergmann sometimes advocated
views logically inconsistent with those often put forth on his authority, the
tradition calls for discernment. The definition of observables considered be-
low satisfies Bergmann’s occasional preferences for Hamiltonian-Lagrangian
equivalence and for spatio-temporally varying observables.

2.2 Observables Reformed with the Gauge Generator G

If gauge transformations are generated not by each first-class constraint by
itself, but by a team G of constraints working together by having interrelated
coefficients (such as 8 first-class constraints at each point but only 4 arbitrary
functions in vacuum GR [19], or in the electromagnetic case recalled above,
2 constraints but only 1 arbitrary function), then presumably the definition
of observables should be reformed correspondingly, as Pons and collaborators
have urged [52,55]. Pons, Salisbury and Sundermeyer give an amended defini-
tion of observables by replacing each first-class constraint with gauge generator
the G: observables are gauge-invariant, having (weakly) 0 Poisson bracket not
with each first-class constraint, but with the gauge generator G[ξα] [55].

Recently the author showed that for massive electromagnetism, the require-
ment that equivalent theories have equivalent observables (in other words,
that gauge-fixing/un-fixing doesn’t change the observable content) is incon-
sistent with the separate first-class constraint view but fits perfectly with
the gauge generator G [47,48]. Massive electromagnetism approaches mass-
less (Maxwell) as m → 0, whether classically or in quantum field theory [5,24,
44]. It is a commonplace in quantum field theory that the de Broglie-Proca for-
mulation without gauge freedom is useful for showing unitarity, whereas the
Stueckelberg-Utiyama formulation with gauge freedom is useful for showing
renormalizability [43, pp. 738, 739][68, chapter 21][31, chapter 10]. (One can
view the de Broglie-Proca formulation as gauge-fixing the Stueckelberg field
to 0.) Clearly the observables, at least on any definition that is worthwhile,
are the same either way. Whatever the relationship between the empirical
content of massive QED and the observables of classical Hamiltonian massive
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electromagnetism might be, it is equally clear that the non-gauge and gauge
formulations must be equivalent.

3 Observables and Internal vs. External Gauge Symmetries, More

or Less

While the principle that equivalent theories should have equivalent observ-
ables vindicates the gauge generator G over separate first-class constraints,
there could be another distinction required between different types of gauge
symmetries. It is evident epistemologically that observables must be invariant
under internal gauge transformations—they are inostensible, i.e., it is impos-
sible to point at an electromagnetic gauge choice or change thereof—so ob-
servable content cannot depend on such a choice. Matters differ, however, with
space-time coordinates and their transformations, which are familiar in daily
life in Daylight Savings Time and in the work of geographers. We can and do
point to coordinate values and coordinate transformations routinely—a ball
drops in New York at the start of the New Year, clocks are set forward an
hour in the spring and back an hour in the autumn, and there is a golf course
named for and located on the Prime Meridian near Cambridge, England. With
these conventions being accessible by pointing (ostensible), it suffices for ob-
servables to be translatable from one set of conventions to another, much as
natural languages are. The transformation rules of tensor calculus, which yield
the Lie derivative formulas, provide the translation manual. Hence covariance
(translatability using tensor calculus) seems adequate.

Invariance, on the other hand, is too demanding. Because G generates
4-dimensional Lie derivatives, requiring invariance would imply that, for all
vector fields ξµ, {O, G[ξ]} = 0, that is, that the Lie (directional) derivative
of observable O vanish along every vector field ξµ. The problem of spatio-
temporal constancy is not resolved by using G. The problem is not difficult to
diagnose in terms of the meaning and derivation of the Lie derivative. Unlike
electromagnetic or Yang-Mills gauge transformations, coordinate transforma-
tions contain a transport term that compares the value of the field itself at
two different space-time points. For the space-time metric one has

£ξgµν =

(

ξα ∂gµν

∂xα
+ gµα

∂ξα

∂xν
+ gαν

∂ξα

∂xµ

)

;

while the second and third terms are analogous to Maxwell or Yang-Mills
gauge transformations, the first term, the transport term, is totally different.
It arises as the infinitesimal analog of comparing fields at 1 am Greenwich
Mean Time and 1 am British Summer Time (an hour apart). One compares
different space-time points with the same coordinate values in different coordi-
nate systems [69,33,42] [37, p. 271] [9]. Goldberg explains why this physically
curious comparison is mathematically convenient [23, footnote 9]:

The δ̄ transformation compares the field variables at world points with
the same coordinate value rather than at the same world point. That
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is, δ̄yA = ȳA(x) − yA(x) = δyA − yA,µ ξµ. The advantage of the δ̄

transformation is that it commutes with ordinary differentiation.

But clearly reality, observability, and gauge invariance do not require same-
ness at different events, even if one gives them the same coordinate value in
different coordinate systems (which one can always do). The changelessness of
observables has arisen as a conclusion because it has been fed in as a premise
through the (weakly) 0 Poisson bracket condition in cases where G generates
a Lie derivative [45]. Thus the changelessness of observables is resolved by
imposing a more suitable requirement on {O, G[ξµ]}, namely,

{O, G} = £ξO 6= 0.

One might see Kuchař’s and Smolin’s critiques of the usual definition of ob-
servables and Bergmann’s occasional insistence on spatio-temporally varying
observables as also pointing away from the 0 Poisson bracket condition.

This definition {O, G} = £ξO can be rederived using the requirement that
equivalent theories have equivalent observables. One uses massive gravity, in
one version without gauge freedom, in another version with gauge freedom [47,
48], one shows that the two empirically equivalent formulations have the same
observables using the definition.

It turns out that ostensible vs. inostensible, not internal vs. external, is
the fundamental distinction. One sometimes sees a formulation of General
Relativity with a background metric tensor and a non-coordinate gauge free-
dom, as well as a non-gauge coordinate freedom [27,50]. One can combine
a gauge transformation and a coordinate transformation to produce a trans-
formation that changes only the background metric tensor, not the matter
fields or the effective metric. This transformation involves the Lie derivative
of the background metric £ξηµν, so one might think that it counts as an ex-
ternal transformation. But because the background metric does not appear
essentially in the field equations, it is unobservable. Thus changes of only the
background metric leave all observables alone—that is, observables must be
invariant under such transformations. Having a transport term in £ξηµν is
thus not the decisive factor.1 Fortunately paradigm internal transformations
(Maxwell and Yang-Mills) and paradigm external transformations (coordinate
transformations in General Relativity) do fit with invariance and covariance,
respectively.

4 Mixed Internal-External Symmetry: Einstein-Maxwell?

One can now appreciate the importance of the question of how theories with
both internal and external gauge symmetries, such as Einstein-Maxwell, can

1 I thank Oliver Pooley for suggesting the possibility of seemingly ‘external’ transforma-
tions (involving derivatives of the fields) for which invariance is nonetheless appropriate.
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receive a consistent definition of observables. If one requires invariance of ob-
servables under both internal and external gauge transformations [52,55], then,
I find, for Einstein-Maxwell the electromagnetic field Fµν is not an observable,
because it is invariant under the electromagnetic gauge transformation but
only covariant (changing by a Lie derivative δFµν = £ξFµν) under a coor-
dinate transformation. This result follows by inspection from results on the
Einstein-Yang-Mills theory [54]. (Whether one makes an extra electromagnetic
gauge transformation to exclude unwanted velocities and thus render the for-
malism projectable to phase space is a matter of indifference in this respect,
because such a transformation affects Aµ but not Fµν .) Given that Fµν is an
observable given the definition for pure electromagnetism, one might be dis-
appointed that Fµν is not an Einstein-Maxwell observable on the definition
requiring invariance under all gauge transformations.

But given the bifurcated definition that requires internal (or rather, in-
ostensible) invariance but external (or rather, ostensible) covariance [47,48],
changing Fµν by its Lie derivative, not by 0 (covariance rather than invariance),
is exactly what is required to make Fµν an observable in Einstein-Maxwell
theory. By similar reasoning the space-time metric gµν , which is observable
on the bifurcated definition in vacuum General Relativity, remains observ-
able in Einstein-Maxwell theory. In more detail, on the bifurcated definition
one wants δFµν = 0 and δgµν = 0 for electromagnetic gauge invariance, and
δgµν = £ξgµν and δFµν = £ξFµν from general relativistic coordinate co-
variance. Fortunately the gauge generators for Einstein-Yang-Mills and their
actions are already known [54] and these results do in fact obtain, as one sees
by inspection. One simplifies Yang-Mills to Maxwell by dropping the internal
Yang-Mills index to reach Einstein-Maxwell (Ai

µ → Aµ), making the Yang-
Mills structure constants disappear, and one takes the kinetic metric Cij = δij

to be the number 1. Thus the mixed definition performs exactly as one would
hope. The electromagnetic field strength is an observable in Einstein-Maxwell
just as it is in Maxwell’s theory. The space-time metric tensor is an observable
in Einstein-Maxwell just as it is in GR. The bifurcated definition behaves just
as one would wish, unlike some other definitions.

5 Future Work: Local Supersymmetry?

With the bifurcated definition behaving properly under internal, external, and
combined internal-external definitions at least in key examples, it seems plau-
sible that the definition works in most or all physically interesting cases, at
least for theories lacking local supersymmetry. But supergravity [41] poses
a challenge in that the transformation rules for bosons and fermions evi-
dently combine internal and external aspects in a non-diagonal way: δB ∼ ε̄F ,
δF ∼ (∂B)ε. While Hamiltonian treatments have long been available (e.g.,
[20]), the gauge generators G might not be known. They are known, however,
in 2 + 1-dimensional supergravity [38]. Graviton-massive supergravity (a less
desolate subject now than when there were reportedly 5 extant papers only 15
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years ago [26]) might possibly permit resolution of the definition of observables
by calculation as massive electromagnetism and massive gravity have.
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