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Landauer’s (1961) “Irreversibility and Heat Generation in the Computing Process” 

speculated that there is a fundamental link between heat generation in computing 

machines and the logic of the computation implemented. While this proposal has 

become the central principle of the new “thermodynamics of computation,” it is a 

flawed proposal that depends on enduring misapplications of standard results in 

thermal and statistical physics. 

 

1.	An	Enticing	Proposal	
 Computing devices generate heat when they compute and hardware designers must 

provide cooling for the devices to avoid overheating and malfunctioning. One might categorize 

the problem as a mere technical nuisance that is not amenable or even worthy of independent 

foundational analysis. Landauer’s (1961) paper, “Irreversibility and Heat Generation in the 

Computing Process” presented us with an enticing alternative. The heating effect, Landauer 

proposed, is no mere technical nuisance but one that arises from a profound connection between 

the logic of computation and the fundamental laws of thermodynamics. Whenever a computer 

computes, the minimum heat that must be generated is fixed by rules independent of the 

particular physical implementation of the computation. The limits are fixed by the logic. They 
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are the same no matter the hardware or the particular way the logic is implemented. Landauer’s 

analysis provided the foundation of a new literature that Bennett (1982) later called “the 

thermodynamics of computation.” It appears to be a powerful extension of thermodynamics to 

computing devices, complete with a new physical law, “Landauer’s principle.”1 

 The principal ideas that this later literature drew from Landauer’s paper are: 

 

1. The minimum heat that must be generated in a computation is determined by its logical 

character, independently of the particular hardware or procedures used. 

2. Logically irreversible computations, such as erasure, necessitate heat generation. Logically 

reversible computations do not. 

3. Logically irreversible computations, such as erasure, must be implemented by 

thermodynamically irreversible processes. Logically reversible computations need not. 

4. The erasure of an n-bit memory device reduces the number of states of the memory from 

2n to one. It corresponds to a 2n fold compression of the device’s phase space. 

5. Since each of the n bit memory device’s 2n states are equally likely, its erasure moves it 

from a state of probability W=1/2n to W=1. 

6. The decrease in thermodynamic entropy S of a memory device when it is erased can be 

computed from Boltzmann’s celebrated formula,  

S = k ln W                                                                   (1) 

 Thus the entropy of an n bit memory device changes in erasure by  

ΔS = k ln 1 – k ln (1/2n) = -nk ln 2. 

Since the second law prohibits a decrease of total thermodynamic entropy, this entropy change 

must be compensated by an increase of entropy in the environment of at least nk log 2. These 

changes of entropy are connected with heat transfers by the Clausius definition of entropy. It 

asserts that the increment dS in thermodynamic entropy in a system is 

dS = dQrev/T                                                                  (2) 

where dQrev is the increment of heat passed to the system in a thermodynamically reversible 

process.  
                                                
1 For helpful surveys of this literature and for its connection with the Maxwell demon literature, 

see Leff and Rex (2003) and Maroney (2009). 
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7. Applying (2) to the process, the erasure of an n-bit memory device is accompanied by the 

passing of at least Q = TS = nkT ln 2 of heat to the environment. 

 

This collection of claims has entered into the standard repertoire of modern physics under the 

rubric of “Landauer’s Principle.” One cannot but be impressed on first seeing these ideas. There 

in an historic ring to them. In examining the limits of steam engines, Sadi Carnot observed in 

1824 that all heat engines must discharge waste heat. This observation became Thomson’s 

second law of thermodynamics: no heat engine can fully convert heat into work. So began the 

new science of thermodynamics. Landauer’s 1961 paper promised a similar transformation. 

Computations must also discharge heat in virtue of their logical specification. So begins, it would 

appear, the new science of the thermodynamics of computation. Or so we might hope. 

 As is often the case with new discoveries, Landauer’s original paper was speculative. The 

results above were made plausible but not demonstrated. It is now over half a century since 

Landauer’s paper was published. One might think that this is ample time for more careful 

analysis to provide the secure foundation needed for these claims. My unhappy task in this note 

is to argue that these secure foundations have eluded us. While much has been written about 

these claims and they have been employed widely, at best they are supported by flawed 

argumentation and at worst they are in contradiction with standard thermal and statistical physics. 

The longstanding failure of attempts to repair these difficulties suggests that they are unlikely 

ever to be resolved. There is a single origin for many of these problems: a misapplication of 

Boltzmann’s famous “S=k ln W” through a failure to recognize the dynamical character of the 

probability W. 

2.	Dynamic	and	non-Dynamic	Probabilities	
 What gives Landauer’s proposal its initial plausibility is that it is based on one of the 

most robust relations in thermal physics, Boltzmann’s formula (1). This relation has a 

remarkable range of applicability and is the starting point for many important investigations. 

Indeed it is a generally reliable rule of thumb that, when we encounter a probability W in a 

thermal system, we can use Boltzmann’s formula to assign a thermodynamic entropy to the 

system. However even an expansive relation like this has limits to its applicability. The Landauer 
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proposal breaches those limits and the breach leads to two problems to be delineated in later 

sections: 

• the analysis misuses Boltzmann’s formula (1) to ascribe an incorrect thermodynamic 

entropy to a memory device (Section 3); and 

• the analysis neglects the entropy creation required to suppress the fluctuations necessitated 

by Boltzmann’s formula (Sections 4 to 8). 

Efforts to provide a more secure foundation for Landauer’s proposal must repair this breach. It is 

a formidable challenge that is, in my view, unmet. 

 The relevant limit to the applicability of Boltzmann’s formula is the type of probability 

employed. The W of Boltzmann’s formula is a dynamic probability whose value is determined 

by the dynamics of the system. A thermal system migrates dynamically over many accessible 

states. The dynamic probability of a state is the fraction of time the system will spend in that 

state in the limit of infinite time. It is fixed by the dynamics. 

 This probability is contrasted with non-dynamic probabilities. They are fixed by means 

independent of the dynamics of the thermal system. These probabilities may be fixed as degrees 

of belief or by any means, other than the dynamical evolution of the thermal state.  

 This dynamic probability underpins the probabilistic understanding of the second law of 

thermodynamics. In its migrations, the system is most likely to migrate to and be found in the 

most probable state. We read directly from Boltzmann’s formula that this most probable state has 

greatest thermodynamic entropy. With that, we recover a familiar probabilistic form of the 

second law of thermodynamics: systems spontaneously move to states of maximum 

thermodynamic entropy, where they remain, most probably. If we assume that this dynamic 

probability is distributed uniformly over the system’s phase space, then this same result is 

expressed as the near certain evolution of the system to states associated with the largest volume 

of phase space. Correspondingly, thermodynamic entropy is associated by the Boltzmann 

formula with the logarithm of volumes of phase space. Entropy increases and decreases as the 

volume of phase space associated with a state increases and decreases. 

 The entropy of Boltzmann’s formula (1) is only associated with heat according to the 

Clausius definition (2) when the system has arrived at its most probable state, thermal 

equilibrium. For Clausius’ definition is expressed in terms of thermodynamically reversible 

processes that are only realized in systems brought arbitrarily close to thermal equilibrium. Then 
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the system’s probability distribution over its phase space is Boltzmann or, equivalently, 

canonical. 

 These last considerations apply in Boltzmann’s approach to statistical physics, which 

traces the dynamical evolution of the system from a non-equilibrium to an equilibrium state. 

Such an approach obviously requires dynamic probabilities. One might imagine that they are not 

required in the alternative Gibbs’ approach.2 In it, a thermal system at equilibrium is represented 

by an ensemble of systems, whose number distribution replicates the probability distribution of 

the Boltzmann approach. However these ensemble counts must match the dynamic probabilities. 

Only then can the expression for entropy of a canonically distributed system in the Gibbsian 

approach3 

S = −k ρ(x)lnρ(x)dx
Γ∫ = E

T
+ k ln exp(−E (x)dx

Γ∫  

agree with the Clausius, heat based definition (2) of entropy for canonically distributed systems. 

For the agreement is demonstrated by tracking the heat transferred during a thermodynamically 

reversible process. Gibb’s canonical entropy can only match the heat based entropy of Clausius’ 

formula if we assume that, during the process, each system in the ensemble explores its phase 

space dynamically with the relative occupation times matching the canonical distribution.  

 These results are fundamental to the integration of thermal and statistical physics. 

Ehrenfest and Ehrenfest (1990, pp. 60-61) summarize the results that assert the agreement with 

the Clausius definition of entropy for both Boltzmannian (Eq. 75’) and Gibbsian (Eq. 74) 

entropies. Norton (2005, Sections 2, 3 and Appendix A) provides an analysis of Gibbs’ canonical 

entropy and the ensemble approach that makes clear its dependence on dynamic probabilities. 

3.	Misattribution	of	Thermodynamic	Entropy	to	Memory	Devices	
 The basis of Landauer’s analysis is that erasure reduces the number of states in a memory 

device; that this is a compression of the device’s phase space; and that this leads to a reduction in 

the thermodynamic entropy of the device. The error here is obvious. Prior to erasure, the memory 

                                                
2 For a comparison of the approaches see Ehrenfest and Ehrenfest (1990, Ch. III). 
3 The system is canonically distributed with probability density ρ(x) = exp(−E (x) / kT ) / Z  over 

a phase space Γ with generalized coordinates x and energy at each phase point E(x).  
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device is in just one of its 2n states; and after erasure it is in another. The logical specification of 

the process of erasure does not require any compression of the phase space. It merely requires a 

relocation of which part is occupied. 

 The need to compress phase space arises because of the particular erasure protocol 

employed by Landauer and virtually all authors who followed him. They insist on a dissipative 

erasure procedure in which the memory device is thermalized. The energetic barriers that prevent 

each bit from flipping are dropped, so that the bits can flip to and fro in thermal agitation and the 

memory device can migrate freely over all its 2n states. This is a thermodynamically irreversible 

process that is the analog of allowing an n molecule ideal gas to expand twofold without doing 

work. This thermalization process is responsible for the creation of the thermodynamic entropy 

that appears in subsequent calculations. 

 The same error is committed in terms of the probabilities W in Boltzmann’s formula in 

propositions 5 and 6 above, where the erasure is portrayed as moving the system from a state of 

probability W=1/2n to W=1. The error is that this probability ratio is not a ratio of dynamic 

probabilities. The unerased memory device is not migrating over all possible 2n states. The 

probability W=1/2n assigned to the unerased memory device does not correspond with relative 

occupation times. If the device did so migrate, the unerased device would be useless for storing 

data. The probability W=1/2n is derived from another source. Perhaps we believe that each of the 

possible states is equally likely; or we expect that in typical computations we will run into each 

configuration equally often. Both of these are non-dynamic probabilities that cannot be 

substituted into the Boltzmann formula (1) if a thermodynamic entropy is to be recovered. 

 Dynamic probabilities do appear as an intermediate in the particular erasure procedure 

employed. They appear when the memory device is thermalized so that it can migrate freely over 

all its 2n states. As before, this thermodynamically irreversible thermalization step is responsible 

for the creation of nk log 2 of thermodynamic entropy. It does not derive from the logic of 

erasure, but from a step in the particular erasure procedure employed. 

 This treatment of the memory state as if it were the thermalized state is pervasive. In 

response to earlier analyses, I had been assured that newer, better demonstrations of Landauer’s 

principle avoid the conflation. However, as Norton (2011, Appendix) reports, examination of 

these purported improvement show the conflation remains the basis of virtually all the 
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demonstrations. However it is harder to see since the conflation is buried more deeply in an ever-

growing thicket of formalism.4 

4.	Fluctuations	in	Small	n	Systems	are	Unavoidable	
 That the probabilities in Boltzmann’s formula (1) are dynamic necessitates thermal 

fluctuations. Any analysis based on the formula cannot ignore them. To see them, take an ideal 

gas consisting of n molecules momentarily confined to half a vessel. The gas will most probably 

expand to fill the vessel. Since each molecule moves independently, the ratio of probabilities of 

the final expanded state to the initial state is W = 2n. Boltzmann’s formula then assigns an 

entropy change of S = k ln 2n = nk ln 2 to this twofold expansion in volume. It matches the 

expression from the ordinary thermodynamics of ideal gases.5 The dynamical character of the 

probabilities permits a reversal of this expansion. With the small probability of 1/2n, all the 

molecules may momentarily be located in the original half of the vessel. This spontaneous 

recompression of the gas would be an improbable thermal fluctuation. 

 For macroscopic systems, these fluctuations are imperceptible. In systems with smaller 

numbers of components, where “n” is small, the probabilities for fluctuations are substantial and 

will reverse processes that would otherwise complete without difficulty in large n systems. The 

twofold expansion of a three molecule ideal gas, for example, is reversed by a fluctuation with 

probability (1/2)3 = 1/8. The reversal will occur routinely. 

 This result for small n systems is quite general. It is recovered most easily from 

Einstein’s fluctuation formula (1904, p. 360). Consider a system that has come to thermal 

equilibrium with a large heat reservoir at temperature T. The system’s energy E is canonically 

distributed. Using <…> to designate expectation values, the variance of the energy is related to 

the mean energy <E> by 

<ε2> = kT2 d<E>/dT 

                                                
4 A welcome exception is the demonstration provided by Ladyman et al. (2007, 2008, 2013). The 

problems of these demonstrations have been laid out in Norton (2011, 2013). 
5 This example is Einstein’s (1905) from his light quantum paper in which he memorably labels 

formula (1) “Boltzmann’s Principle.” 
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where ε = E - <E> is the deviation of the energy from its mean value. Most systems commonly 

considered in thermal physics have Hamiltonians that are quadratic in their canonical phase 

space variables. The equipartition theorem applies to such systems. Each has an additive 

contribution of kT/2 to its mean energy for each degree of its m degrees of freedom. The mean 

energy is: 

<E> = mkT/2 

It follows from Einstein’s fluctuation formula that the spread in the energy, as measured by the 

root mean square (“rms”) deviation is 

<ε2>1/2 =  (m/2)1/2 kT 

The key dependency is that the spread in energy grows slowly with the square root of the number 

of degrees of freedom m, whereas the mean energy <E> grows faster, linearly in m. That means 

that fluctuations become negligible for macroscopic systems with large values of m. For such 

systems, the mean energy is of the order of 1024 in units of kT. Energy fluctuations are merely of 

the order of 1012 in energy units of kT. 

 Matters are quite different for systems with small numbers of components. Then the 

energy fluctuations will be substantial in relation to the system’s mean energy. A monatomic 

ideal gas is often used in a simple model of a one bit memory device in the thermodynamics of 

computation. This gas has three degrees of freedom, so the spread in its energy is given by 

<ε2>1/2 =  (3/2)1/2 kT = 1.22 kT 

That means that gas energy fluctuates over an rms range of 0.28kT to 2.72kT. These are 

substantial fluctuations that will present an obstacle to completion of processes. Imagine, for 

example, that we want to double the energy of the gas by heating it to twice the initial 

temperature. A fluctuation that reverts the energy to its original energy lies well within this rms 

range. The energy increase will be spontaneously undone and redone, repeatedly, by fluctuations. 
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5.	No	Go	Result:	The	Simple	Idea6	
 The last section recounted two instances of how thermal fluctuations disrupt the 

completion of process in systems with small numbers of components. This disruption is part of a 

general “no go” result that applies to all such systems. We should like process in such systems 

to: 

(i) be minimally dissipative, that is, create the minimum of thermodynamic entropy; and 

(ii) complete with certainty or at least high probability. 

The no go result is that satisfaction of one of these conditions precludes satisfaction of the other. 

If we seek minimum thermodynamic entropy creation, we must forgo any workable probability 

of completion. If we seek substantial probabilities of completion, we must create quantities of 

thermodynamic entropy that are large on molecular scales. 

 Since the n-bit memory devices of Landauer’s proposal are small n system, this tension 

applies to all the processes presumed in developing the proposal. No process at this scale can be 

brought to completion with high probability unless there are dissipative, entropy creating 

processes somewhere in the system. Yet their necessary presence is routinely neglected and the 

associated entropy creation ignored. In the standard erasure protocol, for example, it is assumed 

that the state space of a thermalized n-bit memory device can be compressed reversibly without 

creation of thermodynamic entropy. 

 The basic idea of the no go result is recoverable without computation from Boltzmann’s 

formula (1). Consider some process that we set up to proceed from an initial state “init” to a final 

state “fin,” where the process moves forward in virtue of the dynamics of the system. In order to 

minimize entropy creation, we must keep all processes as close to thermodynamic reversibility as 

possible. Such processes are constant thermodynamic entropy processes. In the limit case sought, 

we seek a process whose initial entropy Sinit and final entropy Sfin are equal: 

Sinit = Sfin 

                                                
6 This “no go” result that has been developed in Norton (2011, Section 7; 2013a, Part II; 2013b; 

2017). These papers contain computations of fluctuations in specific processes, including the 

expansion of ideal gases of few and many molecules and the measuring of the state of an electric 

dipole. 
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It follows immediately from Boltzmann’s formula (1) that the dynamic probabilities of the two 

states are the same. 

Winit = Wfin 

Since these probabilities are dynamic, they describe fluctuations. We learn that fluctuations so 

confound a constant entropy process that we are as likely to find it in its initial state as in it final 

state. 

 For any small component process, computational or otherwise, we can only assure its 

completion probabilistically by raising the entropy of the final state in relation to the initial state. 

The resulting entropy costs are substantial. To secure a modest ratio of success of merely 

(Wfin/Winit) = 20, we must have a process that creates at least 3k of entropy: 

ΔS = k ln (Wfin/Winit) = k ln 20 = 3k 

The quantities of entropy required by this formula to suppress fluctuations are large in 

comparison to those tracked by Landauer’s principle. They cannot be ignored as a nuisance to be 

dealt with in other ways. They arise from the same relation S = k ln W that is essential to 

Landauer’s proposal. 

 These quantities of entropy are independent of the logical specification of whichever 

computation is implemented by the process. They are determined merely by the probability of 

successful completion specified. If, as is commonly the case, a computation requires multiple 

steps to be completed successively, then there will be a corresponding quantity of entropy 

associated with the completion of each step. This means that an attainable lower limit to 

dissipation in molecular scale processes is neither given by Landauer’s expression nor is it 

independent of the details of the implementation of the computation. Any estimate of an 

attainable lower limit has to include the thermodynamic entropy that must be created to assure 

completion with the specified probability of each step of the implementation used. 

6.	No	Go	Result:	A	More	Developed	Version	
 The version of the no go result described in the last section was simplified by its neglect 

of the states intermediate between the initial and final states of the process. Including them 

reveals more sources of thermodynamic entropy creation when we try to implement 

thermodynamically reversible processes on molecular scales. 
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 Consider a process whose degree of completion is tracked by a continuous variable λ. 

The process could be an expansion or contraction of the accessible volume of a system’s 

configuration space; or a measurement process in which the state of some measuring device is 

brought to match that of a target system; or a transfer of data from one memory device to 

another; or the setting of the content of one memory device as some specified function of 

another; or any other process required of some computational system that has a definite initial 

and final state. In seeking the minimum dissipation, we seek a thermodynamically reversible 

process, that is, one in which the thermodynamic entropy S of the system and its environment 

remain as close as we can achieve to constant throughout: 

dS(λ)/dλ = 0   and thus    S(λinit) = S(λ1) = S(λ2) = S(λfin) 

Applying Boltzmann’s formula (1) to this case, we recover a uniform probability density w over 

the path parameter λ: 

w(λinit) = w(λ1) = w(λ2) = w(λfin) 

Since these probabilities are dynamic, it follows that the system is equally likely to be found in 

any of the stages, including the initial and final states and any arbitrarily chosen intermediate 

stages 1 and 2. The system is fluctuates back and forth with limiting occupation times matching 

these probabilities. Attempting to implement a thermodynamically reversible process leads to 

one so confounded by fluctuations that it could be equally in any of its stages. 

 We can now see how the accessibility of the intermediate stages leads to further entropy 

creation than suggested by the simpler analysis of Section 5. Assume for convenience that the 

stages are divided into n steps: λ = 0 to 1, λ = 1 to 2, …, λ = n-1 to n. We initialize the system in 

a state corresponding to a range of values, λ = 0 to 1. It is released and allowed evolve 

dynamically over the full range of stages. The final state “eq” is not the intended final state λ = 

n-1 to n. Rather, because all intermediate stages are accessible, it is a state uniformly distributed 

over all stages λ = 0 to n. The ratio of probabilities is Weq/ Winit = n/1. Hence the 

thermodynamic entropy creation is 

ΔS = k ln (Weq/ Winit) = k ln n 

This entropy is created without any assurance that stages of larger λ have greater probability. 

The probability of the intended final state, λ = n-1 to n, is just 

Wfin = 1/n 
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 If we are to improve the probability of successful completion of the process, it must be 

designed so that later stages have higher thermodynamic entropy: 

dS(λ)/dλ > 0 

The greater the entropy change over the stages, the higher the probability of later stages. 

7.	An	Illustration	
 A simple example illustrates how such an entropy gradient enhances the probability of 

completion. Assume that we have a system in thermal contact with a large heat reservoir at 

temperature T and a system Hamiltonian given by 

H(λ) = f(π) - ελ 

The stages of the process are tracked by the parameter λ, which is also assumed to be canonical. 

The quantity ε≥0 introduces an energy gradient that inclines the system to evolve towards larger 

values of λ. The remaining canonical coordinates of the system are represented jointly by π and 

their contribution to the Hamiltonian by the term f(π), which is independent of the stage of 

completion of the process. They need not be represented more completely, since they will drop 

out of the calculation. 

 Two instantiations of systems with this Hamiltonian are given in Norton (2013a, §10 and 

§11). The first is a small bead that slides frictionlessly on a straight wire. The inclination of the 

wire to the horizontal yields a gravitationally induced energy gradient that drives the bead from 

one end of the wire to the other. The second is a charge that we seek to move in channel. The 

energy gradient that moves the charge is provided by a constant electric field. 

 The probability that the system lies between two stages λ1 and λ2 is proportional to the 

partition integral:  

		
Z(λ1 ,λ2)= exp −H(λ)

kT
⎛
⎝⎜

⎞
⎠⎟λ1 ,π

λ2∫ dλdπ = const . exp ελ
kT

⎛
⎝⎜

⎞
⎠⎟λ1

λ2∫ dλ = const .kT
ε

exp ελ2
kT

⎛

⎝⎜
⎞

⎠⎟
−exp ελ1

kT
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

This probability is no longer uniform and, for larger ε, favors larger λ. If the intended final state 

is λ = n-1 to n, then we compute its probability as: 

  
Wfin =

Z(n−1,n)
Z(0,1)

= exp(εn / kT )− exp(ε(n−1) / kT )
exp(εn / kT )−1

= 1− exp(−ε / kT )
1− exp(−εn / kT )
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The thermodynamic entropy created by the process that released the system from its initial state 

λ=0 to 1 is: 

ΔS = k ln Z(0,n)
Z(0,1)

⎡
⎣⎢

⎤
⎦⎥
= k ln exp(εn / kT )−1

exp(ε / kT )−1
⎡
⎣⎢

⎤
⎦⎥

 

These last two formulae have two revealing limiting cases. 

 If take the limit as ε goes to zero, we have the case of no driving force, a zero energy 

gradient, and we recover: 

Wfin = 1/n    and    ΔS = k ln n 

As expected, we have the least entropy creation of Section 6 but with an unsatisfactory 

probability of success. 

 If we take the case of large ε in which the process is driven forward by a steep energy 

gradient, we recover 

Wfin  ≈ 1 – exp(-ε/kT)     and    ΔS ≈ ε(n-1)/T 

In this last case, we have a probability of successful completion that can be brought as close to 

one as we wish by making ε sufficiently large. However we have large quantities of entropy 

created in proportion to (n-1). The entropy created allows a simple interpretation in terms of the 

Clausius definition of thermodynamic entropy (2). It is the entropy created by a reversible 

transfer of heat to the heat reservoir in the amount ε(n-1). That heat corresponds to the energy 

lost by the system in moving down the energy gradient from a stage with λ=1 to one with λ=n. 

8.	Least	Dissipative	Processes	Derived	Using	Fluctuations	
 The analysis of the last two sections shows that the accessibility of intermediate stages in 

a process creates more thermodynamic entropy than called for by the Boltzmann formula 

ΔS = k ln (Wfin/Winit). It turns out that, if we eschew the attempt to keep processes everywhere 

thermodynamically reversible, it is possible to use fluctuations to arrive at this lower amount of 

entropy creation. Fluctuations become part of the solution and are not just the source of the 

problem. 

 This lower dissipation is achieved by assuring that all intermediate states “inter” have 

energies far higher that the energies of the initial and final states. 

Einter >> Einit    Einter >> Efin 
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If the system is in thermal equilibrium with a heat reservoir at temperature T, the probability of a 

state is canonically distributed. Thus the probability of these intermediate states is proportional to 

exp(-Einter/kT). This factor will be significantly less than the corresponding factors for the 

probabilities of either the initial or final states, exp(-Einit/kT) and exp(-Efin/kT). 

 The process advances only when an improbable fluctuation leads the system to jump 

from the initial state to an intermediate state of much higher energy, from which it can then 

revert to either the initial or the final state. If we assume that the factor exp(-Einter/kT) is 

negligible, the probability that the process over the longer term delivers the system in the final 

state is given as 

Wfin =
exp(−Efin / kT )

exp(−Efin / kT )+ exp(−Einit / kT )
= 1
1+ exp((Efin − Einit ) / kT )

 

Thermodynamic entropy is created in the transition from the initial state “init” to a state that is 

the probabilistic weighted combination of the initial state “init” and the final state “fin.” It is 

given by 

ΔS = k ln exp(−Einit / kT )+ exp(−Efin / kT )
exp(−Einit / kT )

= k ln 1+ exp(−(E fin − Einit ) / kT )[ ]  

The force driving the process is the energy difference Efin – Einit. As before, we can take two 

limiting cases. 

 When that energy driving force goes to zero, Efin – Einit = 0, then we have 

Wfin = 1/2    and    ΔS = k ln 2 

It is an improvement on the corresponding results of Section 7. The probability of successful 

completion is increased from 1/n to the still modest 1/2 and the entropy created reduced from 

k ln n to k ln 2. 

 When the energy driving force is large, Efin – Einit << 0, then we have 

Wfin ≈ 1 - exp((Efin – Einit)/kT)   and   ΔS ≈ -(Efin – Einit)/T 

Once again, the probability of successful completion, Wfin, can be brought as close to one as we 

wish by making Efin – Einit sufficiently negative. However the entropy created rises 

correspondingly. The thermodynamic entropy created allows a simple interpretation in terms of 

the Clausius definition (2). It is the thermodynamic entropy that would be gained by the thermal 
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reservoir if the energy lost by the system -(Efin – Einit) were to be imparted to the reservoir as 

heat in a thermodynamically reversible process. 

 A comparison with the formulae of Section 7 for the case of a large driving force shows a 

reduction in the entropy created for the same probability of completion. Fix some desired value 

for Wfin. To provide it, the process of Section 7 with accessible intermediate states requires 

creation of n-1 times as much entropy as the process of Section 8 that does not allow these 

intermediate states to be accessible. 

 While rendering the intermediate states energetically inaccessible may be appealing for 

the ensuing reduction in thermodynamic entropy creation, it has its own problem. The 

probabilities computed here are dynamic and correspond to the relative occupation times of the 

system. Since the process must still pass through the intermediate states and they have very low 

probability, the process will take a long time to complete, while we wait for a highly improbable 

random fluctuation.  

9.	Confusions	over	Thermodynamic	Reversibility	
 The issues of the preceding sections are, in my view, the principal difficulties faced by 

Landauer’s proposal. Seeing them clearly, however, has proven difficult because they are 

obscured by further confusions. An important one concerns thermodynamically reversible 

processes. 

 Giving a precise characterization of thermodynamic reversibility is delicate and even 

more so that one might imagine, as I found in Norton (2016). Loosely speaking, a 

thermodynamically reversible process is one that proceeds with the most minute deviations from 

equilibrium. Within those minute deviations, it can proceed in either direction. 

 The most troublesome confusion in the Landauer principle literature is the erroneous 

claim that the (irreversible) thermalization process is thermodynamically reversible.7 The basic 

argument is that, prior to thermalization, there is a probability of 1/2n that the memory device is 

in each of the possible 2n states. After thermalization, the same probabilities obtain. Therefore 

(?), by the Boltzmann formula, the entropy of the memory device is unchanged during 

thermalization and the process is thermodynamically reversible. Of course the fallacy is that the 

                                                
7 This is reported as a standard result in Leff and Rex (2003, p. 21). 
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probability prior to thermalization is not a dynamic probability, so that the Boltzmann formula 

cannot be applied. 

 This confusion then threatens to undo the claim that a logically irreversible process like 

erasure must be implemented by a thermodynamically irreversible process. For if that confusion 

is accepted, the erasure process can proceed entirely with thermodynamically reversible steps. To 

erase a memory device we first thermalize it, which is itself already a logically irreversible 

process. We then compress its state space to a single state. The compression can be carried out in 

a thermodynamically reversible manner, analogous to the thermodynamically reversible 

compression of a gas. The compression does require that thermodynamic entropy be passed to 

the environment and, following the Clausius definition (2), that the environment is heated. We 

recover the heating effect that grounded Landauer’s original paper but now in a process that we 

are to suppose is thermodynamically reversible. 

10.	Conclusion	
 We now see that each of the claims of Landauer’s original proposal, as enumerated in 

Section 1 above, turns out to be unfounded or refuted. 

• Contrary to Propositions 1 and 2, the need to suppress fluctuations places a lower limit on 

entropy creation that is unconnected with the logic of the computation. It is set merely by 

the number of steps chained in the computation and the probability of completion specified 

for each. 

• Proposition 3 is contradicted by the Landauer principle literature itself when it supposes 

erroneously that the logically irreversible thermalization of a memory device is 

thermodynamically reversible. 

• Proposition 4 fails since erasure only relocates the occupied location of a phase space and 

does not compress it. 

• Proposition 5 mixes non-dynamic and dynamic probabilities, so that their insertion into 

Boltzmann’s formula (1) in Proposition 6 fails to determine a thermodynamic entropy.  

• Proposition 7 fails to recover quantities of heat since the entropy changes computed in 

Proposition 6 are not thermodynamic entropies that are subject to Clausius’ definition (2). 



 17 

While the concerns described above have been laid out in simple terms, I believe that they are 

decisive and ultimately unanswerable. Much more can and has been said. The debate is elaborate  

and can be entered through the references to which the reader is now referred.  

 If I have established well enough that all is not well with the present foundations of the 

thermodynamics of computation, might one plead for indulgence since Landauer’s proposal has 

been fertile? Should we not give it a chance to prove itself? “Let a thousand flowers bloom.” 

No—I  do not see the fertility. All I see is the endless repetition in various forms of the same ill-

founded claims. This literature has been given chance enough to produce the promised sound 

foundation. Flowers cannot bloom in a garden overgrown with weeds. Over fifty years after 

Landauer planted the seeds, we should realize that what sprang from them are weeds that 

threaten to overtake our garden. Let us weed the garden and give the real flowers a chance. 
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