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Abstract

Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the
1970s and 80s, but this enthusiasm was tempered by a long interlude of frustration
when genuinely useful AI applications failed to be forthcoming. Today, we are
experiencing once again a period of enthusiasm, fired above all by the successes of
the technology of deep neural networks or deep machine learning. In this paper we
draw attention to what we take to be serious problems underlying current views
of artificial intelligence encouraged by these successes, especially in the domain of
language processing. We then show an alternative approach to language-centric AI,
in which we identify a role for philosophy.
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1. The current paradigm of AI: Agnostic Deep Neural
Networks (dNNs)

An AI application is a computer program that can create an output in response to input
data in a way that is similar to the ways humans react to corresponding environmen-
tal stimuli. In what follows we will focus on AI applications that work with natural
language input, where the currently dominant paradigm is provided by what is called
agnostic deep machine learning.1 The latter is a subfield of applied mathematics in
which input-output-tuples of data are used to create stochastic models, in a process
often (somewhat simplistically) referred to as ‘training’. The inputs are connected to
outputs probabilistically, which means that there is a certain (a priori unknown but
measurable) likelihood that a given input will be associated with a given output. The
models are referred to as ‘stochastic’ because they work by utilizing the fact that the
data on which they draw is probabilistic in this sense. The models are, in addition,
‘agnostic’ – which means that they do not rely on any prior knowledge about the task
or about the types of situations in which the task is performed, and they are often “end
to end,” which means that they are meant to model an entire process such as answering
a letter or driving a car. The models are, finally, ‘deep’ in the sense that their architec-
ture involves multiple layers of networks of computational units (thus not, for example,
because of any depth in their semantics)

For agnostic deep learning to be useable in creating an AI application, a number of
conditions must be satisfied:

1. A sufficient body of training data must be available in the form of tuples of in-
put and output data. These are digital mappings of, respectively, a situation in
response to which an action is required, and an action of the corresponding sort
(Hastie et al., 2008). A classical AI-application in this sense is the spam filter,
whose initial output data were created using annotations, in this case adding the
label “spam” to email inputs.

2. Computers must receive the training material in digital form, so that it can be
processed using the computing resources available today (Cooper, 2004).

3. The annotated training tuples must be reasonably consistent (noise-poor) – that
is, similar inputs should lead to similar outputs. This is because machine learning
requires repetitive patterns – patterns that have arisen in a recurring, rather than
erratic, process. The behaviour of human email users when identifying spam forms
a repetitive process of the needed sort. The reason for this is that users of email
have a motive to become experts in successful identification of spam, since they
are aware of the high costs of failure. The movement of the oil price over time,
in contrast, is an example of an erratic process. This is because the input data
pertaining to geopolitical and economic events bear no consistent relation to the
output data, for example the price of Brent crude.

1Also referred to as ‘brute force’ learning
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4. The data input must be abundant, since a machine-learning algorithm is a stochas-
tic model that needs to represent as much as possible of the variance which char-
acterises the situation in which the model is to be used. Because in language
applications the overall complexity of the relationship between input and output
is typically very high, the models will need many parameters. For mathematical
reasons these parameters can only be estimated (through the type of optimisation
process otherwise called “training”) on the basis of huge data sets. If the training
sets are too small, there is a high chance that novel input data will not have the
properties of the data sampled in the training distribution. The model will then
not be able to produce an adequate output under real production conditions.

Most of the AI applications in current use, for example in product recommendation or
advertisement placement, draw on situations where these four conditions are satisfied.
To establish the training set for the first spam filters, developers needed to collect millions
of input-output data tuples where inputs are emails received by humans and outputs
are the classifications of these emails by their respective recipients either as spam or as
valid email. They then trained a machine-learning model using these data tuples and
applied the result to new emails. The goal is that the model should replicate the human
reaction it has been trained with, which means: identifing spam in a way that matches,
or even outperforms, the behaviour of a typical human.

In classification applications such as this, it is only knowledge of a very simple type
– knowledge captured by simple input-output-tuples – that is given to the machine by
its mathematician or AI-engineer trainers. In some cases, application developers may
wish to improve the model that is generated by the algorithm from the data by selecting
for training purposes only those tuples that have certain desired properties (as when,
in building training models for autonomous cars, they in effect seek to approximate the
positive aspects of the driving behaviour of mature females rather than that of teenage
males). The performance of the machine is in such cases designed to surpass that of
the average human, because the trainers of the model select only the most desired sorts
of responses from what may be a much more considerable variance exhibited in actual
behaviour. Designers may also select data that have been somehow validated by experts
for correctness, creating what is called a “gold standard” set of annotations. Because the
engineer uses prior knowledge about data quality when making such selections, this is
equivalent to an – albeit minimalistic – usage of prior knowledge in machine learning.

When such strategies are followed, machine learning with neural networks can out-
perform even the strongest human performance with regard to both efficiency and ef-
fectiveness,2 and we can now distinguish three types of cases in which such better-than-
human performance is achievable:

1. dNNs with higher efficiency than is obtainable by humans: when the behaviour that
is modelled consists of truly repetitive processes with narrow scope and with data
that can easily be represented in digital form: for example in complex industrial

2Increasing efficency means: reducing unit production costs; increasing effectiveness means: achieving
higher desired quality per production unit.
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automation tasks, following a pattern that has been the driver of engineering since
the industrial revolution.

2. dNNs with higher effectiveness than humans: in hypothesis-based pattern identifi-
cation, for example in the recent identification by a dNN of a correlation between
retinal patterns and cardiovascular risk factors (Poplin et al., 2018).

3. AI with both a higher efficiency and effectiveness than with humans: achieved in
reinforcement learning, a method used in certain narrowly defined situations of the
sort that arise in games (for example in GO (Silver et al., 2016) or First Person
Shooters (Jaderberg & Czarnecki, 2018)) and in contexts that can be framed like
games (Sutton & Barto, 2018).

Examples of applications under each of these headings that will be possible in the
near future are: (i) driving a car on a highway under (near-)average weather condi-
tions, (ii) scientific pattern-search applications, for example in biology or astronomy,
(iii) maintenance robotics as in industrial nuclear plant waste removal.

Unfortunately, each of these types of situations is highly restrictive, and none occurs
where we are dealing with natural language input.

2. Applying agnostic Deep Neural Networks in the field of
language understanding

To understand how modern agnostic deep-neural-network AI works in the language
domain, consider the most prominent production example, which is that of machine
translation as illustrated by Google Translate.3 A recent publication authored by Google
Brain4 and Google Research with the title “Attention is all you need” (Vaswani et al.,
2017) provides a representative example. The stochastic models described in this paper
were trained for the translation of English to German and of English to French. To train
Transformer – which is the best-performing “big” model described in the paper – the
authors encoded the language material at their disposal using the method of byte-pair
encoding, which encodes each single-sentence input into an encoding vector of 1024 real
numbers (rounded to a certain number of decimal places5). This is a complexity-reducing
encoding, which means (very roughly) that it treats each sentence simply as a series of
meaningless signs.6 This allows the encoding process to retain certain important features

3https://translate.google.com/
4This is the official name of Google’s AI department. While Google’s machine-learning engineers are

certainly among the world’s leading representatives of their craft, the name nonetheless reveals a
certain hubris.

5This encoding approach is used (with variations on how the vector is created) by all dNNs since
“word2vec” (Mikolov et al., 2013).

6In this entire text, “meaning” signifies the relevance to the actions and thoughts that humans attribute
to the stimuli that they encounter in sensation. For a non-English speaker, an English sentence, too,
is a series of meaningless stimuli. For an English speaker, in contrast, the sentence is immediately
interpreted as meaningful.
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of the input sentences because relevant sentence patterns are repeated in many sentences
in a similar way, and these sentences are shown to the algorithm.7

But at the same time, it necessarily leads to the discarding of many subtleties of
these sentences. This is because the embedding of the sentence loses relations not only
between words within the sentence but also between sentences. For a further feature of
the experiments reported is that the models used are trained with quite small amounts
of training data: 36 million sentence pairs for English-French, and only 4.5 million
for English-German. The models are completely agnostic: they have no knowledge of
linguistics, for example, because they have no knowledge of anything at all. Rather,
they just try to mimic the human translations (or rather the corresponding sets of
vectorially simplified input-output pairs) they learned from. The principal problem with
this approach, however, is that embedding into a linear vector of encoding real numbers
– no matter how long the vector is – leads to the discarding of all information pertaining
to the contexts of the input sentences. That this has adverse consequences becomes clear
when we reflect that, in all language interpretation processes, even for single sentence
inputs, humans use prior knowledge to contextualise the sentences they receive. As
an example, consider how a typical reader of this text would contextualise the single
sentence: “In the beginning was the word.”8

2.1. Results thus far

How well, then, do these models do? Transformer, specifically, creates a model that
achieves a sentence-level score of 28.4 for English-German and 41.8 for English-French
using the BLEU metric, which measures on a scale from 0 to 100 the degree of matching
of the machine-translation with a human gold-standard translation (Papineni et al.,
2002). A score of 100 can never be achieved because there are always several valid
translations for any given sentence and not all of them can be in the gold-standard
set. But 75-85 could be achieved in theory. Such a score would be excellent, and
it would correspond to the translation abilities of an average bilingual speaker. The
scores achieved by Transformer, in contrast, which are reported as the state-of-the art
in machine translation, are low.9 The reason for this shallowness of this so-called “neural
machine translation” is that the vector space it uses is merely morpho-syntactical and

7For example, the algorithm learns to translate the German word ‘Mehl’ into ‘flour’ because this pair
is repeated many times in training sentences. But it will fail to translate “Wir haben Mehl Befehl
gegeben zu laufen” into the adequate “We ordered Mehl to run”. It rather gives out the nonsensical
“We have ordered flour to run” (result produced on Jan. 7, 2019). The translation fails because
there are not enough training examples to learn the martial usage of surnames without title.

8To a reader without knowledge of the Bible this sentence (John, 1,1) will seem strange or unintellegible.
It is impossible to enumerate all such contextual constellations and include them as annotated features
to training sets for stochastic models in amounts sufficient for machine learning.

9To illustrate the limitations of the approach, Hofstadter used input sentences with a high degree of
cross-contextualisation (see “The Shallowness of Google Translate”, The Atlantic, January 30, 2018).

Text by Hofstadter: In their house, everything comes in pairs. There’s his car and her car, his
towels and her towels, and his library and hers.

Google Translate: Dans leur maison, tout vient en paires. Il y a sa voiture et sa voiture, ses
serviettes et ses serviettes, sa bibliothque et les siennes.
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lacks semantic dimensions.

2.2. General limitations of machine learning

Major limitations of current deep-learning paradigms have been identified already (for
example in (Marcus, 2018)). They include first of all a set of quite general problems
affecting stochastic models of any sort – not only deep neural nets but also tradi-
tional regression and classification approaches (Hastie et al., 2008), including graph-
based stochastic models (Bayesian Networks).

The first of these limitations turns on the huge data need of stochastic models, which
may employ millions of parameters. Transformer, for example, has 213 million para-
meters and needs at a minimum billions of data tuples to become useful even for the
sorts of rough translation produced by Google Translate. This limitation is already of
considerable importance given that, leaving aside the resources of internet giants such
as Google, there are few real-world examples of data available in the sorts of quantities
needed to deal with complex outcomes using any sort of stochastic approach.

Second, all stochastic models require a stable environment. The quality of their output
depends on how well they reflect the real-world input-output relationship they are aiming
to represent. Where this relationship is erratic, there can be no good model (consider
again the oil price example mentioned above). But even where the relationship is stable,
the model will quickly become invalid if the input-output relationship changes on either
side even in some minor way. This is because the model does not generalise. Once
fed with data as input that do not correspond to the distribution it was trained with,
the model will fail. And it will not alert the user, because it will not know that it
is failing.10 This explains why stochastic spam filters and similar applications are so
vulnerable to changing situations, and why they so often need re-training. And the
more complex an application, the more demanding will be the re-training of its network
that is required upon change of input constellations (for example when new types of
sensors are introduced in driverless cars). The costs for such re-training will vary, of
course, with the complexity of the input and the accuracy requirements of the network.

But there is a third group of limitations, turning on the fact that the output of all
stochastic models is, by definition, approximative. Models of this sort can yield only
the most probable output for any given input and model, and this output often falls
below even the average human output. For many imaginable useful purposes, however,
the output should be at least as reliable as the behaviour not of the average but of a
qualified subset of human reference samples. This is very hard to achieve in language-
focused applications using dNNs only. Unlike machines, humans are able spontaneously
and immediately to attribute meaning to the world they experience. This is because the
human species has evolved with a complex set of dispositions to react immediately in
highly specific ways to specific sorts of external stimuli.

Translated back into English by Google: In their house everything comes in pairs. There is his car
and his car, their napkins and their napkins, his library and their’s.

10So-called deterministic AI models (Russell & Norvig, 2014) do not generalize, either, but they report
their failures.
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Human beings are, along many dimensions, tuned to the environments in which they
live. The entities that we experience are spontaneously assigned meanings that reflect
their relevance to our survival, meanings that are assigned using mechanisms hardwired
into our brains. The belief that stochastic models can learn to make decisions without
benefit of prior hardwiring of this sort is as naive as the old tabula rasa theories that were
once the staple of empiricist philosophers and of their empirical psychologist followers.
Such views were criticised by Gibson (1979) in his ecological theory of perception11,
and they were experimentally refuted in the works on infant cognition of Carey & Xu
(2001), Gopnik (2000), Keil (1989), Keil (1995), Kim & Spelke (1999), who demonstrated
that infants – and primates (Povinelli, 2000)) – possess a large body of categorical
and structural knowledge about the world of solid objects long before they even start
acquiring the grammar of their mother tongue (Leslie, 1979). Indeed, it seems that
language acquisition presupposes the working of a common set of ontological distinctions
on the side of language learners, including the distinction between objects and processes,
between individuals and categories, between natural and accidental properties of objects,
and so forth.

Even the theory of Bayesian models for concept learning based on similarity acknowl-
edges (i) the need for a prior genus-individual distinction to explain the mechanics be-
hind generalization and (ii) the existence of a prior meta-heuristic linking membership
in a class to property instantiation (Tenenbaum, 1999; Tenenbaum & Griffiths, 2001).
As Rehder (1999) formulates the matter, categorization relies on inferences about the
causal role of putative essences in producing observable features. Such features are, in
other words, merely secondary, derivative; and all the naive knowledge brought to bear
by the infant follows from the natural and universal supposition that things belong to
classes sharing similar properties (Medin & Ross, 1989; Solomon et al., 1999). Even
children as young as 3 believe that the ‘insides’ of objects are relevant in determining
class membership (Gelman, 2003; Gelman & Wellman, 1991; Keil, 1989). According to
Carey & Xu (2001) (p. 207), experiments on object recognition suggest that there is an
object tracking system in the infant – a system that tracks three-dimensional, bounded,
and coherent physical entities, and fails to track perceptually specified figures that have
a history of non-cohesion. And what holds of infant cognition in general holds also of
infant language learning and language competence in particular, where the capability of
object tracking grounds the use of nouns and pronouns. Indeed, part of the background
source of this empirical work on infant ontology was Chomsky’s work (Chomsky, 1956)
on innate universal grammar. Gelman & Byrnes (1991) make explicit reference to these
ideas when they assert that they are able to “determine how languages and conceptual
systems are constrained by examining the forms and meanings that children construct,
and which errors they fail to make” (Gelman & Byrnes (1991); compare Millikan (2001),
p. 47).

For our purposes here, it is crucial that the AI applications running on today’s com-
puters can simulate at best only small fragments of the hard-wired human capabilities
revealed in such research. This means that they can simulate only small fragments of

11Indeed they were criticised, 200 years earlier, by Immanuel Kant in 1781 in his Critique of Pure Reason.
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the semantics underlying human language use. As we shall see, neural networks do in
this respect have limitations no less severe than those of traditional logic-based AI ap-
proaches to the modeling of human cognition. The formal ontologies used in the latter,
however, allow us to overcome some of the limitations of the former because they involve
direct representations of the sorts of objects, processes and attributes (and associated
nouns, verbs and predicates) used by human beings in perceiving, acting and speaking.
The training of neural networks is the attempt to build simulacra of relation-rich content
of this sort out of gigantically large numbers of features represented using numerical in-
put vectors or matrices. The training algorithms estimate what amounts to a very large
polynomial (this is what a neural network is) with the help of an optimization procedure.
But building the simulacra in this way seems to be infeasible even for simple ontologies
of the RDF-sort made up of structures of the type: entity A – relates to – entity B
(Gutierrez-Basulto & Schockaert, 2018).

2.3. Limitations applying specifically to deep neural networks (dNNs)

As humans process sensory input data, they assign meanings to the objects and events
which the data represent (and from which the sensory content originates), experiencing
these objects and events as belonging to a specific sort of categorical structure. dNNs, in
contrast, do not use any of the target-derived properties of the input data that humans
spontaneously use when they assign meaning to the data which they receive through ex-
perience. The result is a tremendous brittleness of dNN capabilities. Moosavi-Dezfooli
et al. (2016) describe how high-performance neural networks developed for image classifi-
cation can be nudged into a complete misclassification of images when the input material
is mixed with a perturbation image. For example, what is at first correctly classified
by the system as a flagpole is classified as a labrador after the system is very slightly
perturbed. Perturbations of an analogous sort do not cause problems for humans at all.
As Jo & Bengio (2017) showed, dNNs used in image recognition work merely by learning
certain surface-statistical regularities from images: the green grass that forms the typical
background of a cow, for example, is contrasted with the grey of asphalt that forms the
typical background of a car. They can be perturbed so easily precisely because they do
not learn what the images are about and the sort of world to which the imaged objects
and events belong.

The same holds also of the dNNs constructed for language processing purposes. A
recent paper by Chen et al. (2017) proves mathematically (which, given what was said
above, we should in any case expect) that dNNs lack core computational features of
traditional approaches to syntactic language analysis, for example, of the sort pioneered
by Chomsky (1956) using probabilistic context-free grammars. As the authors show,
while it is required of every valid stochastic model that it compute a valid probabilistic
distribution, this condition is not in general satisfied by dNNs working from language
input. But without this ability, there can be no computational representation of seman-
tics. Thus, as shown in Feng et al. (2018), the language constituents used by dNNs to
make predictions in question-answering or textual entailment tasks often make no sense

8



to humans at all.12

This in turn means that dNNs, whatever it is that they are doing, cannot be modeling
the semantics that need to be captured in order to extract information from texts, a
crucial task in natural language processing for most automation purposes.

The information extraction (IE) results presented in Zheng et al. (2017) provide a
poignant example of the low quality currently being achieved for tasks of this sort.13

This example reveals just how low the expectations in the field have become. The
failure of dNN-based approaches to compute natural language semantics is illustrated
also by the recent misclassification of the United States Declaration of Independence as
hate speech by the Facebook filter algorithms.14

dNNs are also unable to perform the sorts of inferences that are required for contextual
sentence interpretation. The problem is exemplified by the following simple example:

“The cat caught the mouse because it was slow” vs.
“The cat caught the mouse because it was quick.”

What is the “it” in each of these sentences? To resolve anaphora requires inference
using world knowledge – here: about persistence of object identity, catching, speed,
roles of predator and prey, and so forth. Thus far, however, little effort has been invested
into discovering how one might engineer such prior knowledge into dNNs (if indeed this
is possible at all).15 The result is that, with the exception of game-like situations in
which training material can be generated synthetically, esp. in reinforcement learning,
dNN models built for all current applications are still very weak, as they can only learn
from the extremely narrow correlations available in just that set of annotated training
material on the basis of which they were created. Even putting many dNN models
together in what are called “ensembles” does not overcome the problem.16 (Kowsari
et al., 2017).

And worse: because the dNNs rely exclusively on just those correlations, they are
also unable to distinguish correlation from causation, as they can model only input-
output-relationships in ways that are agnostic to questions of, for example, evidence and

12One example described in Feng et al. (2018) rests on the input: “In 1899, John Jacob Astor IV
invested $100,000 for Tesla to further develop and produce a new lighting system. Instead, Tesla
used the money to fund his Colorado Springs experiments”. The described system correctly answers
the question: “What did Tesla spend Astor’s money on?” with a confidence of 0.78 (where 1 is
the maximum). The problem is that it provides exactly the same answer with a similar degree of
confidence as its response to the nonsensical question: “did?”

13The F1-score of 0.52 reported by Zheng et al. (2017) seems quite high; but most of the training
material is synthetic and the reported outcome only concerns information triples, which cannot be
used for applied IE. The example is ‘poignant’ because the paper in question won the 2017 Prize for
Information Extraction of the Association for Computational Linguistics, globally the most important
meeting in the language AI field.

14https://www.theguardian.com/world/2018/jul/05/facebook-declaration-of-independence-hate-speech
15Currently, prior knowledge is used mainly for the selection or creation of the training data for end-to-

end dNN applications.
16The improvements provided by this approach are very modest and not higher than those achieved by

other tweaks of dNNs such as optimised embeddings or changes in the layering architecture
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causality. Thus they can detect that there is some sort of relationship between smoking
and lung cancer. But they cannot determine the type of relation that is involved unless
references to this very relation and to relevant types of relata themselves form part of the
annotated corpus. Unfortunately, to create the needed annotated gold-standard corpora
– one for each domain of interest – would be hugely expensive in terms of both time and
human expertise. To make dNNs work effectively in language applications thus would
require not only enormous collections of data but also, at least for many applications
– and certainly for those examples involving the tracing of causality – the investment
of considerable amounts of human expertise.

One final problem resulting from the properties of dNNs as very long polynomials
is a lack of transparency and – in contrast to determinstic algorithms – a black
box operation mode. Therefore, dNN engineers cannot tell why the network yielded its
output from a given input. This poses a major challenge in areas where we need to
reproduce or analyse the behaviour of the network, for example in case of disputes over
liability.

Taken together, these problems rule out entirely the use of machine learning algorithms
alone to drive mission-critical AI systems – for example with capability such as driving
cars or managing nuclear power stations or intensive care units in hospitals. They are
too brittle and unstable against variations in the input, can easily be fooled, lack quality
and precision, and fail completely for many types of language understanding or where
issues of liability can arise. Even at their very best, they remain approximative, and so
any success they achieve is still, in the end, based on luck.

3. Making AI meaningful again

3.1. Adding semantics to automation solutions

To overcome these problems, ways need to be found to incorporate prior knowledge into
the AI algorithms. One attempt to do this is to enhance Bayesian Networks with an
explicit relationship semantics (Koller & Friedman, 2009), which allows the model de-
signer to build in knowledge describing entity relationships before using data to train
the weights of these relationships. This reduces the learning effort on the part of the
system by providing a rudimentary form of prior knowledge. But unfortunately, the
expressivity of the resulting models is too low to represent the sorts of complex contexts
relevant to human language understanding. Furthermore, they are not exact, secure, or
robust against minor perturbations. They are also not transparent, and thus humans
cannot reliably understand how they work to achieve given results. The goal of meeting
this requirement is now dubbed “explainable AI”, and we will describe one promising
strategy for achieving this goal that involves building applications that work in accor-
dance with the ways humans themselves assign meaning to the reality that surrounds
them. To achieve this end, we use a semantics-based representation that is able to deal
with language as it is actually used by human beings. Importantly, the representation
is able to incorporate prior knowledge based on low to medium amounts of input ma-
terial of the sorts found in typical real-world situations. For humans in such situations
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find meaning not in data, but rather in the objects and events that surround them, and
in the affordances that these objects and events support (Gibson, 1979). This implies
a different sort of AI application, in the building of which not only mathematics and
computer science play a role, but also philosophy.

Part of what is needed is to be found already in the early attempts to create ‘strong’
logic-based AI.17 For our purposes here, the most interesting example of an attempt of
this sort is in the work of Patrick Hayes, a philosopher who first made his name with a
paper co-authored with John McCarthy, commonly accredited with having founded the
discipline of AI research. The paper is titled “Some Philosophical Problems from the
Standpoint of Artificial Intelligence” and it lays forth for the first time the idea behind
the calculus of situations (McCarthy & Hayes, 1969). In subsequent years Hayes set
forth the idea of what he called ‘näıve physics’, by which he meant a theory consisting
of various modules called ‘ontologies’, that would capture the common-sense knowledge
(sets of common-sense beliefs) which give humans the capacity to act in and navigate
through the physical world (Hayes, 1985). The theory is axiomatised using first-order
logic (FOL) and Hayes proposed that something of the order of 10,000 predicates would
need to be encoded in FOL axioms if the resulting theory was to have the power to
simulate human reasoning about physical objects of the sorts that are encountered by
humans in their everyday lives.18 The problem with Hayes’ approach, as with strong AI
in general, is that to mimic even simple human reasoning in real time would require a
reasoning engine that is decidable, and this implies a severe restriction on the expressive-
ness of the logic that can be used. Standardly, one ends up with a very weak fragment
of FOL such as that encapsulated nowadays in the so-called Web Ontology Language
(OWL). OWL is restricted, for example, in that it can capture at most relational infor-
mation involving two-place relations, and it has a similarly diminished quantifier syntax
and a well-known difficulty in dealing with time-series data. For this and many other
reasons, logic-based systems have rarely reached the point where they were able to drive
AI-applications. They did, however, spawn the development of a huge body of mechan-
ical theorem-proving tools (Robinson & Voronkov, 2001), and they contributed to the
development of modern computational ontologies, which helped to transform biology
into an information-driven discipline (Ashburner, 2000). Both of these developments are
essential for the sort of AI applications combining formal logic and stochastic models
that we describe below.

3.2. Inserting philosophy into AI

3.2.1. Desiderata for automated language processing

We will show in what follows how, by augmenting stochastic models (including dNNs)
with philosophically driven formal logic, we can create AI applications with the ability

17An excellent summary can be found in Russell & Norvig (2014).
18Hayes’ conception of an ontology as the formalization of our knowledge of reality continues today in

the work of Tom Gruber, whose Siri application, implemented by Apple in the iPhone, is built around
a set of continuously evolving ontologies representing simple domains of reality such as restaurants,
movies, and so forth.
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Table 1: Minimal desiderata for a real-world AI language processing system

Property System Example

Exactness needs to be able to be exact where nec-
essary and not always restricted to the
merely approximative

in the insurance domain: auto-
mated validation and payment of
a claim

Information
security

needs to avoid insecurities of the sort
which arise, for example, when even
slight perturbations lead to drastically
erroneous outputs

in autonomous driving: avoid
harmful consequences of adver-
sarially manipulated traffic signs

Robustness needs to be able to work reliably in
a consistent way even given radical
changes of situation and input, or to
detect critical changes and report on
its own inability to cope

in any domain: content not
understood by the system is
marked for inspection by a hu-
man; an alert can be generated if
necessary

Data
parsimony

needs to be trainable with thousands to
millions of data points (rather than bil-
lions to trillions – magnitudes which
rarely occur in reality)

in the domain of business corre-
spondence: automation of letter-
answering on the basis of just a
few thousand examples per class
of letter

Semantic
fidelity

needs to be able to incorporate contex-
tual interpretations of input situations

in sentiment analytics: the Dec-
laration of Independence should
not be classified as hate speech

Inference needs to be able to compute the conse-
quences of given inputs in a way that
allows the system to distinguish cor-
relation from causality (thus requiring
the ability to reason with time and cau-
sation)

in medical discharge summaries:
determination of required actions
on the basis of text input, for ex-
ample in automated processing

Prior
knowledge
usage

needs to be able to use prior knowledge
to interpret situations

in claims management: under-
standing that issuing a decla-
ration of inability to pay im-
plies earlier receipt of a payment
request
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to solve real-world problems. We present an example of such an application and de-
scribe how the machinery proposed is already in commercial production. First, however,
we give details of what we take to be the minimal requirements which any real-world
AI system must satisfy (Table 1). These requirements cannot be satisfied by agnostic
machine-learning systems alone, as they presuppose the ability to deal with the seman-
tics of human (natural) language. They can be satisfied, we believe, only by combining
stochastic inference components with methods associated with traditional, logic-based
AI in such a way as to allow incorporation of prior knowledge.

On the approach we shall describe, all the desiderata listed in Table 1 are satisfied on
the basis of a formal representation of prior knowledge using a computable representa-
tion of the natural language semantics of the information the system is processing. To
succeed, this representation needs two major elements: (a) a set of logical formalisms,
constituted by formal ontologies that enable the storage and manipulation of language
in Turing machines, and (b) a framework which enables one to define the meanings of
the elements of the language.

We can describe only the rough outline of these components here, though one impor-
tant feature, the methodology for development and use of ontologies to which we appeal,
is described in detail in Arp et al. (2015).

3.2.2. Representing natural language

Natural language as input is of course very hard to express in a logical framework, and
a typical basic pipeline, which sacrifices a considerable part of the semantics in order to
achieve computability, comprises the following elements:

1. morphological and syntactical error correction of an input text using dNN-models
trained using large public data resources,

2. syntactical parsing with the help of a stochastic parser, e.g. a conditional random
field parser as described in Finkel et al. (2008), and

3. inference applied to the parser outputs with the help of (computable) propositional
logic.

However, to capture the semantics of full natural language, a much stronger, higher
order intensional logic is required for its computational representation (Gamut, 1991),
and a logic of this sort cannot be used for computational purposes. To enable compu-
tation, the source text must thus be expressed by combining several computable logical
dialects which together provide a representation that is adequate for a given context and
purpose. For example, fundamental language constructs can be represented using FOL,
while temporal relationships require temporal propositional logic. Intensional sentences
can be represented using modal logic. A suite of such logical formalisms is able to achieve
a good approximation to natural language semantics while still allowing computability.
Computability does not, be it noted, require decidability, but robustness and complete-
ness (in the technical logical sense) are essential. Decidability is not required because
logical inference is fully possible with robustness and completeness alone. The absence
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of decidability certainly implies that on occasion a computation may not terminate. To
take account of such cases, however, algorithms are stopped after a pre-determined max-
imum computation period whose length is defined by the qualitative requirements of the
system. Such cases can then be handed to a human for decision.

The resulting system does not, however, strive for general AI. It always works in
specific sub-domains covering segments of reality. The execution of the logics is then
orchestrated with the help of domain-specific deterministic or stochastic controllers which
are needed to ensure that inference steps are carried out in the order that is appropriate
for the problem at hand.

3.2.3. Digression: Ambiguity and indeterminancy

A hybrid AI system along the lines described can also deal with phenomena such as
ambiguity, vagueness and indeterminancy, which natural language frequently contains.
We cannot give a full account of how these phenomea are dealt with here, but we provide
two informative examples:

1. Ambiguous sentences, for example “Every man loves one woman”, which can mean
that every man loves a woman, e.g. his wife (on the de dicto interpretation), or that
every man loves one well-known woman, for example Marilyn Monroe (on the de re
interpretation). To account for the ambiguity, an adequate logical representation
creates two logical phrases from this sentence, and deduces the correct meaning
from the context, for example using stochastic models.

2. Uncertainty, such as “John’s father did not return. Now John is searching for him.”
Here, the transitive verb in the second sentence may or may not have an existing
object. This phenomenon can be addressed using intensionality tagging for certain
transitive verbs and subsequent contextual disambiguation (see paragraph 3.2.4.1).

3.2.4. Incorporating ontologies

Ontologies can be divided into two types. On the one hand are domain ontologies,
which are formal representations of the kinds of entities constituting a given domain of
inquiry and of the relations between such entities (Smith, 2003). On the other hand are
top-level ontologies, which represent the categories that are shared across a maximally
broad range of domains – categories such as object, property, process and so forth.
Each ontology is built around a taxonomic hierarchy in which the types of entities are
related to each other by the relation of greater and lesser generality (an analogue of the
subset relation that holds between the instances of such types). Domain ontologies have
enjoyed considerable success in the formalisation of the descriptive content of scientific
theories above all in many areas of biology (see especially the Gene Ontology, (Ashburner,
2000)), where they served initially as controlled, structured vocabularies for describing
the many new types of entities discovered in the wake of the Human Genome Project.
On the other hand are top-level ontologies such as Basic Formal Ontology (BFO, (Arp
et al., 2015)), which arose to allow domain ontologies at lower levels to be created in
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such a way that they share a common set of domain-independent categories. As more
and more such domain ontologies came to be developed and applied to the annotation
and management of more and more different types of biological and biomedical data,
the use of such a common top level allowed the resultant ontologically enhanced data
to be more easily combined and reasoned over. BFO is now used in this way as shared
top-level ontology in some 300 ontology initiatives.19

The use of a common top level also allows multiple ontologies to facilitate standardised
exchange between parties communicating data about entities in different but overlapping
domains. Through the incorporation of formal definitions, they also allow the application
of basic inference mechanisms when interpreting data exploiting taxonomic and other
relations built into the ontology. For logic-based AI applications, ontologies are needed
which reflect the full spectrum of language constituents and of their logical counterparts.
They must enable the expression not only of traditional taxonomical and mereological
relations but also, for example, of synonymy relations at both the word and phrase level.

3.2.4.1. Resolving ambiguity The terms in such ontologies are defined using formulae
of FOL and the way these formulae represent language can be illustrated using the sec-
ond uncertainty example we introduced in section 3.2.3 above.

Natural language input: John’s father did not return. Now John is searching for him.
Formal representation: father(x) ∧ john(y) ∧mod(x, y) ∧ ¬Returnp(x) ∧ Searchesi(x, y)

Here unary predicates (nouns) and modifiers (mod) indicating syntactical relationships
(in this case: possessive) are shown in lower case; non-unary predicates (verbs) are
shown in upper case, and the subscript p indicates past tense. The subscript i indicates
intensionality of the transitive verb, which is obtained from the temporal relationship of
the two sentences and the fact that the presence-inducing verb of the first sentence is
negated. The intensionality indicator might be used in the next step as disambiguation
anchor, triggering a search in the subsequent text for a fulfilling object of the intensional
predicate.

3.3. The core of the philosophy-driven machinery

In Appendix A, we give a detailed example of how our approach in building real-world
AI systems combines automated transformation of text into logic with deterministic and
stochastic models. In what follows, we describe the core functionality we developed to
arrive automatically at a computational text representation, using logic that is seman-
tically faithful to the input text.

19BFO is currently under review as an International Standards Organization standard under ISO/IEC:
21838-1 (Top-Level Ontologies: Requirements) and ISO/IEC: 21838-2 (BFO).
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3.3.1. Transforming text into logic

The process of transforming text into logic starts with stochastic error correction and syn-
tactical tagging using dNN-Part-Of-Speach-taggers (Honnibal & Montani, 2018). This
output is used to perform a sequence of inferences, starting with:

text Γ (1)

where ‘text’ is, for example, a sentence from a customer letter;  means automated
translation; and Γ is the set of logic formulae20 generated by the translation. The formu-
lae in Γ are generated with a proprietary AI-algorithm chain that uses world knowledge
in the form of a dictionary of lexemes and their morphemes along with associated rules,
relating, for example, to the transitivity and intensionality of verbs.

Γ y ∆ (2)

where ∆ is a collection of (first-order or propositional modal) logical formulae automat-
ically generated (y) from Γ. This action transforms the non-computable formulae of Γ
into formulae expressed in logical dialects each of which enjoys compactness and com-
pleteness. The translation from Γ to ∆ requires world knowledge, for example about
temporal succession, which is stored in the computer using ontologies.

∆ ` φi ∈ Ω, ∀i = 1 . . . n (3)

where ` means: entailment using mechanical theorem proving, and φi is one of n human-
authored domain-specific formulae φ entailed by ∆.

Unlike the automatically generated collections Γ and ∆, Ω is an ontology comprising
human-authored domain formulae φi. Ω is always related to a specific type of text (for
instance, repair bills) and to a pertinent context (for instance, the regulations under
which the repair occurs). The role of Ω is to express the target semantics that can be
attributed to input sentences of the given type and context. ∆ ∩ Ω 6= ∅ (i.e. we can
infer some φi from ∆) holds only if the input text matches the type and context of the
ontology.

In total, the process looks like this:

text Γ y ∆ ` φi ∈ Ω, ∀i = 1 . . . n,

where the only manual input is the creation of Ω, and where this manual input itself
needs to be performed only once, at system design time.

The Appendix below describes one example of how this approach is embedded already
in a real-world AI production system.

20This is a non-compact and non-complete k-order intensional logic; ‘k-order’ means that predicates of
the logic can predicate over other predicates arbitrarily often. ‘Intensional’ means that the range of
predication in the logic is not restricted to existing entities (Gamut, 1991).
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4. Conclusion

As becomes clear from the example given in the Appendix below, our approach to
philosophy-driven language AI is to generate a specific system for each application do-
main. There thus remains very little similarity to the hypothetical idea of general ar-
tificial intelligence. What we have is rather an exact, philosophy-driven context- and
task-specific AI technology. Systems based on this technology are being successfully used
in a range of different domains. Moreover, the method in question is generalizable to
data of many different sorts, in principle – as the breadth of the available ontologies
is extended and the sophistication of the algorithms is enhanced – covering more and
more areas and domains of repetitive work of the sort amenable to automation. The
pace of this extension to new domains will be accelerated by enhanced ontology author-
ing software as well as by support for semi-automated ontology generation, for example
using inductive logic programming (Nienhuys-Cheng & de Wolf, 2008). This will allow
for applications such as automated encoding of medical discharge summaries, validation
of the medical necessity of diagnostic and therapeutic procedures, and automation of
customer correspondence.

We believe that these developments have implications beyond the merely technical
(and, associated therewith, pecuniary). For they point to a new conception of the role
of philosophy in human affairs which has been evolving since the end of the nineteenth
century.

Beginning with the mathematician-philosopher Gottlob Frege, philosophers have been
developing the methods which enable the expression in exact logical form of knowledge
otherwise expressed in natural language. FOL itself was invented by Frege in 1879, and
since then the FOL framework has been refined and extended to the point where it is
possible to represent natural language in a formal, computable manner.21

Philosophers have, from the very beginning, attempted to understand how human
language works and how language relates to the world. (Think of Aristotle’s Organon
and Book VII of his Metaphysics.) In the 20th century, an entire branch of the discipline
– called ‘analytical philosophy’ – has grown up around this topic (Dummett, 1996). The
computational discipline of ‘formal ontology’, has in recent years achieved considerable
maturity in part as a result of the influence of philosophical ideas.

In spite of all this, however, there are many, especially in the twentieth century, who
have proclaimed the death of philosophy, or who have seen philosophy as having a merely
compensatory role in offering some sort of substitute for those traditions which, in former
times, gave human beings the ability to interpret their lives as meaningful. The ways in
which human lives are meaningful – are indeed full of meaning – did indeed play a
role in our argument above. But we would like to draw a more far-reaching conclusion
from this argument, drawing on the ways in which, beginning already with the Greeks,
philosophers have helped to lay the groundwork for a series of social upheavals in the
course of human history. These include, for example, the birth of democracy or of
market institutions, of new artefacts such as Cartesian coordinates, and even of entire

21An overview is given in Boolos et al. (2007).
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scientific disciplines. For we believe that one place where we can look for a role for
philosophy in the future will lie in the way it can be used to strengthen and enable
applied sciences in the digital era – for example, in the creation of useful and realistic
artificial intelligence applications involving automatic translation of natural language
texts into computer-processable logical formulae.

A. Appendix: A real-world example

To represent in logical form the full meaning of complex natural language expression
E as used in a given domain and for a given purpose, we will need a set of domain-
specific ontologies together with algorithms which, given E, can generate a logical formula
using ontology terms which are counterparts of the constituent simple expressions in E
and which expresses the relations between these terms. These algorithms should then
allow the representation in machine-readable form not merely of single expressions but
of entire texts, even of entire corpora of texts, in which domain-specific knowledge is
communicated in natural language form.

To see how philosophy is already enabling applied science-based production along these
lines, let us look at a real-world example of an AI automaton used to automatically
generate expert technical appraisals for insurance claims.22 Today, such claims are
validated by mid-level clerical staff, whose job is to compare the content of each claim
– for example the line items in a car repair or cardiologist bill – with the standards
legally and technically valid for the context at issue (also referred to as ‘benchmarks’).
When deviations from a benchmark are detected by humans, corresponding amounts
are subtracted from the indemnity amount with a written justification for the reduction.
Digitalization has advanced sufficiently far in the insurance world that claims data can
be made available in structured digital form (lines in the bill are stored as separate
attributes in a table in a relational database). However, the relevant standards specifying
benchmarks and how they are to be treated in claims processing have until recently
been represented only as free-text strings. Now, however, by using technology along
the lines described above, it is possible to automate both the digital representation of
these standards and the results of the corresponding comparisons between standards and
claims data.

To this end, we developed an application that combines stochastic models with a
multi-facetted version of logic-based AI to achieve the following steps:

1. Compute a mathematical representation (vector) of the contents of the bill using
logic for both textual and quantitative data. The text is vectorised using a pro-
cedure shown in equations (1) – (3) of section 3.3.1 above, while the quantitative
content is simply inserted into the vector.

22This software is in production at carexpert GmbH, Walluf, Germany, a claims validation service
provider processing some 70 thousand automobile glass repair bills a year with a total reimbursement
sum of over e50 million. The bill validation process, performed by a car mechanics expert in 7-10
minutes, is completed by the system in 250 milliseconds.
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2. Recognise the exact type of bill and understand the context in which it was gen-
erated. This is done using the logical representation of the text, which is taken as
input for deterministic or stochastic classification of the bill type (for example, car
glass damage) and subtype (for example, rear window).

3. Identify the appropriate repair instructions (‘benchmark’) for the bill by querying
the corresponding claims knowledge base for the benchmark most closely matching
the bill in question. Standard sets of benchmarks are provided by the original
equipment manufacturers or they are created from historic bills using unsupervised
pattern identification in combination with human curation. The benchmark texts
are transformed into mathematical logic.

4. Compare the bill to its benchmark by identifying matching lines using combina-
torial optimisation. The matches are established by computing the logical equiv-
alence of the matching line items using entailment in both directions: given a bill
line (or line group) p and its candidate match (or group) q, compute p ` q and
q ` p to establish the match.

5. Subtract the value of the items on the bill that do not match the benchmark from
the reimbursement sum

6. Output the justification for the subtractions using textual formulations from the
appropriate standard documents.

To achieve comparable results an end-to-end dNN-based algorithm would require bil-
lions of bills with standardised appraisal results. Yet the entire German car market
yields only some 2-3 million car glass damage repair bills in any given year and the
appraisals are not standardised.

The technology is used for the automation of typical mid-level office tasks. It detects
non-processable input, for example language resulting in a non-resolvable set of logical
formulae, and passes on the cases it cannot process for human inspection. This is a
core feature of our technology which may not match the expectations of an AI purist.
However, applications of the sort described have the potential to automate millions of
office jobs in the German-speaking countries alone.

Human beings, when properly trained, are able to perform the classification described
under step 2 spontaneously. They can do this both for entire artefacts such as bills
and for the single lines which are their constituents. Humans live in a world which
is meaningful in precisely this respect.23 The ability to classify types of entities in
given contexts can be replicated in machines only if they store a machine-adequate
representation of the background knowledge that humans use in guiding their actions.
This is realised in the described system by means of ontologies covering both the entities
to which reference is made in given textual inputs and the contexts and information
artefacts associated therewith. The ontologies also incorporate formal definitions of the
relevant characteristics of these objects, of the terms used in the relevant insurance rules,

23Compare footnote 6 above.
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and so forth. The ontologies are built by hand, but involve a minimal amount of effort
for those with expertise in the relevant domain (here: the contents of repair bills and
insurance rules). These definitions are entailed by the bill and benchmark texts, and the
latter are automatically processed into logical representations in the ontology framework
without human interference.

Resulting system properties

This philosophy-driven AI application uses both stochastic models and parsers, as well
as mechanical theorem provers. It meets the requirements listed in Table 1, including:

• Exactness – it has an error rate of below 0.3% (relative to the gold standard
obtained by a consortium of human experts), which is below the best human error
rate of 0.5%. Such low levels of error are achieved only because, unlike a stand-
alone stochastic model, the system will detect if it cannot perform any of the
essential inference steps and route the case to a human being.

• Information security – the system is secure because any misreactions to perturbing
input by its stochastic models are detected by the logical model working in the
immediately subsequent step.

• Robustness – it is robust since it will detect when it cannot interpret a given
context properly, and issue a corresponding alert.

• Data parsimony – it requires very little data for training, since unlike the sorts
of suboptimally separating agnostic spaces resulting from stochastic embeddings,
it induces what we can call a semantic space that separates data points very effec-
tively.

• Semantic fidelity – the system not only allows, but it is in fact based on inference
and so it can easily use prior and world knowledge in both stochastic (Bayesian
net) and deterministic (logical) form.
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