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Abstract

I outline three formulations of classical mechanics, Newtonian, La-
grangian, and Hamiltonian mechanics, that are ordinarily seen as fully
equivalent—notational variants of a single theory. I point to various differ-
ences, both mathematical and metaphysical, that may be signi�cant enough
to warrant their being distinct theories.

1. Introduction

Classical mechanics is the physical theory with which we are most familiar, the
one we �rst encounter in school. Philosophers tend to regard classical mechanics
as metaphysically unproblematic. At �rst glance, it does appear straightforward:
the theory is fundamentally about particles, with intrinsic features like mass,1

that move around in three-dimensional space in response to various forces, which
arise via interactions between the particles. It seems as though, if any physical
theory is metaphysically perspicuous, classical mechanics is. But the theory is
not as clear-cut as it initially seems. Our familiarity misleads us.

The reason is not just that classical mechanics ultimately runs into the kind
of trouble that presaged quantum mechanics. Even taking it to be the true
fundamental theory of a world,2 classical mechanics does not offer as candid
a picture of things as we tend to think. One reason for this is that there are
different formulations, which are generally claimed to be equivalent by physics
books, but which are at least not obviously equivalent—neither in terms of the
mathematical structure they use, nor in terms of the physical world they describe.

1Also charge, although there is a question of whether electromagnetic features ought to be
considered part of classical mechanics (see for instance note 9).

2Of course, because of the previously-mentioned troubles, it is not clear that classical me-
chanics can be a true fundamental theory of a world, but set that aside here.
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What I want to do in this chapter is to outline the three leading formulations
of classical mechanics, and to raise some questions about them, the chief one
being: Are these genuinely equivalent formulations, as usually thought? If
so, in what sense are they equivalent? If not, in what way(s) do they differ?
Another way to put the focal question of this chapter is by means of a title of
Mark Wilson’s (2013): “What is ‘Classical Mechanics’, Anyway?” Indeed, since
the terms ‘classical mechanics’ and ‘Newtonian mechanics’ “are used virtually
synonymously” (Spivak, 2010, 7), one aim of this chapter is to suggest that it is
not right to do so. There are different versions of classical mechanics, which
might even amount to distinct theories. A related aim is to show that there are
interesting philosophical questions that arise in the context of classical mechanics.
Classical mechanics merits the attention of philosophers, who often disregard it
as either too perspicuous or too outdated to warrant much discussion.3

Although this chapter is limited to classical mechanics, it should be clear that
a host of general questions in the philosophy of physics and science are touched
upon, such as: What is the right notion of theoretical equivalence—when are
two scienti�c theories mere notational variants? How do we interpret a scienti�c
theory—how do we �gure out the nature of the world according to a theory?
When faced with different theories or formulations, how do we choose which
one to adopt? Must we choose?

2. Three formulations

I will outline the three main formulations of classical mechanics—Newtonian,
Lagrangian, and Hamiltonian mechanics—in relatively standard ways, before
turning to some questions about them.4 My focus will be on the dynamical laws,
since this is where much of the action lies in comparing and contrasting the
different formulations.

2.1. Newtonian mechanics

Newtonian mechanics might be the only formulation one comes across, the
others typically not introduced until more advanced college courses. In the New-
tonian mechanics of point-particles—point-sized physical objects with intrinsic
features such as mass5—two sets of coordinates specify a system’s fundamental

3A recent book-length exception: Sklar (2013).
4There are other varieties I don’t discuss, such as in terms of Poisson brackets, Hamilton-

Jacobi theory, or four-dimensional spacetime geometry.
5This is the fundamental ontology assumed here. Wilson (2013) discusses the classical

mechanics of rigid bodies and continua, and complications involved in trying to encompass all
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state at a time: the positions and velocities, or momenta, of all the particles.
Assuming the particles are free to move around in three-dimensional physical
space, these coordinates will each have three components, one along each spatial
dimension.

For a system containing n particles, the total state is speci�ed by 6n coordi-
nates: three coordinates for the position and three coordinates for the velocity
for each particle in the system. It turns out to be extremely useful to represent all
the possible states of a system in a mathematical space called the statespace, each
point of which represents a different possible fundamental state of the system.
Since we need 6n coordinates to specify the state of a system, the statespace will
have 6n dimensions.

Different curves through the statespace represent different possible histories
of the system, different sequences of its fundamental states over time. (The
curves are parameterized by time.6) These histories are given by the dynamical
law(s), in this case Newton’s second law:7

ΣFi = miai = mi ẍi . (1)

ΣFi indicates the sum of the forces—which are vector quantities, written in
bold—on a given particle labeled by i (i ranges from 1 to n, for n particles in
the system); mi is the particle’s mass; ai , or ẍi , is the particle’s acceleration, the
second derivative of its position with respect to time, also vector quantities. (A
dot over a quantity indicates a derivative with respect to time of that quantity.)
In other words: Σ j 6=iFi j = miai , where Σ j 6=iFi j is the sum of the forces on the
given particle due to all the other particles (both in the system and external to it).

The above is a vector equation. There is one such equation for each particle
in each component direction—three equations per particle in three-dimensional
space. These equations can be grouped together into one master equation, which
says how the point representing the state of the entire system moves through
the statespace over time. Given the initial state of a system and the total forces
acting on it, integrating (twice) yields a unique solution, or history: the laws
are deterministic.8 A solution picks out a trajectory in the statespace, which
represents the paths of all the particles through ordinary space.

of these within a single theory. See Hall (2007, 5.2); Allori (2017); Esfeld et al. (2018) on the
non-standard idea that particles don’t have fundamental intrinsic properties.

6Alternatively, time can be included as an additional dimension of the statespace.
7Another familiar version of the law, ordinarily seen as equivalent to the above, is in terms of

momentum: ΣF= ṗ. See Hicks and Schaffer (2017) on whether these are genuinely equivalent.
8Whether the theory really is deterministic is an interesting question. Apparent counterex-

amples are in Earman (1986) and Norton (2008); see also Malament (2008) and Wilson (2009).

3



Equation 1 is the fundamental dynamical equation of the theory. Newton’s
second law predicts the motion of every particle, in any situation. What forces
there are will depend on the types of particles involved, and to calculate the
forces we will need additional rules, like the law of gravitation. But this one
dynamical law predicts any system’s behavior, once given those forces.

Two other laws of Newtonian mechanics as standardly presented are impor-
tant to the theory as a whole, but will play a less central role here. Newton’s �rst
law says that an object continues with uniform velocity unless acted on by a net
external force. This law helps de�ne what it is for an object to not accelerate,
or to travel inertially (with the second law saying what happens when an object
is subject to a net force that yields an acceleration). Newton’s third law tells us
about the nature of forces. It is often stated in “action-reaction” form: to every
action there is an equal and opposite reaction; when one object exerts a force on
a second object, the second simultaneously exerts a force equal in magnitude and
opposite in direction on the �rst. This law tells us that forces come in pairs, as
the result of interactions between two objects. It “describes the forces to some
extent” (Feynman et al., 2006, 9.1), with the particular force laws telling us that
forces don’t depend on anything other than the types of particles and their spatial
separations, and that they are central forces, directed along the line between the
particles. (Conservative forces, derivable from a potential.)9

2.2. Lagrangian mechanics

In Lagrangian mechanics, two sets of so-called generalized coordinates describe
systems’ fundamental states: the generalized positions, qi , and their �rst time
derivatives, the generalized velocities, q̇i (i from 1 to n for n particles in the
system). As in Newtonian mechanics, we need 6n coordinates to completely
specify the state of a system of n particles at a time: three generalized position
and three generalized velocity coordinates per particle. But unlike in Newtonian
mechanics, these don’t have to be ordinary position and velocity coordinates.

9There are questions surrounding the further restrictions that forces be central and con-
servative. It is usually thought that nonconservative forces, like frictional ones depending on
velocity, arise from fundamental conservative ones. As Feynman notably put it, “there are no
nonconservative forces!” (2006, 14.4). Newton himself didn’t restrict forces this way; Feynman
suggests that it is an additional empirical posit (compare Baez: “It is a simplifying assumption
that has withstood the test of time and experiment” (2005, 6)). Hutchison (1993) argues that the
restriction is illegitimate; Callender (1995) responds. The restrictions are assumed in standard
proofs of energy conservation and other theorems. (This is one place the question of electro-
magnetic features (note 1) comes into play. Consider the magnetic force on a moving charge,
which doesn’t satisfy the restrictions.) Concerns over the above have led a couple of authors to
doubt the equivalence of the formulations: Lanczos (1970, 77 n1); Gallavotti (1983, ch. 3). See
also Hertz (1899); Wilson (2009, 2013, forthcoming) on reasons to doubt their equivalence.
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(They are called generalized positions and velocities by analogy to ordinary
positions and velocities.) Generalized coordinates can be any set of independent
parameters that completely specify a system’s state. Generalized positions can
have units of energy, or length squared, or an angle, or can even be dimensionless.
We can use any kind of coordinates that are suited to a system, the choice usually
dictated by the number of degrees of freedom of the system and the topology
of the spatial region in which the particles are free to move around.10 For a
pendulum, for example, we might use the angle θ that the cord makes with
respect to the vertical as the generalized position, with θ̇ the generalized velocity.

The Lagrangian statespace is a 6n-dimensional space with the structure of a
tangent bundle. This comprises a 3n-dimensional space in which we represent
the generalized positions (the con�guration space), plus the 3n-dimensional tangent
space at each point, for the generalized velocities, which are tangent to the
generalized positions. Each point in this space picks out a generalized position
and generalized velocity for each particle in the system. Standard labels are Q
for the con�guration space (the base space of the tangent bundle), TqQ for the
tangent spaces (the �bers, one for each q in Q), and T Q for the entire statespace,
sometimes called the velocity phase space. Note that the con�guration space
is what represents the physical space the particles move around in. Given the
freedom in generalized coordinates, it needn’t do so in an obvious way, yet the
structure of physical space will still be coded up in the structure of Q.

The dynamical laws, called the Lagrange or Euler-Lagrange equations, say
how the point representing a system’s state moves through the statespace over
time, given a scalar function called the Lagrangian, L. At each point in the
statespace, this function assigns a number, typically equal to the system’s kinetic
energy, T , minus its potential energy, V .11 Although this gives the Lagrangian
as de�ned on T Q, we can think of it as coding up information about particles’
ordinary spatial features, those that are relevant to their energies, so that it is
ultimately about goings-on in three-dimensional space.12 The motion of an
n-particle system in three-dimensional space is then given by n second-order
equations,13 one for each particle in each direction; i.e., one for each degree of

10The number of degrees of freedom is the number of independent parameters “necessary
and suf�cient for a unique characterization” of the system (Lanczos, 1970, 10). There are some
mild constraints on generalized coordinates: José and Saletan (1998, 2.1.2).

11Standard examples in which it does not have this form come from outside point-particle me-
chanics, such as electromagnetism or special relativity: José and Saletan (1998, 2.2.4); Goldstein
et al. (2004, 7.9).

12More on the different ways of conceiving of quantities like L in section 3.2.
13These can be seen as �rst-order equations de�ned on all of T Q: José and Saletan (1998,

2.4).
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freedom (three per particle in three-dimensional space):

d
d t

�

∂ L
∂ q̇i

�

− ∂ L
∂ qi

= 0. (2)

Given L, these equations uniquely determine the motion for an initial state
characterized by the generalized position and generalized velocity of each particle
in the system. A solution, found by integrating, gives a function or trajectory on
Q, which represents the particles’ motions through physical space. (Solutions
are curves through T Q, which are projected onto Q.)

Picture the statespace for a particle moving on a one-dimensional circle:
�gure 1. This is a two-dimensional space, with each point picked out by two

Figure 1: Two-dimensional tangent bundle (image from Wikipedia)

coordinates (q , q̇). The circle represents the different possible values of the
generalized position coordinate, and the lines the different possible values of
the generalized velocity. Curves through this space represent different possible
histories of the system. The �gure could represent the statespace of a point-mass
pendulum, for instance, with the circle representing the different values of θ and
the lines the values of θ̇. Keep in mind that this is “just about the only easily
visualized nontrivial T Q” (José and Saletan, 1998, 94). With more degrees of
freedom, things quickly become dif�cult to picture.

Brie�y note three interesting, interrelated differences between the Lagrangian
and Newtonian formulations.14 First, Lagrangian mechanics relies on a scalar
energy function to determine a system’s motion, whereas Newtonian mechanics
relies on forces, which are vector quantities. Second, Lagrangian mechanics
takes a more “holistic” approach to describing systems’ motions, in terms of the
energy of the system as a whole. By contrast, the Newtonian formulation “is
intrinsically a particle-by-particle description” (Sussman and Wisdom, 2014, 3),
given in terms of the forces on each individual particle due to every other particle.
Third, Lagrangian mechanics is a more coordinate-independent formulation of

14Discussion in Lanczos (1970). See Butter�eld (2004) on Lagrangian mechanics in particular.

6



the dynamics, in that we can substitute any kind of coordinates for q and q̇ in
equation 2. The central equation of Newtonian mechanics, on the other hand,
contains an implicit preference for Cartesian coordinates. We can of course use
other kinds of coordinates, but the form of the equation will differ; whereas
“Lagrange’s equations, unlike Newton’s, take the same form in any coordinate
system” (Taylor, 2005, 237). (The form of an equation is the form as a function
of its variables, a standard notion in physics.15)

2.3. Hamiltonian mechanics

Hamiltonian mechanics shares a special kinship with Lagrangian mechanics,
more so than with Newtonian mechanics. Here too, a scalar energy function
determines the motion, and the equations are formulated in terms of generalized
coordinates. There are also some notable differences. Hamiltonian mechanics
uses a different energy function and a different kind of generalized coordinate,
with the result that the dynamical equations and statespace also differ.

The Hamiltonian coordinates are called canonical coordinates. These are the
generalized positions, qi , and generalized momenta, pi . (As before, i ranges
from 1 to n for n particles, with three of each coordinate per particle in three-
dimensional space.) Here the statespace is the cotangent bundle of con�guration
space, T ∗Q. This comprises the con�guration space, Q, together with the
cotangent space, T ∗ (dual to the tangent space), at each point in Q, for the gen-
eralized momenta (which are covectors, or one-forms). This is a 6n-dimensional
manifold, each point of which picks out a generalized position and generalized
momentum for each particle in the system. It is often called the momentum
phase space, or simply the phase space.16

The scalar function that describes a system’s motion is called the Hamiltonian,
H , and is (typically17) equal to the total energy of the system, that is, the potential
energy plus the kinetic energy, instead of the difference between them as in
Lagrangian mechanics. The dynamical laws are a set of 2n �rst-order equations,
two for each particle in each direction; two sets of equations for each degree of
freedom:

q̇i =
∂ H
∂ pi

, ṗi =−
∂ H
∂ qi

. (3)

These equations, called the Hamiltonian or canonical equations, uniquely deter-

15Brading and Castellani (2007, 1343). Newton’s equation, in standard form, is a linear
function of acceleration or second derivative of position. Contrast the form in polar coordinates:
Taylor (2005, eq. 1.48).

16In fact, a Hamiltonian statespace can have a more general structure than this: North (2009).
17See Goldstein et al. (2004); Taylor (2005, 7.8) for conditions under which this holds.
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mine a system’s motion, given an initial state speci�ed by the canonical positions
and momenta of each particle in the system.

Hamiltonian and Lagrangian mechanics are both more coordinate-independent
formulations than Newtonian mechanics. Both are given in terms of generalized
coordinates, with the result that the dynamical equations retain their form re-
gardless of which coordinates we use.18 The reason is that the Lagrangian and
Hamiltonian functions, which determine the motion, are scalar functions. In
Newtonian mechanics, by contrast, vector quantities—forces—determine the
motion. Although vectors are coordinate-independent objects, their components
change with the coordinate system. (Vectors can be de�ned by means of how
their components transform under coordinate changes.) And as Feynman puts
it, “The general statement of Newton’s Second Law for each particle…is true
speci�cally for the components of force and momentum [or acceleration] in any
given direction” (2006, 10.3), since “any vector equation involves the statement
that each of the components is equal” (2006, 11.9). Scalars are even more coordinate-
independent than that, being completely unaffected by coordinate changes, not
even “altering component-wise.” (The form of a scalar function such as L or H
may change with the coordinate system, but not the scalar value, nor the form
of the equation in which L or H appear.)

2.4. Example: plane pendulum

Brie�y work through a simple example to get a feel for the different �avor of
each formulation. Consider a vertical plane pendulum (�gure 2), which moves
through two spatial dimensions. (Assume the usual idealizations: a frictionless,
rigid cord; point-mass bob; negligible air resistance; uniform gravitational �eld.)
Use each formulation to �nd the equation that describes the pendulum’s position
as a function of time. In fact, we will see, each formulation yields the same
equation of motion.

To use Newton’s law, �rst choose a rectangular coordinate system. Let y
be in the radial direction, directed along the cord, and let x be in the direction
tangential to the bob’s path. Resolve the forces into their components in this
coordinate system. There are two forces on the bob: the tension along the string
and the downward gravitational force. The component of the gravitational force
in the direction of the bob’s acceleration along the path (the tangential force) is
m g sinθ, where θ is the angle the string makes with respect to the vertical, as
shown in the �gure.

There are two component equations of Newton’s law, one for each direction

18The equations can be given in coordinate-free, not just coordinate-independent, terms: José
and Saletan (1998, eqs. 3.87 and 5.70).
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Figure 2: Plane pendulum (MIT OCW)

of our coordinate system: Fx = max and Fy = may . Plugging in the relevant
force components yields Fx =−m g sinθ= max (the negative sign because the
gravitational force points downward) and Fy = T −m g cosθ= may , with T the
tension in the string. But ay = 0, so we ignore the second equation and this force
when solving for the equation of motion. (T has no component in the direction
of nonzero acceleration; it is merely a “constraint force.”)

The arclength, s , which measures the distance traveled by the bob along
the curved path, is given by s = lθ. The second derivative of this quantity,
s̈ = l θ̈, is the acceleration along the path. Plug into the x-component equation
of Newton’s law to get the equation of motion:

− g sinθ= l θ̈. (4)

We get the same equation of motion using Lagrangian mechanics via a
different route. We could use rectangular coordinates, but things are simpler
if we use generalized coordinate θ, with θ̇ the generalized velocity; plug these
directly into equation 2 to get the solution. In this way, we can effectively treat
θ and θ̇ as ordinary position and velocity coordinates.

First calculate the Lagrangian, L= T −V . The kinetic energy T = 1
2 mv2 =

1
2 m(l θ̇)2. (The arclength is s = lθ, the velocity its �rst time derivative.) The
potential energy V =−m g l cosθ, setting the zero at the height of the pivot point
where θ= π

2 . (Gravitational potential energy= m g y, with y the vertical distance
from a chosen zero.) This gives us L = 1

2 m(l θ̇)2 + m g l cosθ. Calculate the
following derivatives (here treating θ and θ̇ as independent variables, even though
one is really de�ned as the time derivative of the other): ∂ L

∂ q =
∂ L
∂ θ =−m g l sinθ

and ∂ L
∂ q̇ =

∂ L
∂ θ̇
= ml 2θ̇, so that d

d t

�

∂ L
∂ θ̇

�

= ml 2θ̈. Finally, plug into equation 2:

ml 2θ̈− (−m g l sinθ) = 0, i.e. l θ̈+ g sinθ= 0, which is equation 4.
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In Hamiltonian mechanics, we �rst �nd the Hamiltonian, H = T +V . Given
L calculated above, we can see that H = 1

2 m(l θ̇)2−m g l cosθ; but we need to
write this in terms of canonical coordinates. To �nd the generalized momentum
pθ, which is “conjugate” to the position variable θ, use this equation: p = ∂ L

∂ q̇ ,
which is often taken to be the de�nition of the generalized momentum.19 Using
the equation pθ =

∂ L
∂ θ̇

, we �nd pθ = ml 2θ̇, so that θ̇ = pθ
ml 2 , which we can use

to eliminate θ̇ from the expression for H . Thus, H = 1
2 m(l pθ

ml 2 )2−m g l cosθ=
p2
θ

2ml 2 −m g l cosθ. Now we can �nd the equation of motion for the pendulum
using the Hamiltonian equation ṗ = − ∂ H

∂ q ; that is, ṗθ = −
∂ H
∂ θ = −m g l sinθ.

Differentiate pθ = ml 2θ̇ to get ṗθ = ml 2θ̈, and plug into the equation for ṗθ to
get ml 2θ̈=−m g l sinθ; i.e. l θ̈=−g sinθ, which is again equation 4.

3. Equivalent formulations?

We get the same equation of motion for the pendulum regardless of which
formulation we use. This turns out to be true in general. It is often simpler to
use Lagrangian or Hamiltonian mechanics, since we do not have to calculate
the various component forces on each particle. Nonetheless, it is generally
agreed that each formulation suf�ces for describing the motion of any classical
mechanical system. The difference seems to be just a matter of calculational
convenience.

Indeed, physics books typically state, and go on to prove, an equivalence
among the three formulations, by showing that the dynamical equations are inter-
derivable.20 A typical route is to begin with Newton’s laws, derive the Lagrangian
and Hamiltonian equations from them, and then show that the derivation can
go the other way. Thus José and Saletan, at the beginning of their chapter
on Lagrangian mechanics, following the one on Newtonian mechanics, write,
“In this chapter we show how the equations of motion can be rewritten....We
should emphasize that the physical content of Lagrange’s equations is the same
as that of Newton’s” (1998, 48). They then show that Hamilton’s equations,
in turn, can be derived from Lagrange’s, and vice versa, concluding that these
all “contain the same information” (1998, 207). Another book concludes that,

19The above is an instance of a Legendre transformation, which can be used to change back
and forth between Hamiltonian and Lagrangian coordinates, energy functions, and statespaces:
Lanczos (1970, ch. 6); Arnold (1989, 3.14); José and Saletan (1998, ch. 5).

20See for example Arnold (1989); Marion and Thornton (1995); Hand and Finch (1998); José
and Saletan (1998); Talman (2000); Goldstein et al. (2004); Baez (2005); Taylor (2005); see also
Feynman (1965, ch. 2).
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“From the point of view of the physicist this division [into the three formula-
tions] is rather arti�cial.…The segregation is based entirely on the mathematical
methods used” (Talman, 2000, 163). It certainly seems like these are simply
“alternative statements of the laws” (Marion and Thornton, 1995, 213), with
“nothing new…added to the physics involved” (Goldstein et al., 2004, 334) when
we pass from one formulation to another. The standard view is that the three
formulations are equivalent in all relevant respects: mere notational variants.

I want to urge caution in adopting the standard view, however. The alleged
equivalence is not as straightforward as the above statements would have us
believe. The reason is that there are some differences among the formulations,
and it is not obvious that they are as super�cial as usually thought. Draw a rough
distinction between two kinds of differences: mathematical and metaphysical. I
won’t go into these in detail, but will point to places where there is a case to be
made that the differences go deeper than usually thought.

3.1. Mathematical differences

It is important to keep in mind that two things can be equivalent in some ways
while differing in other ways: two objects can share a shape yet have different
colors or patterns; two planes can share a distance measure yet differ in whether
they have a preferred direction or location. In mathematics more generally, two
objects are equivalent when there is the relevant structure-preserving mapping
between them; the objects are then equivalent with respect to that structure. All
of which is to say that, even if the three formulations of classical mechanics are
equivalent in the ways that physics books say, they could still be nonequivalent in
other ways. The question is whether they are equivalent, full stop. The answer
depends on whether what differences there are matter in any way.

There is one patent mathematical difference among them: the formulations
use different symbols, in equations that do not “look” the same. The standard
view is that this difference does not matter. Consider the change from Cartesian
to polar coordinates to describe a Euclidean plane, or from one set of Cartesian
coordinates to another that is rotated or translated with respect to the �rst. Some
things will be different when we switch to the other coordinate system—points
get labeled with different numbers, for example—but we know that nothing has
really changed. The plane remains the same; we have simply used a different,
equally legitimate way of describing it. The standard view is that the differences
among the formulations of classical mechanics are like the differences among
the coordinate-based descriptions of the plane: just a change in the coordinates
or variables being used to describe the very same physics.

Yet there are some reasons for hesitation about this. Take Newtonian me-
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chanics, on the one hand, and Lagrangian and Hamiltonian mechanics, on the
other. The latter are comparatively coordinate-independent formulations of
classical mechanics. This suggests that they more directly get at the nature of
classical mechanical reality, apart from our descriptions of it—just as the metric
tensor on a Euclidean plane, rather than any coordinate-dependent distance
formula, more directly captures the intrinsic structure of the plane. (The familiar
distance formula derived from the pythagorean theorem, for instance, assumes
Cartesian coordinates and won’t work in other types of coordinates, even though
the distance between any two points is the same regardless of coordinates.) This,
in turn, suggests that we have reason to prefer these formulations. Physics prizes
coordinate-independence, and with good reason.21 Since there is freedom in
which coordinate system to use, any choice we do make will be to some extent
arbitrary—a conventional choice made from among equally good descriptions.
(Recall the different coordinate systems for the plane.) We can be misled into
thinking that coordinate-dependent features, which rest on an arbitrary choice
in description, re�ect genuine features of reality.22 A formulation that is indepen-
dent of coordinates is then preferable, other things being equal, when it comes
to interpreting what physics says about the world. So that even if the equations
are all inter-derivable in some sense, there is also a sense in which they are not
all mathematically on a par; a sense in which they are not completely equivalent.
Some of them may more directly represent physical reality than others.

We can go further. For the way in which the formulations differ in their
reliance on coordinates suggests particular physical differences among them.
Newtonian mechanics contains an implicit preference for Cartesian coordinates,
in which its core equation takes the standard form. A preference for Cartesian
coordinates, in turn, is indicative of a Euclidean metric structure. This suggests
that the spatial structure of a Newtonian world is Euclidean. (This structure will
be re�ected in the statespace, in particular the con�guration space, which codes
up the structure of physical space.) Lagrangian mechanics allows for a wider range
of coordinates. As a result, it does not constrain the spatial metric in the same
way. This suggests that the physical space of a Lagrangian world (as well as the
statespace in which this structure is coded up) has a “looser” metric structure. (I
explore this difference in North (2019).) Hamiltonian mechanics allows for even

21Lanczos notes that the Lagrangian equations “stand out as the �rst example of that ‘principle
of invariance’ [a kind of coordinate-independence] which was one of the leading ideas of 19th
century mathematics, and which has become of dominant importance in contemporary physics”
(1970, 117).

22Einstein said that the main reason it took him so long to develop general relativity is that “it
is not so easy to free oneself from the idea that co-oordinates must have an immediate metrical
meaning” (Schilpp, 1970, 67).
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greater freedom of coordinates than that. (In particular, it allows for coordinate
changes that mix up the p’s and q ’s, whereas in Lagrangian mechanics, since q̇
is de�ned as the time derivative of q , there is no allowable transformation in
which these “get intermingled” (Taylor, 2005, 538).23) The result is that the
Hamiltonian formulation does not even require a metric structure, but only a
lesser type of structure akin to a volume measure. (I explore this difference in
North (2009).)

I’d go so far as to suggest that there is a hierarchy, in order of increasing math-
ematical structure, from Hamiltonian to Lagrangian to Newtonian mechanics—a
mathematical nonequivalence among the three. (In the above-mentioned writ-
ings, I argue that less such structure is in general a reason to prefer a theory.)
If we take a theory’s mathematical structure seriously in telling us about the
nature of the physical world, then this mathematical difference should re�ect a
similar hierarchy in the physical structure of the world each theory describes—a
physical nonequivalence among them. In other words, these may not be wholly
equivalent formulations, neither mathematically nor physically, contrary to the
standard view.24

3.2. Metaphysical differences

Since the dynamical equations are inter-derivable in the way that physics books
claim, you might conclude that the three formulations are simply “mutually
supporting, compatible perspectives on the phenomena of mechanical motions”
(Wilson, 2007, 179). That is the standard view.25 But there are other differences
among the formulations, what I call here “metaphysical” ones, that could lead to
a different conclusion. Although no theory wears its metaphysics on its sleeves,
on some natural interpretations they differ from one another in potentially
signi�cant ways. All assume a fundamental ontology of point-mass particles with
relative positions,26 but beyond that each one offers a fairly different fundamental
picture of the world, given the different quantities that appear in their respective

23There is a mathematical transformation between them (note 19), but even it “leads one to
suspect that there actually is a nontrivial difference between L and q̇ on the one hand and H and
p on the other” (José and Saletan, 1998, 217).

24Opposition to the above in philosophy is in Swanson and Halvorson (2012); Curiel (2014);
Barrett (2015). Barrett (2018) points out how our judgments about the relationship between the
theories will depend on what we take to be the theories’ core structures, with different views on
the latter leading to different judgments about the former.

25Following Coffey (2014), the standard view might more accurately be put as that Newtonian
mechanics accurately represents physical reality, with Lagrangian and Hamiltonian mechanics
being reformulations of it.

26Though see note 5.
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dynamical equations. (What follows are some initial suggestions; the metaphysics
of the three formulations has not been much explored in the literature.)

First compare Newtonian mechanics, on the one hand, with Lagrangian and
Hamiltonian mechanics, on the other. Newtonian mechanics “describes the
world in terms of forces and accelerations (as related by the second law)” (Taylor,
2005, 521), where “force is something primitive and irreducible” (Lanczos, 1970,
27). Lagrangian and Hamiltonian mechanics describe systems in terms of energy,
with force being “a secondary quantity” derivable from the energy (Lanczos,
1970, 27). According to Newtonian mechanics, the world is fundamentally
made up of particles that move around in response to various forces between
them. According to Lagrangian and Hamiltonian mechanics, particles move
around and interact as a result of their energies. Although energy and force
functions are inter-derivable in ways that physics books will show (albeit under
certain contestable assumptions: note 9), these are nonetheless prima facie
different pictures of the world, built up out of different fundamental quantities,
with correspondingly different explanations of the phenomena. Compare: the
Schrödinger and Heisenberg formulations of quantum mechanics are generally
considered inter-derivable, yet you might not want to regard them as wholly
metaphysically equivalent even so; many philosophers take only the former to
directly or perspicuously represent what is going on physically, for instance.
(You might think that Lagrangian and Hamiltonian mechanics can be seen as
fundamentally forced-based, given in terms of “generalized forces.” However,
generalized forces are so-called by analogy to ordinary forces. It isn’t clear that
they count as regular forces of the Newtonian kind.)

There are potential metaphysical differences between the two energy-based
approaches as well. In Lagrangian mechanics, generalized velocities are de�ned
as the �rst time derivatives of the generalized positions. This suggests that
(generalized) positions are the only truly fundamental dynamical features of
the particles, the velocities being de�ned in terms of them. In Hamiltonian
mechanics, on the other hand, the canonical positions and momenta are both
independent variables, neither being de�ned in terms of the other: both appear
to be fundamental. (This, in turn, may amount to an “impetus” view in the
medieval tradition, with further metaphysical repercussions: Arntzenius (2000).
This assumes that the second law of Hamiltonian mechanics is not a de�nition
of the generalized momentum, as often claimed, but a further fundamental
dynamical law.) Another difference is that the Hamiltonian is typically equal to
the total energy of a system, whereas the Lagrangian is the difference between the
kinetic and potential energies. Perhaps this, too, amounts to a real difference.27

27Baez (2005, ch. 1) tries to distinguish them physically.
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In fact, there is a range of potential views on what’s fundamental to each of the
formulations, and it is not clear which is correct. It is an open question whether,
on any of them, ordinary three-dimensional space is the fundamental space,
or whether what we usually think of as the merely abstract, high-dimensional
statespace (or the con�guration space) is. Relatedly, it is open whether parti-
cle features like positions and momenta are fundamentally de�ned on the low-
or high-dimensional space. (Compare the debate in quantum mechanics over
the fundamentality of the high-dimensional space of the wavefunction versus
ordinary three-dimensional space.) Within energy-based approaches, it is open
whether the energy function, L or H , is fundamental, or whether instead the
potential and kinetic energies are; or indeed whether any energy quantity is
fundamental, rather than the particle positions and velocities in terms of which
the energy is standardly de�ned; or whether all of these might be fundamental.
Analogous questions arise for Newtonian mechanics: are total forces or com-
ponent forces fundamental?28 For that matter, can Newtonian mechanics be
seen as a fundamentally energy-based theory, given the inter-derivability of the
different quantities?29 Finally: are any of these genuinely distinct possibilities, or
are they all equivalent, just different, equally legitimate ways of describing the
same physical reality, analogous to the different coordinate-based descriptions
of the plane? Although physics books generally assume the latter, notice that
certain metaphysical views will say that only one description gets at the real or
fundamental properties (Lewis, 1983; Sider, 2011).

In all, it seems very much an open question whether the three main formu-
lations of classical mechanics are genuinely equivalent, just notational variants
of a single theory, as usually thought. There is a case to be made that the dif-
ferences are signi�cant enough to render them more like distinct theories, with
different accounts of what the physical world is like. All of this warrants further
investigation.
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