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Abstract

The problem of old evidence, first described by Glymour (1980), is still widely regarded as one of the

most pressing foundational challenges to the Bayesian account of scientific reasoning. Many solutions have

been proposed, but all of them have drawbacks and none of them is considered to be definitive. Here,

we introduce and defend a new kind of solution, according to which hypotheses are confirmed when we

become more confident that they provide the only way of accounting for the known evidence.

1 Introduction

The Bayesian Problem of Old Evidence (henceforth POE) is easy to state. If the probability of the evidence,

P (E), is 1, then the likelihood P (E|H) is also 1,1 and hence, by the definition of conditional probabilities,

P (H|E) =
P (E|H)P (H)

P (E)
= P (H) . (1)

So Bayesian confirmation theory has the consequence that known ‘old’ evidence can never confer confirmation

upon scientific hypotheses. As Glymour (1980) pointed out, this observation conflicts with scientific practice.

To illustrate, consider the famous example of General Relativity and the anomalous perihelion of Mercury.

The anomalous perihelion of Mercury (= E) was known long before Einstein formulated the General Theory

of Relativity (= H) in 1915. When Einstein then derived E from H, i.e. when he showed that H implies E, he

as well as the whole scientific community took this to constitute important confirmatory evidence in favour

of H (see also Garber (1983)). Thus, it is commonly said that General Relativity was decisively confirmed

by the anomalous perihelion of Mercury, which should be impossible by the lights of Bayesian confirmation

theory (since E in this case is old evidence).

In the years since POE was first described by Glymour, a plethora of prospective solutions have been

defended in the literature (see e.g. Garber (1983), Hartmann and Fitelson (2014), Howson (1991), Sprenger
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1To see this, note that P (E|H) is defined as

P (E∧H)
P (H)

, and P (E) = 1 implies P (E ∧H) = P (H), and therefore
P (E∧H)
P (H)

= 1.
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(2015)). However, there is still little consensus regarding the proper resolution of the problem. In this paper,

we present a novel approach to modelling confirmation by old evidence, and show that this approach elegantly

resolves several major technical and interpretational difficulties with existing solutions to POE. Our approach

is characterised by the idea that a hypothesis H is confirmed by old evidence E when it is observed that H

provides (or is likely to provide) the only available way to account for E. The structure of the paper is as

follows.

In Section 2 we outline and criticise several of the main existing solutions to POE from the literature,

focusing especially on the so-called ‘Garber-style’ and counterfactual solutions. Section 3 presents a new

approach to POE, according to which confirmation by old evidence is possible when it is realised that the

relevant hypothesis provides the only way to account for the known evidence, and illustrates how this new

perspective on POE overcomes the limitations of extant solutions. Section 4 concludes.

2 Existing Solutions

2.1 Garber-Style Solutions

Perhaps the most influential response to POE is due to Garber (1983). His approach is characterised by the

introduction of a new class of atomic sentences concerning the deductive relationships between the sentences

in the original language. In particular, as well as considering the standard sentences H and E, Garber also

considers the sentence H ` E (H ‘entails’ E). He argues that the apparent confirmation of H by old evidence E

is actually due to a change in our beliefs about the logical sentence H ` E. The General Theory of Relativity

(GR) was not confirmed by the anomalous perihelion of Mercury, but rather by the realization that the

anomalous perihelion of Mercury can be derived from GR. The details of Garber’s approach have been the

subject of much debate (see e.g. Eells 1990), and new variants of the main idea are still being developed (see

e.g. Hartmann and Fitelson 2014). Solutions to POE that utilise the learning of atomic logical sentences of

the form H ` E have come to be referred to as ‘Garber-style solutions’.

Now, classical Bayesianism assumes that we should treat rational agents as being logically omniscient,

meaning that all logical truths should have subjective probability 1 and for any logically incompatible propo-

sitions A and B, we should have P (A ∨ B) = P (A) + P (B). Clearly, this assumption precludes the kind of

Garber-style solution described above. For, if an agent is already aware of all logical truths, then they can

never learn a sentence of the form H ` E, since any such sentence will already be known. So, in order to

get any Garber-style solution off the ground, we need to surrender the assumption of logical omniscience.

This move has received a lot of support in the literature, largely because it is psychologically implausible to
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imagine that a rational agent is ever aware of all the logical relations that obtain between the sentences of

their language (see e.g. Eells 1990: 209).

Thus, Garber-style solutions to POE rely on the independently plausible move of rejecting logical omni-

science as a universal constraint on the credences of rational agents. But once this assumption has been relaxed

and, following Garber, we introduce a new class of logical sentences into our language about which agents can

have partial beliefs, we need to specify some constraints on the relationship between the new purely logical

sentences and the standard sentences of our original language. Specifically, we need to know how the logical

sentence H ` E interacts with H and E. Letting X := H ` E, Garber suggests the following basic constraints:

G1 : P (E|H,X) = 1

G2 : P (H,E,X) = P (H,X)

These constraints are generally taken to be uncontroversial. They tell us that the ` relation satisfies a basic

form of modus-ponens. If I am certain of both H and X, then I should also be certain of E. Armed with G1

and G2, Garber was able to prove the following results, where L is the original scientific language and L′ is

the language obtained by adding the additional atomic logical formulae of the form X.

GT1: There exists at least one probability function on L′ such that every non-trivial atomic sentence of the

form X has a non-extreme probability value P (X) ∈ (0, 1).

GT2: For any atomic sentence of the form X there are infinitely many probability functions satisfying (i)

P (E) = 1, (ii) P (H|X) > P (H).

GT1 tells us that it is possible to be genuinely uncertain about any set of logical sentences in a coherent

way. Crucially, GT2 shows that it is always possible to find a probability function that solves POE, in the

sense that the logical proposition X confirms H (i.e. conditioning on X increases the probability of H) even

though E is old evidence. So, when we learn that the General Theory of Relativity implies the anomalous

perihelion of Mercury, we simply condition on the relevant logical sentence and it will generally be possible

that doing so confirms the theory.

However, the mere existence of probability functions satisfying the conditions in GT2 is not enough to

solve all of our problems here. We also need to know under what conditions a probability function will solve

POE. Most importantly, we need to verify that the conditions under which such functions exist are plausible

and easily satisfied in realistic scientific reasoning contexts.

This problem has been taken up by Jeffrey (1983), Earman (1992) and Hartmann and Fitelson (2014).
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Introducing the additional logical formula Y := H ` ¬E, Jeffrey considers the five constraints:

J1 : P (E) = 1

J2 : P (H), P (X), P (Y) ∈ (0, 1)

J3 : P (X,Y) = 0

J4 : P (H|X ∨Y) ≥ P (H)

J5 : P (H,¬E,Y) = P (H,Y)

With this, he achieves the following result:

JT: Let P satisfy J1–J5. Then P (H|X) > P (H).

So any probability function satisfying J1–J5 solves POE. It only remains to motivate the constraints J1–

J5. J1 reflects the fact that we are dealing with old evidence. J2 encodes the standard assumption that to

begin with we are uncertain about the logical relationship between the hypothesis and the evidence. J3 is a

consistency requirement, i.e. we believe that H is consistent. J5 is just an instantiation of the modus ponens

condition G2. This leaves J4. Intuitively, J4 says that, ceteris-paribus, we should prefer hypotheses that make

definite predictions about the evidence to those that don’t. However, as Sprenger notes, this condition

. . . conflates an evidential virtue of a theory with a methodological one. We are well-advised to

cherish theories of which we know that they make precise predictions on an interesting subject

matter, even if we do not yet know what these predictions look like in detail. This is basically a

Popperian rationale for scientific inquiry: go for theories that have high empirical content, that

make precise predictions, and develop them further. They are the ones that will finally help to

solve urgent scientific problems [. . . ] But following this rule is very different from arguing that the

informativity and empirical content of a theory increases its plausibility. Actually, Popper thought

the other way round: theories with high empirical content rule out more states of the world and

will have low (logical) probability! (Sprenger 2015: 390)

In light of this observation, we are forced to surrender J4 as a universal constraint on our credences about

logical propositions. Since J4 plays a crucial role in the proof of JT, this undermines Jeffrey’s proposed

solution to POE.

Earman (1992) offers two alternatives to J4 as the crucial constraint in the solution of POE. The first one

is the inequality

E1 : P (H|X) > P (H|¬X,¬Y).
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E1 says that learning that H implies the evidence should be more favourable to our belief in H than learning

that H makes no definite predictions about the evidence. But, to quote Sprenger, ‘this condition just seems to

beg the question’. For, we are looking for independently plausible conditions on P that ensure that learning

H ` E will increase P (H). E1 simply imposes something very close to this property without offering any

independent motivating arguments. The second alternative constraint is below:

E2 : P (X ∨Y) = 1

E2 can also be ruled out immediately. For, it seems clear (as Earman himself acknowledges) that in actual

practice, scientists are often uncertain about whether or not a candidate hypothesis H has any bearing on

some body of known evidence. But E2 requires that the scientist should be certain that H will make definite

predictions about E as soon as H is formulated. This is clearly an unrealistic and unreasonable assumption.

Hartmann and Fitelson (2014) also identify a set of conditions that are jointly sufficient to guarantee a full

solution to POE. Unlike those proposed by Jeffrey and Earman, these conditions are purely qualitative. Before

we see the conditions, it is also worth noting that Hartmann and Fitelson suggest an important variation on

the interpretation of the new class of atomic sentences introduced by Garber. Specifically, they argue that

a purely logical interpretation is unduly restrictive and allow for the possibility of a broadly explanatory

interpretation of the new variables X and Y. We read (Hartmann and Fitelson 2014: 2):

[W]e think interpreting ‘X’ and ‘Y’ as ‘H entails E’ and ‘H refutes E’ is unduly restrictive. It is

more plausible to suppose that what is learned in cases of old evidence. . . may not (always) be a

logical fact. To be more precise, let ‘X’ and ‘Y’ be interpreted as follows:

• X =def H adequately explains (or accounts for) E.

• Y =def H’s best competitor (H’) adequately explains (or accounts for) E.

We are sympathetic to this generalisation, since it allows for a more flexible approach to dealing with

old evidence. There is simply no good reason to suppose that the relevant fact that we learn in cases of old

evidence is always logical in character. Furthermore, it is plausible to claim that scientists sometimes take it

to be significant when a hypothesis H is found to provide a good explanation of some evidence E, even though

H does not entail E.2 Finally, it is also plausible to contend that the explanatory virtues of a hypothesis’

competitors plays a significant role in its evaluation. Part of the reason that general relativity was so strongly

confirmed by the anomalous perihelion of Mercury was surely that no other extant theory was able to explain

2Note that HF remain non-committal regarding which conception of scientific explanation is appealed to in the definition of
X and Y. In what follows, we will also remain agnostic, and operate with a folk theoretic understanding of scientific explanation.
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that fact in a satisfactory manner. If some other competing theory were also capable of explaining Mercury’s

advanced perihelion, then the degree of confirmation bestowed on GR by Einstein’s derivation would surely

have been less. Thus, it is natural to loosen the interpretation of the new class of propositions in Garber-style

solutions to allow for facts concerning the explanatory power of a hypothesis and its competitors to play a

role.

Armed with this new interpretation, Hartmann and Fitelson propose the following qualitative constraints

(where it is assumed that P (E) = 1):

HF1 : P (H|X,¬Y) > P (H|¬X,¬Y)

HF2 : P (H|X,¬Y) > P (H|¬X,Y)

HF3 : P (H|X,Y) > P (H|¬X,Y)

HF4 : P (H|X,Y) ≥ P (H|¬X,¬Y)

They then go on to prove the following theorem:

HFT: Let P satisfy HF1–HF4. Then P (H|X) > P (H).

So any probability function satisfying HF1–HF4 will allow us to solve POE by modelling the relevant agents

as having learned the new atomic sentence X. At first blush, HF1–HF4 all look plausible, given the new

interpretation of X and Y posited by Hartmann and Fitelson. HF1 and HF2 essentially require that the ‘best’

outcome for the probability of H is if H accounts for the old evidence E, but its closest competitor H∗ doesn’t.

HF3–HF4 require that both H and H∗ accounting for E is no worse for H’s probability than neither H nor H∗

accounting for the evidence. This all sounds natural (see Kao (2017) for a defence of HF1–HF4 in terms of

historical case studies).

However, although we agree with Hartmann and Fitelson that (i) it is important to consider not just

the hypothesis H itself, but also the hypotheses with which H is competing, (ii) it makes sense to relax the

requirement that X and Y are always interpreted in a logical way, and (iii) the constraints HF1–HF4 are

overall far more plausible than their problematic predecessors, we still contend that the proposed solution to

POE is not the full story. To see this, note that once we’ve introduced the proposition Y it is natural to expect

that learning X ∧ ¬Y should never decrease the probability of H. If I learn that H is able to account for the

evidence but its competitors are not, that should generally make me more confident of the truth of H, and it

should certainly never decrease my confidence in H. For, in this situation, I become more confident that H is

the only way I can possibly account for the evidence and thereby become more confident that H has to be true.

However, it is easy to see that HF1–HF4 are not sufficient to guarantee that P (H|X ∧ ¬Y) ≥ P (H). Thus,
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although introducing the new proposition Y together with the conditions HF1–HF4 allows H to be confirmed

by X, it also introduces a new problem, i.e. to find extra conditions under which X ∧¬Y is guaranteed not to

disconfirm H. If it’s not the case that the proposition Y behaves in a way that is consistent with its intended

interpretation, then the justification of the conditions HF1–HF4 becomes less clear. For, these conditions are

only compelling to the extent that Y really does represent the proposition ‘Some alternative to H accounts for

the evidence’, and this interpretation is only justified, we contend, if X ∧ ¬Y never disconfirms H. If instead

we interpret X and Y as H ` E and H ` ¬E, respectively, Hartmann and Fitelson’s conditions will make little

sense. Indeed, on this interpretation HF3 implies that H should have non-zero probability when we condition

on H being inconsistent. Similarly, HF4 says that conditioning on H being inconsistent cannot render H less

likely than conditioning on H making no predictions about the evidence. On this reading, HF3 and HF4

are deeply implausible. So Hartmann and Fitelson really are committed to the interpretation of Y as ‘Some

alternative to H accounts for the evidence’, but they have not yet demonstrated that this interpretation is

justified by the way that Y interacts with other propositions in the language. So, although Hartmann and

Fitelson’s proposal represents significant progress compared to existing instantiations of Garber’s solution to

POE, it does not provide the full story.

Overall then, we’ve considered three separate attempts at filling in the gaps in the Garber-style solution to

POE, and all three have turned out to be unsatisfactory. In the absence of any satisfactory completion, one is

compelled to regard the proposed solution with a degree of skepticism. It does us no good to know that there

are probability distributions for which POE can be solved if we have no reason to believe that distributions

of this kind are actually representative of the way that scientists and rational agents do/should reason.

2.2 Howson’s Counterfactual Solution

Another approach to POE that has received significant attention in the literature is due primarily to Howson

(see e.g. Howson 1984, 1991). In contrast to the Garber-style solutions that we’ve studied thus far, which

surrender the usual Bayesian assumption of logical omniscience, Howson proposes an alternative amendment to

the theory. In particular, Howson posits an alternative interpretation of Bayesian confirmation. For Howson,

confirmation should not be thought of as positive probabilistic relevance relative to actual degrees of belief.

Rather, Howson argues that in order to gauge the confirmatory relationship between old evidence E and the

hypothesis H, we should counterfactually imagine what would happen to our belief in H if we were to remove

the old evidence E from our background knowledge K, i.e. we imagine how much learning E would increase

our belief in H if we didn’t already know that E obtained. This approach seems to provide an elegant solution

to POE. However, the interpretational shift is a major one that engenders a plethora of new philosophical and
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technical challenges. Thus, we read:

[T]here will not necessarily be any particular degrees of belief that we can say a person would have

had in E, or in H given E, if this person’s degree of belief in E had been less than 1. Indeed, it

seems plausible that in some cases H would not even have been formulated had E not been learned.

And surely there also will be cases in which the person’s knowledge of E saved his life at some time

in the past, so that had the individual’s degree of belief in E been less than 1, the person would be

dead now. Also, there are of course the well-known difficulties attending the proper interpretation

of counterfactual conditionals that would befall any such modification of Bayesian confirmation

theory. (Eells 1990: 208)

These criticisms are sufficient to cast major doubt on the viability of Howson’s counterfactual approach to

POE. And even if the advocate of the counterfactual solution is able to resolve these issues, there is still the

more general worry that in order to solve POE, we have surrendered a key facet of Bayesianism’s philosophical

content, viz. the interpretation of probabilities as actual subjective degrees of belief. Altogether, we take these

considerations to constitute a compelling case for rejecting Howson’s counterfactual approach to POE.

It should be noted that Howson (2017) abandons the counterfactual approach to POE outlined here, and

argues that POE can be easily resolved in the kind of ‘objective Bayesian’ setting advocated by Rosenkrantz

(1981) and Jaynes (1968). We remain silent on Howson’s claim that POE is rendered a non-problem in an

objective Bayesian setting, and focus rather on the extent to which POE is really a problem for subjective

Bayesians. Given that subjective Bayesianism is the dominant approach in the literature, this is clearly a very

pressing philosophical problem.3

2.3 Sprenger’s Hybrid Approach

Sprenger (2015) offers yet another prospective solution to POE. Broadly speaking, his approach can be char-

acterised as a kind of hybrid of the counterfactual and Garber-style solutions described above. For Sprenger,

cases of confirmation by old evidence involve both logical learning and the updating of a particular kind

of counterfactual probability distribution. The details of his approach differ significantly from the standard

versions of the Garber-style and counterfactual solutions, and demand independent examination.

Sprenger begins by positing some constraints on when one should intuitively think of the logical sentence

3For sustained philosophical criticisms of objective Bayesianism, see e.g. Seidenfeld (1979). For a contemporary defence of
objective Bayesianism, see Williamson (2010).
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X := H ` E as confirming H relative to E.

S1 : P (E|H,X) = 1

S2 : P (E|¬H,X) = P (E|¬H,¬X)

S1 is another intuitive modus-ponens style condition. If we know both H and that H entails E with certainty,

then we also know E with certainty. S2 is only slightly more substantive, and Sprenger motivates it with

the observation that ‘[L]earning that certain events are predicted by a refuted hypothesis is just irrelevant to

our assessment of the plausibility of those events.’ (Sprenger 2015: 391). This all sounds plausible, and S2

looks like a natural constraint. However, as Sprenger notes, the condition will always be trivially satisfied

if E is old evidence. For, in that case P (E|¬H,X) = 1 = P (E|¬H,¬X) is guaranteed to hold. In light

of this consideration, Sprenger proposes that the probability function in S1 and S2 should be reinterpreted

counterfactually. In particular, he proposes that we replace the standard Bayesian distribution P with a

particular kind of counterfactual distribution p.

Instead of just eliminating E from the background knowledge, p should represent the degrees of

belief of a scientist who has a sound understanding of theoretical principles and their impact on

observational data, but who is an imperfect logical reasoner and lacks full empirical knowledge. . . In

particular, the scientist does not know the entire observational history. . . How probable would the

actual evidence E be if H were true? How probable would E be if H were false? When H and ¬H

are two definite statistical hypotheses, such judgments are immediately given by the corresponding

sampling distribution. But even in broader contexts, such judgments may be straightforward, or

at least a matter of consensus in the scientific community. (Sprenger 2015: 391)

Sprenger also notes that, unlike the counterfactual distributions used by Howson, p ‘is not bound to a

particular credence function’. Presumably then, p cannot be thought of as representing the actual belief state

of any specific scientist, but only of some ideal scientist whose epistemic situation satisfies the constraints listed

above. We have a number of reservations about this construal of p. Most pertinently, it is far from obvious

that the belief state of such an ideal scientist is uniquely determined by a specification of their understanding

of theoretical principles and their impact on observational data. Scientists with sound understanding of

theoretical principles and equal understanding of the relevant observational data frequently disagree about

the respective likelihoods of different theories. For example, there is currently great controversy amongst

cosmologists concerning the extent to which the existence of dark matter is rendered probable by the relevant

observational data. So although we agree with Sprenger that the relevant judgments may be straightforward
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in certain cases, we do not think that they are generally so. Thus, the counterfactual interpretation described

above strikes us as somewhat imprecise in its current formulation.

But let’s put these concerns to one side for the moment. Armed with the new counterfactual distribution,

Sprenger proposes the following set of constraints on p.

S1 : p(E|H,X) = 1

S2 : p(E|¬H,X) = p(E|¬H,¬X) > 0

S3 : p(E|H,¬X) <
1− p(X|¬H)

p(X|¬H)
· p(X|H)

1− p(X|H)

And goes on to prove the following theorem:

ST: Let p satisfy S1–S3. Then X confirms H for old evidence E, i.e. p(H|X) > p(H|E).

We have already noted that S1 and S2 are intuitive and relatively uncontroversial. So the only remaining

obstacle for this solution to POE is to justify S3. Clearly, S3 is a much less natural condition than S1 or

S2. Sprenger shows that S3 will hold under a number of different circumstances (for example, when Jeffrey’s

problematic condition J4 holds), but when H and X are negatively relevant to each other S3 will only hold if

p(E|¬X,H) is not too close to 1. Sprenger argues that this should generally be guaranteed since ‘[G]iven that

H is assumed to be true, but that by ¬X, it does not fully account for E, E should not be a matter of course

for a rational Bayesian agent’ (Sprenger 2015: 392). But this is not a convincing justification. For, an agent

might be confident (without being certain) of E’s truth for reasons completely independent of H. I may be

very confident that it is sunny outside (E), whilst knowing (or being very confident) both that I am sitting at

my desk (H), and that me sitting at my desk has no logical or explanatory bearing on it being sunny outside

(¬X). So I would be perfectly justified in having a credal state P such that P (E|¬X,H) is arbitrarily high.

There is simply no good reason to accept S3 as a universal constraint on the credences of rational agents.

Overall then, Sprenger’s hybrid solution to POE faces two problems, namely (i) The specification of the

counterfactual distribution p is too vague to provide a general account of how old evidence can confirm, and

(ii) The constraint S3 is devoid of any compelling independent motivation.

In summary, we have studied three classes of prospective solution to POE (Garber-style, counterfactual

and hybrid) and found all three wanting. We saw that, despite several valiant attempts, nobody has yet been

able to spell out the necessary details of a Garber-style solution in a satisfactory manner. The problems faced

by the counterfactual approach were rather more fundamental. In the absence of any principled and coherent

way of determining the counterfactual distribution, the approach seems to raise more problems than it solves.

Finally, Sprenger’s hybrid approach inherits some of the problematic aspects from each of its predecessors.
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We have reached an impasse. We now turn to providing a novel solution to POE that bypasses the problems

faced by the approaches considered so far.

3 The Origins of Old Evidence

Of the proposed solutions considered thus far, we view Hartmann and Fitelson’s (HF) proposal as the most

promising. Unlike other variants of the Garber style solution, HF’s solution allows for the natural possibility

that explanatory facts as well as purely logical facts can provide the basis for confirmation by old evidence.

It also takes into account the important observation that the plausibility of any hypothesis is affected by the

availability of competing hypotheses and their ability to account for the relevant evidence. But as we noted

in section 2.1, HF’s story is also incomplete. While HF provide plausible conditions (HF1–HF4) under which

the proposition X = ‘H adequately explains E’ confirms H, these conditions still allow for the possibility that

the proposition X ∧ ¬Y = ‘H adequately explains E and H’s best competitor does not adequately explain E’

can disconfirm H. And this is implausible. Learning that H explains E and none of H’s competitors explain

E should always make us more confident in the truth of H. Thus, the advocate of HF’s solution is obliged

to identify plausible extra conditions (consistent with HF1–HF4) under which X ∧ ¬Y is guaranteed not to

disconfirm H. Fortunately, such conditions do exist. Specifically, consider the following constraint (where it is

assumed that P (E) = 1).

HF4∗ : P (H|X,Y) = P (H|¬X,¬Y)

HF4∗ is a slight strengthening of HF4. It says that H is equally in plausible in the case where both it

and its competitors account for E and the case where neither it nor its competitors account for E. Intuitively,

the idea is that in both of these cases, there is no difference between H and its competitors (in terms of their

ability to account for E), and hence that there is no significant confirmatory distinction between the cases.

We take this to be an intuitively compelling assumption, which captures the idea (defended in more detail

below) that hypotheses typically only receive significant confirmation from old evidence when it is observed

that they explain the relevant evidence more effectively than their competitors. Armed with HF4∗ we can

show (proof in the appendix):

HFT∗: Let P satisfy HF1–HF3 and HF4∗. Then (i) P (H|X) > P (H), (ii) P (H|¬Y) > P (H) and

(iii) P (H|X ∧ ¬Y) > P (H).

So when we assume HF1–HF3 and HF4∗, we get the desired result. H is confirmed both by the realization

that it accounts for the known evidence, and also by the realization that it but none of its competitors are
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able to account for the evidence. From a technical perspective, this looks like a perfectly adequate response

to POE. Both X and Y behave exactly as one would expect given the proposed interpretations, the proposed

conditions all look perfectly plausible, and the desired confirmatory relations hold.

And this leads to a more general philosophical observation: namely that in real cases of confirmation by

old evidence, what typically matters is not simply that the given hypothesis accounts for the old evidence, but

rather that the hypothesis is the only available hypothesis that accounts for the evidence. In the case of general

relativity (GR) and the anomalous perihelion of Mercury (M), the crucial fact in virtue of which GR received

such strong confirmation was that it accounted for M and none of its competitors accounted for M. If there had

been serious competing theories which were also capable of adequately explaining M in a plausible way, then the

degree of confirmation conferred on GR by M would intuitively have been far weaker (and possibly negligible).

Of course, there were some competing hypotheses. Le Verrier hypothesized the existence of an unobserved

planet ‘Vulcan’ whose gravitational attraction would have explained Mercury’s advanced perihelion, and Von

Seeliger postulated a ring of particulate matter around the sun (see e.g. Crelinsten (2013)) for the same

reason. But these hypotheses were not serious competitors to GR at the time of Einstein’s derivation. It was

the absence of any satisfactory explanation of M that led scientists to regard the phenomenon as a mystery

that needed solving, and it was in virtue of the mystery surrounding M that GR’s explanation of M carried

such confirmatory significance. Furthermore, it is clear that if, in establishing that a hypothesis H explains

some old evidence E, we also demonstrate that a host of alternative and independently viable hypotheses also

explain E, then H will not generally receive significant confirmation. For example, imagine that H belongs

to a large and heterogenous class of mutually incompatible theories S, and I prove that all the theories in S

adequately explain some old evidence E. My proof will not do much to increase our confidence in H in this

case, since it does nothing to distinguish H from its competitors. Overall then, what really matters in cases

of confirmation by old evidence is the realization that H does a better job than its competitors of explaining

the existing evidence.

This point has been overlooked by all the existing Garber style solutions, which assume that confirmation

by old evidence is based only on the realization that the relevant hypothesis adequately explains the old

evidence. We contend that this realization only has meaningful evidential import when it is combined with

the realization that the hypothesis’ competitors do not adequately explain the old evidence. Theory selection

is, by its very nature, a competitive game. And the explanatory virtues of a theory are largely irrelevant if

they do not serve to distinguish that theory from its competitors.

The preceding observations suggest that it may be more fitting to think of scientists as being concerned

primarily with propositions of the form A =df ‘H is the only available hypothesis that adequately accounts
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for E’. What leads a scientist to increase their credence in a hypothesis H is the realization that A is more

plausible than they had previously thought. Thus, we can dispense with HF’s propositions X and Y altogether

and model confirmation by old evidence purely in terms of changes in the probability of A. When Einstein

derived M from GR, the scientific community became more confident that GR was the only way to account

for M, and this is what led to GR’s confirmation. In order to model this interpretation of the story, we need

only one minimal constraint, namely (assuming P (E) = 1)

A1 : P (H|A) > P (H|¬A)

A1 stipulates that H is more likely to be true on the assumption that it is the only available hypothesis

that accounts for the old evidence E than it is on the assumption that it is not the only available hypothesis

that accounts for E. The intuition behind A1 is both simple and powerful. If we additionally assume that E

must be explained by some hypothesis, then we can plausibly motivate significantly stronger conditions, but

A1 is all that is needed for present purposes.

Now, the idea is to model cases of confirmation by old evidence as cases in which the agent becomes

more confident that A is true without necessarily becoming certain of the truth of any individual proposition.

Following Bayesian orthodoxy, we can model this by assuming that the agent Jeffrey conditionalizes to increase

the probability of A, i.e. they replace their prior credence function P with the new credence function P ∗ defined

by

P ∗(H) = P (H|A)P ∗(A) + P (H|¬A)P ∗(¬A). (2)

So the scientist considers only the propositions corresponding to the relevant hypotheses and items of

evidence, and the propositions of the form A (which they treat as atomic). Over time they become more

or less confident in A, and they update their credences accordingly (via Jeffrey conditionalization). From

A1, it straightforwardly follows that when the scientist become more confident in A, H is thereby confirmed,

i.e. P ∗(H) > P (H).4 This is an extremely simple model of confirmation by old evidence that relies only

on the basic premise that scientists are concerned primarily with what distinguishes a hypothesis from its

competitors.

It should be noted that the model proposed here is perfectly continuous with the amended model given by

HFT∗. That model also has the implication that learning the proposition ‘H is the only available hypothesis

that adequately explains E’ confirms H, i.e. P (H|X ∧ ¬Y) > P (H).5 The main difference between the models

4Proof: Using the law of total probability, we note that P (H) = P (H|A)P (A) + P (H|¬A)P (¬A). Next, using A1 and eq. (2)
one then obtains P ∗(H)− P (H) = (P (H|A)− P (H|¬A)) · (P ∗(A)− P (A)) > 0.

5Note that this inequality is equivalent to A1 because P (H|X,¬Y) > P (H) is equivalent to P (H|A) > P (H) (as A ≡ X ∧ ¬Y)
which is equivalent to P (H|A) > P (H|¬A), i.e. to A1.
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is that in our model, this is the only confirmatory relation that is assumed. In a sense, one can think of our

model as a coarse graining of the amended HF model, in which we model only those aspects of the scientist’s

cognitive state that are necessary to explicate the origin of confirmation by old evidence. Since in many

cases all that matters is whether H is the only available explanation of the old evidence, we can treat the

corresponding proposition A as atomic and ‘throw away’ the finer detail given by the propositions X and Y.

Of course, one could equally model confirmation by old evidence in terms of the amended HF model, which,

as we have argued, is also based on plausible conditions. But we contend that in the salient examples that

have been considered in the literature, the extra structure imposed by the HF model is redundant, and can

be disregarded without loss.

Furthermore, it should be reiterated that one could reasonably take issue with the claim that HF’s individ-

ual propositions X and ¬Y should always confirm H. As we stressed above, the realization that H accounts for

E might have no confirmatory significance if we are in a situation in which E has already been well explained

by all of H’s serious competitors. Likewise, learning that none of H’s competitors can explain E might have

no confirmatory significance if we already know that H also fails to explain E. If we want to capture these

kinds of situations faithfully, then the amended HF model cannot be correct, since by HFT∗, it ensures that

both X and ¬Y always confirm H. Our model assumes only the much weaker condition A1, which does not

imply that X and ¬Y individually confirm H, but only that their conjunction does so.

The solution to POE defended here is closely related to recent work on the so called ‘no alternatives

argument’ (NAA). Roughly, the NAA has the following schematic form:

Premise 1: Hypothesis H has some desirable features F.

Premise 2: Despite significant effort, the scientific community has been unable to find any alternatives to H

that share those desirable features F.

Conclusion: Hence we have at least one good reason in favour of H.

Dawid, Hartmann and Sprenger (2015) provide a Bayesian analysis of the NAA and identify conditions

under which the premises of the argument (especially Premise 2) can provide legitimate confirmatory support

for H. Note that the conjunction of the premises states (roughly) that H is the only available hypothesis

with the relevant desirable features F. So in the special case in which F refers to the ability to adequately

explain some existing body of old evidence, the conjunction of the premises corresponds to the proposition A.

Thus, our assumption A1 (according to which A confirms H) can be seen as a particular instantiation of the

conclusion of the NAA. Indeed, we have argued here that all the paradigmatic examples of confirmation by

old evidence discussed in the literature can typically be understood in this way.
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4 Conclusion

In summary then, we’ve presented a novel solution to POE based on the idea that a hypothesis is confirmed

when it provides the only available explanation of old evidence. We’ve seen that this approach has a number

of major advantages over its competitors. Unlike previous attempts to fill in the gaps of Garber’s condition-

alization model, our model does not rely on dubious constraints on the relationship between the logical and

empirical parts of the language. And unlike counterfactual-style approaches, we do not require any radical

revisions to the classical subjective Bayesian interpretation of probability. Furthermore, the model presented

here is extremely simple, and it models only those aspects of a scientist’s doxastic state that are necessary to

plausibly account for confirmation by old evidence.

It should be noted that our model depends crucially on the assumption that scientists believe the propo-

sition A with a certain explicit probability and that they change this probability over time as they alter their

assessments of the theoretical landscape (for example, by learning that H accounts for E, or that one of its

competitors does not). This is an empirical assumption, and it has be be investigated in detail whether it is

true or false for concrete cases.

A Proof of Theorem HFT∗

We parametrize the probability distribution P over the binary propositional variables H,X, Y in the following

way: x := P (X), p := P (Y|X), q := P (Y|¬X), α := P (H|X,Y), β := P (H|X,Y), γ := P (H|X,Y) and

δ := P (H|X,Y). Hartmann and Fitelson (2014) have shown that HF1: β > δ, HF2: β > γ, HF3: α > γ,

and HF4: α ≥ δ jointly imply that P (H|X) > P (H). Proceeding in the same way, one can show that HF5:

β > α, HF6: δ > γ, HF7: β > γ, and HF8: δ ≥ α jointly imply that P (H|¬Y) > P (H). Comparing the two

sets of conditions, one sees that HF7 ≡ HF2 and that HF4 and HF8 are only compatible if one replaces them

by HF4∗ : α = δ. Then HF5 ≡ HF1 and HF6 ≡ HF3. Hence, HF1–3 and HF4∗ imply P (H|X) > P (H) and

P (H|¬Y) > P (H).

Finally, we show that HF1–3 and HF4∗ also jointly imply that P (H|X,¬Y) > P (H), i.e. that

β > αxp+ β x p+ γ x q + δ x q. Setting α = δ (HF4∗), this inequality is equivalent to the inequality

(β − δ) p · x+ (β − γ q − δ q) · x > 0, which holds as β > δ (HF1) and β > γ q + δ q because β > γ, δ (HF1,

HF2).
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