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Abstract

Bayesian inference is limited in scope because it cannot be applied in ide-

alized contexts where none of the hypotheses under consideration is true and

because it is committed to always using the likelihood as a measure of eviden-

tial favoring, even when that is inappropriate. The purpose of this paper is

to study inductive inference in a very general setting where finding the truth

is not necessarily the goal and where the measure of evidential favoring is not

necessarily the likelihood. I use an accuracy argument to argue for probabilism

and I develop a new kind of argument to argue for two general updating rules,

both of which are reasonable in different contexts. One of the updating rules

has standard Bayesian updating, Bissiri et al.’s (2016) general Bayesian up-

dating, and Vassend’s (2019a) quasi-Bayesian updating as special cases. The

other updating rule is novel.

Contents

1 Introduction 2

2 Why plausibility functions should be probabilistic 5

3 Deriving the updating rules 7

3.1 The combination step . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Philsci-Archive

https://core.ac.uk/display/295732426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3.2 The normalization step . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Characterizations of inferential and predictive updating . . . . . . . . 14

4 Discussion of inferential and predictive updating 16

4.1 The difference between inferential updating and predictive updating . 16

4.2 The relationship between inferential updating and other updating pro-

cedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 19

A Characterization of the combination function 23

B Characterization of the normalization step 25

C Characterization of inferential updating 26

D Characterization of predictive updating 27

E General Bayesian updating is a special case of inferential updating 29

F An alternative characterization of the combination step 29

1 Introduction

Bayesians hold that inductive inference requires two ingredients. First, a prior prob-

ability function defined on the hypotheses under consideration. Second, a likelihood

function, which assigns a probability to the evidence conditional on each hypothesis.

Intuitively, the prior probability assigned to a hypotheses represents how plausible it

is that the hypothesis is true before the evidence has been taken into account. The

likelihood, on the other hand, is a measure of evidential favoring: if H1’s likelihood

on the evidence is greater than H2’s likelihood on the same evidence, then the evi-

dence favors H1 over H2. Given a prior and likelihood, Bayesians hold that the prior

probability of each hypothesis should be updated to a posterior probability through
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the use of Bayes’s formula, so that the posterior probability of H is proportional to

the prior probability of H multiplied by its likelihood.

Bayesianism has become the most common formal framework used by philoso-

phers of science to study scientific methodology, and it is also an influential frame-

work for statistical inference. But it rests on an assumption that is often violated in

scientific practice, namely that one of the hypotheses under consideration is true.1

Suppose none of the hypotheses under consideration is true, so that the goal is in-

stead to find the hypothesis that is – in some sense – best. Depending on what is

meant by “best,” the likelihood may not be an appropriate measure of evidential

favoring. For example, suppose the goal is to identify the hypothesis whose expected

maximal prediction error on future data is as low as possible. Then, as Vassend

(2019a) shows, the likelihood is not an appropriate measure of evidential favoring

because the hypothesis that has the best likelihood score on the evidence will in

general not be the hypothesis that has the lowest expected maximal prediction error

on future data. In this context, a more reasonable measure of evidential favoring is

one according to which the evidence favors H1 over H2 if and only if H1’s maximal

prediction error on the evidence is lower than H2’s maximal prediction error on the

evidence. The fact that Bayesianism is tied to using the likelihood as a measure of

evidential favoring is therefore a limitation of the framework.

The goal of this paper is to study inductive inference in a very general setting.

Suppose our goal is to identity the best hypothesis H (where “best” does not nec-

essarily mean “true”). Let p be function that assigns a number between 0 and 1

(inclusive) to each hypothesis, such that p(H) is interpreted as representing a prior

judgment of how plausible it is that H is best (in the relevant sense) out of the

hypotheses under consideration. Suppose, moreover, that Ev[E|H] is an evidential

measure that is sensible given the purpose at hand. Then the questions to consider

are as follows: (1) What norms should p obey? (2) How should p(H) and Ev[E|H] be

combined in order to produce a posterior score pE(H) that represents how plausible

1This limitation is well known, but often ignored. For discussion of the problem, see, e.g. Box
(1980); Bernardo and Smith (1994); Forster and Sober (1994); Forster (1995); Key et al. (1999);
Shaffer (2001); Sprenger (2009); Gelman and Shalizi (2013); Vassend (2019b); Walker (2013); and
Sprenger (2017).
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it is that H is best in light of E and the prior information?

As we will see, one of the standard Bayesian arguments for probabilism general-

izes, so that p and pE ought to be probability functions. The more interesting results

concern updating. I will show that, depending on what the goal is, the prior prob-

ability function and evidential measure should be combined in one of the following

two ways in order to produce a posterior probability:

Inferential updating. Given evidential measure Ev and prior proba-

bility function p, update p to the posterior pE by way of the following

formula:

pE(H) =
Ev[E|H]p(H)∑
i Ev[E|Hi]p(Hi)

Predictive updating. Given evidential measure Ev and prior proba-

bility function p, update p to the posterior pE by way of the following

procedure:

Step 1. For each i, calculate q(Hi) = p(Hi) + Ev[E|Hi].

Step 2. Transform q to pE as follows: for each i, pE(Hi) = 0

or pE(Hi) = q(Hi)+d, where d is the unique number such that

d is minimal and, for all i, pE(Hi) ≥ 0 and
∑

i pE(Hi) = 1.

The justification for the names of the two updating procedures will become clearer

later. Inferential updating is clearly a generalization of Bayesian updating. Indeed

Bayesian updating is just inferential updating with the likelihood used as the measure

of evidential favoring. What separates inferential updating from predictive updating

is the former rule’s commitment to Regularity : inferential updating will never assign

a probability of 0 to any hypothesis, whereas predictive updating typically will. In

Section 4, we’ll see that a commitment to Regularity is sometimes reasonable and

sometimes not.

The plan for the rest of the paper is as follows. In Section 2, I sketch an argument

for why any plausibility function ought to be probabilistic, regardless of whether the
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goal is truth or something else. Since the argument is a straightforward adaptation

of Pettigrew’s (2016) accuracy argument for probabilism, the section is brief. In

Section 3, I give characterizations of inferential and predictive updating from a set

of plausible assumptions. The strategy is to divide inductive updating into two

steps: in the first step, the prior plausibility of a hypothesis is combined with the

hypothesis’s score on the evidence according to some measure of evidential favoring

in order to produce a posterior score. In the second step, the posterior scores are

normalized so that they are probabilistic. As we’ll see, the requirement that the

combination step and normalization step commute in certain desirable ways, together

with a few other plausible assumptions, result in the conclusion that the combination

step and normalization step must both be either multiplicative or additive. The

characterizations of inferential and predictive updating are then just a few short

steps away. I end the paper with a discussion of inferential and predictive updating,

including their relationship to each other and to other updating rules.

2 Why plausibility functions should be probabilis-

tic

One of the standard arguments for why regular plausibilities (or degrees of belief)

ought to be probabilistic is the accuracy argument (Joyce (1998), Joyce (2009),

Pettigrew (2016), Predd et al. (2009)). Briefly, the argument is as follows:2 the

ideal plausibility function to have is the function that assigns 1 to the hypothesis

that is true and 0 to all hypotheses that are false. Suppose now that we have

a divergence measure (satisfying certain reasonable properties) that quantifies the

distance between the ideal function and any other candidate plausibility function.

It can then be shown that any plausibility function that is not probabilistic will be

dominated by some probabilistic function in the sense that the probabilistic function

will be guaranteed to have a smaller divergence from the ideal function. Since it is

2There are several versions of the argument; here, I present a variant of Pettigrew’s (2016)
version.
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irrational to choose an option that is known to be dominated, it follows that it is

irrational to use a non-probabilistic plausibility function.

An interesting fact about the accuracy argument for probabilism is that it does

not depend for its validity on any specific interpretation of the plausibility function,

nor does it depend on the assumption that the ideal plausibility function is the

function that assigns 1 to the hypothesis that is true and 0 to all hypotheses that

are false. Indeed, nothing in the accuracy argument prevents us from designating

the ideal plausibility function otherwise. Hence, we can easily adapt the argument

to a context where the goal is to identify the hypothesis that is best rather than

true (where “best” can mean anything we like). In such a context, an ideal function

would clearly be one that assigns 1 to the hypothesis that is best and 0 to all other

hypotheses. One complication that arises when “true” is replaced by “best” is that

whereas there is only one true hypotheses, there may be several that are best.3 For

example, if “best” means “having a minimal maximum expected prediction error,”

then there may be several hypotheses that are tied for best. However, it is easy to

accommodate this complication, as I have done in the following generalization of the

accuracy argument:

P1: An ideal plausibility function is any function that assigns 1 to a

hypothesis that is best and 0 to all other hypotheses.

P2: For any ideal plausibility function and any non-probabilistic function,

there is a probabilistic function that is guaranteed to have a smaller

divergence from the ideal function (given that the divergence measure

has certain reasonable properties).

P3: For any ideal plausibility function and any probabilistic function,

there does not exist any function that is guaranteed to have a smaller

divergence from the ideal function (given that the divergence measure

has certain reasonable properties).

P4: If P1-P3, then non-probabilistic plausibility functions are irrational.
3I thank X for pointing this out to me.
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C: Non-probabilistic plausibility functions are irrational.

P2 and P3 are mathematical theorems (proven by Predd et al. (2009)) that hold

regardless of what we choose as the ideal function. P1 and P4, on the other hand,

are intuitively reasonable general rational principles. The main question that may

be raised about the generalized version of the accuracy argument is whether the

conditions on the divergence measure are still reasonable when truth is no longer the

goal. For example, P2 and P3 require the assumption that the divergence measure

belong to the class of Bregman divergences. Is this a reasonable requirement to

make? My only response to this question is that I do not see how this assumption

(and other necessary mathematical assumptions) are more plausible if truth is the

goal than if the goal is to identify the hypothesis that is best in some other sense. So,

at least in my eyes, the generalized accuracy argument is at least as plausible as the

original argument. In any case, my main goal in this paper is not to give a careful

analysis of the accuracy argument. From now I will assume that any plausibility

function ought to be probabilistic. That is, I will assume that if p is a function

that assigns a number between 0 and 1 to each hypothesis H that represents how

plausible it is that H is best (in some sense), then p ought to be probabilistic. In the

next section, I turn to the main question of the paper: given a probability function

p and given a piece of evidence E, how should p be updated in light of E?

3 Deriving the updating rules

It is widely accepted that if the goal is to find the true hypothesis in a partition of

hypotheses, then any probability function over the hypotheses ought to be updated

through Bayesian updating:

Bayesian updating: p(H|E) = p(E|H)p(H)∑
i p(E|Hi)p(Hi)

The natural generalization of Bayesian updating is what I have called inferential

updating in the introduction. However, it is not clear why the prior probability

function and the evidential measure should always be combined in a Bayesian-like
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manner, regardless of what the evidential measure is and regardless of what the pur-

pose of updating is. Unfortunately, whereas the accuracy argument for probabilism

does not make any assumptions about how the plausibility function is interpreted,

the standard accuracy argument for Bayesian updating (Greaves and Wallace, 2006)

relies on properties that are unique to the likelihood, in particular the fact that the

likelihood forms a joint distribution with the prior. Thus, the standard accuracy

argument does not generalize to cases where the evidential measure is not the like-

lihood. Other standard arguments for Bayesian updating have the same limitation

(e.g. Dutch book arguments). A different kind of approach is therefore needed.

Bissiri et al. (2016) come up with a different approach. They show that provided

that the evidential measure is a function of an additive loss function, L(E|H), such

that Ev[E2&E2|H] = f(L(E1, H) + L(E2, H)), and given that a few other assump-

tions are met, then the updating procedure must have the following form, where c is

some constant:

p(H|E) =
e−c∗L(E|H)p(H)∑
i e
−c∗L(E|Hi)p(Hi)

(3.1)

Bissiri et al. (2016) call the above updating procedure “general Bayesian updat-

ing.” General Bayesian updating was originally introduced (not under that name)

by Zhang (2006) and has been increasingly influential in statistics in recent years.

Although Bissiri et al.’s (2016) argument for general Bayesian updating is interest-

ing, it has several limitations. One problem is that, as Vassend (2019b) argues, the

probabilities in (3.1) cannot be interpreted in the standard Bayesian way as plausi-

bilities of truth. But if the probabilities are not standard plausibility functions, then

the decision theoretic framework assumed by Bissiri et al. (2016) would seem to lack

justification. The argument also makes certain mathematical assumptions that seem

hard to justify from a philosophical point of view. In particular, the authors base

their argument in part on the use of statistical divergence measures, and they assume

that the divergence belongs to the class of f -diverences. This assumption rules out

many standard divergence measures, including all Bregman divergences aside from
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the Kullback-Leibler divergence (Amari, 2009).4 A final limitation of Bissiri et al.’s

(2016) derivation is that there are many reasonable evidential measures that cannot

be written as a function of an additive loss function. Indeed, even the likelihood will

only have such a form if the evidence is independent conditional on Hi, for all i.5

Thus, although their argument is interesting, a more general approach that makes

less restrictive and more philosophically defensible assumptions is desirable. That is

the goal of this section. Later we will see that Bissiri et al.’s (2016) updating rule

may be derived as a special case.

To start, note that ordinary Bayesian updating can be decomposed into two steps:

Combination step. For each i, calculate p∗(Hi) = p(E|Hi)p(Hi).

Normalization step. Transform p∗ to p′ as follows: for each i, p′(Hi) =
p∗(Hi)
p(E)

.

In the first step, the prior plausibility of the hypothesis is combined with the

evidential score (i.e. likelihood) of the hypothesis in order to produce an overall

judgment of the hypothesis’s posterior plausibility. In the second step, the posterior

plausibility of all the hypotheses are rescaled in such a way that they jointly obey

the probability axioms, i.e. such that all the posterior plausibility scores fall between

0 and 1, inclusive, and jointly sum to 1.

It is reasonable to suppose that any updating procedure may be similarly de-

composed into a combination step and a normalization step. The combination step

requires a combination function, c, that takes as its input a prior probability, p(H)

and a set of evidential scores, Ev[E1|H], Ev[E2|H,E1], Ev[E3|H,E1, E2], etc., and

that assigns a total score to H, taking into consideration both its prior probabil-

ity and its performance on the evidence. The normalization step then transforms

4Recall that Bregman divergences play a crucial role in the accuracy argument for probabilism.
The justification for the focus on Bregman divergences is their tight connection to strict propriety
(see Predd et al. (2009)).

5If p(E1, E2|H) = p(E1|H)p(E2|H), we can write p(E1, E2|H) = elog p(E1|H)+log p(E2|H), i.e. the
likelihood is of the form required by Bissiri et al. (2016). But if p(E1, E2|H) 6= p(E1|H)p(E2|H),
then we cannot write the likelihood in this way.
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those scores into probabilities. In other words, on an abstract level, any updating

procedure may plausibly be decomposed in the following way:

Combination step: For each hypothesis, Hi, a set of evidential scores

and a prior probability are combined using some combination function c

in order to produce an overall posterior score for Hi.

Normalization step: The posterior scores of all the Hi are transformed

using some function N such that they jointly satisfy the probability ax-

ioms.

In the next two subsections the combination step and the normalization step are

analyzed in detail. The goal is to show that – given reasonable assumptions – the

combination function c and the normalization function N both have a very limited

set of possible functional forms.

3.1 The combination step

There really are only two plausible candidate forms for the combination function:

either the function is additive or it is multiplicative. That is, let e1 and e2 represent

the evidential scores of a hypothesis H on some evidence, and let h represent H’s

prior probability; then the combination function plausibly has one of the following

forms:

Additive combination: c(e1, e2, h) = e1 + e2 + h

Multiplicative combination: c(e1, e2, h) = e1 ∗ e2 ∗ h

Note that e1 and e2 here may represent either conditional or unconditional ev-

idential scores. For example, e1 may represent Ev[E1|H], i.e. the unconditional

evidential score of H on E1, or it may represent Ev[E1|H,E2], i.e. the conditional

evidential score of H on E1 given that E2 has already been taken into account. Note,

also, that to say that the combination function is additive or multiplicative is not the
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same as saying that the evidential measure is additive or multiplicative in the sense

that Ev[E1, E2|H] = Ev[E1|H] + Ev[E2|H] or Ev[E1, E2|H] = Ev[E1|H] ∗Ev[E2|H].

The latter assumptions are much stronger, and amount to assuming that E1 and E2

are independent conditional on H (relative to the evidential measure Ev).

If we make a few reasonable assumptions, we can prove that the combination

function must be multiplicative or additive. First of all, suppose we have evidential

scores e1 and e2, and a prior probability h. Clearly, the order in which we combine

the evidential scores and the prior should not matter for the final result we get.

That is not to say that the order in which the evidence is received does not matter;

it may. For example, if we flip a coin and the outcomes are six heads in a row

and then six tails in a row, then the order of the outcomes strongly suggest that

the outcomes are probabilistically dependent. Nevertheless, the order in which we

evaluate the available pieces of evidence in order to produce an overall judgment

should not influence the overall judgment at which we arrive. For that reason, the

combination function should be commutative: c(e1, e2) = c(e2, e1). Furthermore, it

clearly should not matter whether we first combine e1 and e2 and then combine the

result of that with e3, or whether we combine e2 with e3 and then combine the result

with e1, or whether we combine all three pieces of evidence at the same time. In

other words, c should be associative: c(e1, c(e2, e3)) = c(c(e1, e2), e3) = c(e1, e2, e3).

The final reasonable requirement is more quantitative. Clearly, the impact that

e1 has on H’s overall evidential score, after e2 has already been taken into account,

should not depend on the impact that e2 has on H. That is not to say that a piece

of evidence E2 should not influence the impact that a different piece of evidence

E1 has on H’s evidential score; it may well, but if it does it should do so through

Ev[E1|H,E2]. A piece of evidence may influence the evidential impact conferred by

another piece of evidence, but the evidential scores themselves should not influence

each other. In other words, the requirement is that the impact that, for example,

e1 = Ev[E1|H,E2] makes on H’s total evidential score should not depend on the

impact that e2 = Ev[E2|H] makes on H’s total evidential score, nor vice versa.

The preceding requirement may be naturally formalized as constraints on the

partial derivatives of the combination function. Let c(x, y) be the combination func-
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tion as a function of variables x and y. Then the impact that the evidential score

e1 makes on H’s total evidential score is plausibly the value of the partial derivative

of c(x, y) with respect to x, when evaluated at x = e1. If ∂c(x,y)
∂x

c(x = e1, y) is a

large number, then that means setting x to e1 makes a large difference to H’s overall

evidential score; if it is 0, then e1 makes no difference.

The requirement that the impact that e1 makes should not depend on the impact

that e2 makes, nor vice versa, for any e1 and e2, may then be formalized in terms of a

constraint on the higher-order partial derivatives of c, namely that for some constant

k the following equation be obeyed:

∂2c(x, y)

∂x∂y
= k

The above equation formalizes the idea that the impact that x makes, i.e. ∂c
∂x

,

should not depend on the impact that y makes, i.e. ∂c
∂y

, where x and y represent

any possible evidential scores. We can now show the following (the derivation is in

Appendix A):

Characterization of the combination function. Suppose the combi-

nation function, c(x, y) satisfies the following requirements :

1. c is commutative.

2. c is associative.

3. c’s partial derivatives satisfy the following equation, for some num-

ber k:
∂2c(x, y)

∂x∂y
= k

Then c must have one of the following two forms :

1. If k = 0, then c(x, y) = x + y.

2. If k 6= 0, then c(x, y) = xy.

Hence, it follows that the combination function must be additive or multiplicative.

Of course, this conclusion is only as plausible as the assumptions from which it
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is derived, and some people may be uncomfortable with some of the assumptions

that have been made, in particular the condition on the partial derivatives of the

combination function. As it happens, it’s possible to derive the conclusion from quite

different assumptions. Hence, in order to show the robustness of the conclusion, I

provide an alternative characterization of the combination function in Appendix F.

3.2 The normalization step

After the combination function has produced a posterior plausibility score, the pos-

terior score must be normalized to be a probability. In theory, normalizing a set of

numbers means transforming the numbers in such a way that they are all between 0

and 1 and jointly sum to 1, while at the same time retaining as much of their internal

structure as possible. In practice, this means that the most extreme numbers in the

set may be forced to take the value 0, while the remaining numbers in the set are

rescaled by some function, f . In other words, normalization in general takes the

following functional form:

N(x) =

0 Given that x is sufficiently low

f(x) Otherwise
(3.2)

For example, in the normalization step of standard Bayesian updating, N(x) =

f(x) (i.e. no non-zero numbers are normalized to 0) and if the set to be normalized

is {a1, a2, . . . , an}, then f(x) = 1∑
i ai

. Note that both N and f are relative to the set

that is being normalized; hence, if we need to be precise, we should write NS and fS,

where the subscript indicates the set that is being normalized. Nevertheless, I will

typically leave off the subscripts in order to avoid clutter.

Clearly, f should be a one-to-one function. Indeed, except in the case where x

and y are both normalized to 0, it should be the case that if x < y then f(x) < f(y).

Furthermore, it is clear that the function f ought to commute with the combination

function. Suppose we have scores e1, e2, and h. Then we should arrive at the

same posterior probability regardless of whether we do either of the following: first

we combine h and e2, normalize, then combine the normalized result with e1 and
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normalize again; or we first combine h and e1, normalize, and then combine that

normalized result with e2 before normalizing again. In symbols, we require, for

all possible scores x, y, and z, that : f(c(x, f(c(y, z)))) = f(f(c(x, y), z)). The

justification for this requirement is, again, that the order in which we evaluate our

evidence – which is arbitrary – should not have an influence on our final judgment.

By combining just the preceding two requirements, we can show the following:

Characterization of the normalization procedure. Suppose we have

a normalization procedure as in (3.2) that satisfies the following require-

ments :

1. f commutes with the combination function c. For all x, y, and x:

f(c(x, f(c(y, z)))) = f(f(c(x, y), z)).

2. f is one-to-one: for all x and y, f(x) = f(y) if and only if x = y.

Then the normalization process must have one of the following forms, for

some constant k that depends on the set, S, of numbers being normalized :

1. If the combination function is multiplicative, then, for all x in S,

f(x) = k ∗ x.

2. If the combination function is additive, then, for all x in S, f(x) =

x + k.

The proof, which again is straightforward, is in Appendix B.

3.3 Characterizations of inferential and predictive updating

The results so far show that any updating procedure needs to have either: (1) A

multiplicative combination step and a multiplicative normalization step, or (2) an

additive combination step and an additive normalization step. Call an updating

procedure that satisfies either (1) or (2) a legitimate updating procedure. To char-

acterize inferential updating we now introduce the following principle:
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Regularity: No hypothesis is ever conclusively ruled out by any evidence

unless the evidence logically refutes the hypothesis, i.e. the posterior

probability of any hypothesis is always greater than 0.

We can then show the following (see Appendix C):

Characterization of inferential updating. The only legitimate up-

dating procedure that satisfies Regularity is inferential updating. I.e.,

given evidential measure Ev and prior probability function p, update p

to the posterior pE by way of the following formula:

pE(H) =
Ev[E|H]p(H)∑
i Ev[E|Hi]p(Hi)

Inferential updating satisfies Regularity; it will never result in any hypothesis

having a posterior probability of 0. On the other hand, in Appendix C, I show that

an updating procedure that uses an additive combination function and an additive

normalization function must violate Regularity; most of the time, any such updating

rule must assign a posterior probability of 0 to some hypotheses. But this does

not mean that such an updating rule should never be used. As we will see in the

next section, sometimes we may want to be able to exclude certain hypotheses from

consideration—i.e., assign them a posterior probability of 0.

Nevertheless, we do not want to exclude more hypotheses than is warranted by

the data. The updating procedure ought to be conservative and exclude as few

hypotheses as possible at every step. In other words, any updating procedure that

violates Regularity should plausibly still satisfy the following principle:

Conservativeness: The updating procedure assigns a posterior proba-

bility of 0 to as few hypotheses as possible, given the combination func-

tion, the normalization procedure, and the evidence available.

We are now in a position to characterize predictive updating:
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Characterization of predictive updating. The only legitimate up-

dating procedure that violates Regularity, but satisfies Conservativeness,

is predictive updating. I.e., given evidential measure Ev and prior prob-

ability function p, update p to the posterior pE by way of the following

procedure:

Step 1. For each i, calculate q(Hi) = p(Hi) + Ev[E|Hi].

Step 2. Transform q to pE as follows: for each i, pE(Hi) = 0

or pE(Hi) = q(Hi)+d, where d is the unique number such that

d is minimal and, for all i, pE(Hi) ≥ 0 and
∑

i pE(Hi) = 1.

4 Discussion of inferential and predictive updat-

ing

4.1 The difference between inferential updating and predic-

tive updating

Inferential updating and predictive updating differ in that the former updating rule

obeys Regularity while the latter rule does not. Is Regularity a reasonable constraint?

In some contexts it is, but in others it is not. Suppose our main priority is to identify

the hypothesis that is true or (if none of the hypotheses is true) the hypothesis that is

closest to the truth according to some appropriate measure of closeness to the truth.

Given this goal, it is reasonable to be risk-averse and open-minded: we do not want

to rule out any hypothesis as potentially being the hypothesis that is true. Even

if a lot of evidence strongly suggests that a hypothesis is false, there is always the

possibility that the evidence is unrepresentative or misleading. And so Regularity is

a reasonable constraint in this context.

However, suppose we do not care about which of our hypotheses is true or closest

to the truth; our goal is not inferential, but predictive. We wish to find, as efficiently

as possible, the subset of hypotheses that can be expected to be as predictively

accurate as possible. In this context, there is no theoretical justification for requiring
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that the updating rule obey Regularity; on the contrary, there are good reasons for

why we might want an updating rule that violates Regularity. In particular, suppose

the posterior distribution will be used in order to make a weighted probabilistic

prediction, i.e. the goal is for p(D|Hi)pE(Hi) to be as accurate on future data D

as possible. In that case, it would seem inadvisable to assign positive probability

to any hypothesis that has shown itself to be very predictively inaccurate, since the

predictions made by such a hypothesis would likely throw off the weighted prediction.

On the other hand, we do not want to go to the opposite extreme and base the

prediction on the single hypothesis that has performed best on the evidence, as that

is liable to lead to overfitting (Forster and Sober, 1994). Predictive updating enables

one to set the probabilities of predictively inaccurate hypotheses to 0 in a principled

(and conservative) way.

Let’s consider a specific example. When the hypotheses under considerations

make probabilistic predictions and the goal is maximal predictive accuracy, it is

natural to use a strictly proper scoring rule as the measure of evidential favoring

(Gneiting and Raftery, 2007). For various reasons, the most popular scoring rule

in applied research is probably the Continuous Ranked Probability Score (CRPS).

Suppose we have a set of competing statistical models M1, M2, etc., and for each

model, let pMi
be the marginal probability forecast distribution corresponding to Mi.

Suppose, moreover, that pMi
has finite first moment. Then the CRPS can be written

in the following way (where the expectations are taken relative to pMi
):

CRPS(pMi
, x) = E|X − x| − 1

2
E|X1 −X2| (4.1)

As (4.1) makes clear, CRPS is a statistical generalization of absolute error. As

Gneiting and Raftery (2007) point out, a significant benefit of the CRPS is that

it is easily interpretable, since the outputs of (4.1) can be reported in the same

units as the measurements. For example, suppose the measurements are in terms

of meters. Then the CRPS score of a model will be a representation of how many

meters inaccurate the model’s predictions are, on average.

If we let Ev[x|pMi
] = a ∗ CRPS(pMi

, x), where a is some constant, and assign
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prior probabilities to all the models, then predictive updating can be used to assign

posterior probabilities to all the models.6 Importantly, given sufficient evidence

(and depending on how the constant a is chosen) many of the models will receive a

posterior probability of 0. These posterior probabilities can then be used for model

selection or for making a weighted prediction using all the models. Of course, it is

an empirical question whether predictive updating is better (for predictive purposes)

than inferential updating (including standard Bayesian updating). An empirical

evaluating of predictive updating will have to wait for a different occasion, however.

In this section I have simply tried to suggest one concrete way in which predictive

updating may be implemented.

4.2 The relationship between inferential updating and other

updating procedures

As was already mentioned in the introduction to the paper, standard Bayesian updat-

ing is clearly a special case of inferential updating: more precisely, we get Bayesian

updating if and only if Ev[E|H] ∝ p(E|H), i.e. if and only if the evidential mea-

sure is proportional to the likelihood. What Vassend (2019a) calls “quasi-Bayesian

updating” is also a special case of inferential updating; indeed, quasi-Baysian updat-

ing is simply inferential updating with an evidential measure that has been suitably

calibrated to a verisimilitude measure.

Perhaps more interestingly, Bissiri et al.’s (2016) general Bayesian updating is

also a special case of inferential updating. More precisely, we have:

General Bayesian updating is a special case of inferential updat-

ing. Suppose the evidential measure Ev is a strictly decreasing function f

of some loss function, L(E,H), such that for all E1 and E2, Ev satisfies

the following conditions :

1. Ev[E1|H,E2] = Ev[E2|H] = f(L(E1, H)).

6If the models contain parameters, then the probability distributions over those parameters may
be updated using either inferential or predictive updating.
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2. Ev[E1, E2|H] = f(L(E1, H) + L(E2, H)) .

Then inferential updating has the following form:

p(H|E) =
e−c∗L(E,H)p(H)∑
i e
−c∗L(E,Hi)p(Hi)

For some constant c.

A sketch of the proof, which is straightforward, is given in Appendix E. Although

general Bayesian updating is a special case of inferential updating, the reverse is

not the case because – as was previously mentioned – many reasonable evidential

measures cannot be written as a function of an additive loss function. Suppose,

for example, that the hypotheses under consideration are real-valued functions, fi

and that the evidential measure is of the form Ev[(x1, y1), (x2, y2), . . . , (xn, yn)|fi] =

Minimum(|y1 − fi(x1)|, |y1 − fi(x1)|, . . . , |y1 − fi(x1)|). It is clear in this case that

the evidential measure cannot be written as a function of an additive loss function,

simply because the Minimum operator is not additive.

5 Conclusion

The primary purpose of this paper has been to justify a set of very general synchronic

and diachronic inductive norms. The resulting normative framework can be put to

both philosophical and scientific use. In philosophy of science, a standard way of

analyzing scientific methodology is by seeing whether the methodology makes sense

from a Bayesian perspective. For example, in this way, Sober (2015) analyzes parsi-

mony inference,7 Dawid et al. (2015) analyze no-alternatives arguments in physics,

Schupbach (2018) analyzes robustness analysis, and Myrvold (2016) evaluates the

epistemic value of unification. Since the preceding analyses take place in a Bayesian

framework, they inherit the limitations and assumptions of Bayesianism. In the

broader normative framework developed in this paper, it’s possible to check whether

7Sober uses a likelihoodist approach, which is Bayesianism without the priors.

19



the analyses still hold up when those assumptions are lifted. For example, Myrvold

(2016) shows that more unifying hypotheses will be more confirmed by evidence than

less unifying hypotheses, other things being equal. Since his analysis is Bayesian,

he implicitly uses the likelihood as his measure of evidential favoring. A natural

question to ask is whether his result still holds if the likelihood is replaced with

an arbitrary measure of evidential favoring. The perhaps surprising answer is yes,

although a proper demonstration of this fact must be reserved for a different time.

The normative framework developed in this paper can also be used for scientific

inference. Indeed, implicitly it already has been—as shown in Section 4.2, the gen-

eral Bayesian updating rule suggested by Bissiri et al. (2016) is a special case of

inferential updating, and general Bayesian updating is gaining in popularity in the

statistical community. But inferential updating is more general than general Bayesian

updating, and allows for the use of evidential measures that cannot be represented

in Bissiri et al.’s (2016) framework. One example is the phylogenetic parsimony

measure discussed by Vassend (2019a). Predictive updating can also be applied in

scientific inference problems, for example through the use of strictly proper scoring

rules as suggested in Section 4.1. Of course, it is ultimately an empirical question

whether predictive updating performs better than inferential updating. An answer

to this question must wait until later; in this paper, my goal has been to provide

a general normative framework for inductive inference that is as flexible as possible

while obeying basic theoretical desiderata.
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A Characterization of the combination function

The goal of this section is to show the characterization of the combination function

in Section 3.1. There are two cases to consider: k = 0 and k 6= 0. Since the two

cases are very similar, I will only consider the case where k 6= 0. So suppose that for

some non-zero k, we have:

∂2c(x, y)

∂x∂y
= k (A.1)

Taking the antiderivative with respect to x, it follows that:

∂c(x, y)

∂y
= kx + C(y) + D (A.2)

Where C(y) is a function of y, but not x, and D is some real number. Taking

the antiderivative of A.2 with respect to y, we get:

c(x, y) = kxy +

∫
C(y)dy + Dy + G(x) + F (A.3)

Where G is a function of x and F is some real number. Moreover, since c(x, y) =

c(y, x), A.3 implies that kxy+
∫
C(y)dy+Dy+G(x) +F = kxy+

∫
C(x)dx+Dx+
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G(y) + F , and hence
∫
C(y)dy + Dy + G(x) =

∫
C(x)dx + Dx + G(y). Comparing

the terms that depend on x, we see that G(x) =
∫
C(x)dx+Dx. Hence, A.3 implies

that:

c(x, y) = kxy + G(x) + G(y) + F (A.4)

Now the fact that c is associative and commutative means that c(c(x, y), z)) =

c(c(y, z), x), and hence A.4 implies that, for all x, y, and z:

k(kxy + G(x) + G(y) + F )z + G(kxy + G(x) + G(y) + F ) + G(z) + F

= k(kyz + G(y) + G(z) + F )x + G(kyz + G(y) + G(z) + F ) + G(x) + F
(A.5)

Simplifying, we have:

[G(x) + G(y) + F ]kz + G[kxy + G(x) + G(y) + F ] + G(z)

= G(y)kx + G(z)kx + Fkx + G[kyz + G(y) + G(z) + F ] + G(x)
(A.6)

Comparing the terms in A.6 that depend on z, we see that:

[G(x) + G(y) + F ]kz + G(z) = G(z)kx + G[kyz + G(y) + G(z) + F ] (A.7)

And comparing the terms in A.7 that depend on x, we see that G(x)kz = G(z)kx.

Hence, G(x) = ax, for some constant a. Next, the fact that c(x, y, z) = c(c(x, y), z),

implies:

kxyz+ax+ay+az+F = k(kxy+ax+ay+F )z+a(kxy+ax+ay+F )+az+F (A.8)

Comparing the terms that contain xyz, we see that k = 1, and hence:
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ax + ay = axz + ayz + Fz + axy + a2x + a2y + Fa (A.9)

Comparing the terms that contain z, we see that a(x + y) + F = 0 for all x and

y. The only way this can be true is if a = F = 0. Hence we have, finally, that

c(x, y) = xy.

B Characterization of the normalization step

The goal of this section is to show the characterization of the normalization step

in Section 3.2. Let {ai} be an arbitrary set of n numbers, S1, with normalization

function fS1 . Consider the set S2 = { 1
ai
} and the set S3 = {1i}, which consists

of n copies of 1. Then condition (1) implies that, for all i, f(c(f(c( 1
ai
, ai)), 1)) =

f(c( 1
ai
, f(c(ai, 1)))), where the various f ’s are relative to the relevant sets. For exam-

ple, in f(c( 1
ai
, ai)), f is a rescaling function defined on the set {c( 1

ai
, ai)} . Note that

we are abusing notation here: strictly speaking the various f ’s are not the same func-

tion, since they are defined over different sets. However, to avoid needless clutter, I

use f without subscripts.

According to the characterization of the combination function, the combination

function is either multiplicative or additive. Since the derivations are very similar, I

will only show that the normalization function must be multiplicative given that the

combination function is multiplicative. So suppose that the combination function

is c(a, b) = ab. Then we get: f(f( 1
ai
∗ ai) ∗ 1) = f( 1

ai
∗ f(ai ∗ 1)). Thus, we have:

f(f(1)) = f( 1
ai
∗ f(ai)), i.e. f( 1

ai
∗ f(ai)) is a constant. But since, f is one-to-one,

that means 1
ai
∗ f(ai) must also be a constant. That is, there exists a constant k

such that, for all ai in S, 1
ai
∗ f(ai) = k. Hence f(ai) = k ∗ ai for all ai. Since S

was an arbitrary set, it follows that in general the normalization procedure must be

multiplicative given that the combination function is multiplicative.
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C Characterization of inferential updating

The goal in this section is to show that the only legitimate updating rule that satisfies

Regularity is inferential updating. According to the results in sections 3.1 and 3.2,

any legitimate updating rule must either have (1) a multiplicative combination step

and a multiplicative normalization step, or (2) an additive combination step and an

additive normalization step. It is easy to show that it is possible for an updating rule

that satisfies (1) to satisfy Regularity, and that – indeed – the resulting updating

rule is inferential updating. In order to show that inferential updating is the only

updating rule that satisfies Regularity, it suffices to show that there is no updating

rule satisfying (2) that also satisfies Regularity.

Suppose, for the sake of contradiction, that there is some updating rule that

satisfies both (2) and Regularity. In order for Regularity to be obeyed, it has to be

the case that given any set of non-zero prior probabilities over a set of hypotheses,

h1, h2, . . . , hn, and given any set of evidential scores for the hypotheses, e1, e2, . . . , en,

the posteriors are also all non-zero. Thus, if N is the normalization function, then

the following must be true for all hi:

N(ei + hi) > 0 (C.1)

Since the normalization function is assumed to satisfy (2), C.1 implies that the

following is true for all i, where d is an additive normalization constant:

ei + hi + d > 0 (C.2)

Since the posterior probabilities must sum to 1, we also have:

∑
i

(ei + hi + d) = 1 (C.3)

And therefore, d = − 1
n

∑
ei. And so we have, for all hi:

ei + hi −
1

n

∑
ei > 0 (C.4)
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But it’s obvious that (D.4) will not in general be true. For example, suppose e1

is the smallest ei. Then r = ei − 1
n

∑
ei < 0. Now suppose it’s also the case that

h1 < −r. Then we have:

e1 + h1 −
1

n

∑
ei = r + h1 < 0 (C.5)

Consequently, additive combination and additive normalization jointly violate

Regularity. So there can be no updating procedure that satisfies both (2) and Reg-

ularity.

D Characterization of predictive updating

The goal in this section is to show that the only legitimate updating rule that violates

Regularity but satisfies Conservativeness is predictive updating. It is clear that any

updating rule that satisfies Conservativeness but violates Regularity must be addi-

tive. This is because any multiplicative updating rule that satisfies Conservativeness

clearly also satisfies Regularity.

So suppose the updating rule is additive and satisfies Conservativeness. Then

the goal is to show that the updating rule must be equivalent to predictive updat-

ing. Since the rule is additive, it must have the following form, where pE is the

posterior probability distribution, Hi is a hypothesis, hi is the prior probability of

the hypothesis, ei is the evidential score of the hypothesis, and d is a normalization

constant:

pE(H) =

0 Given that x is sufficiently low

hi + ei + d Otherwise
(D.1)

If the updating rule is conservative, then as few hypotheses as possible should be

assigned a posterior probability of 0. It remains to show that this uniquely happens

when d is minimal. Suppose there are n hypotheses. Without loss of generality,

suppose the hypotheses are ordered such that 0 ≥ pE(H1) ≥ pE(H2) ≥ . . . ≥ pE(Hn).

Then there is some index m such that pE(Hi) = 0 for i ≤ m and pE(Hi) > 0 for
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i > m. Note that the updating procedure is conservative if and only if m is minimal

because m is minimal if and only if a minimal number of hypotheses have a posterior

probability of 0. In order for the posterior probabilities to be probabilistic, we must

have:

∑
i>m

(hi + ei) + (n−m)d = 1 (D.2)

Now suppose we have a different updating rule resulting in some posterior p′ that

is not conservative: i.e. there an index m′ > m such that p
′
E(Hi) = 0 for i ≤ m′

and p
′
E(Hi) > 0 for i > m′. Then p′ must satisfy the following constraint for some

normalization constant d′:

∑
i>m′

(hi + ei) + (n−m′)d′ = 1 (D.3)

Comparing D.2 and D.3 and remembering that m′ > m, we see that:

0 <
m′∑
i=m

(hi + ei) = (n−m′)d′ − (n−m)d (D.4)

And hence,

d <
n−m′

n−m
d′ < d′ (D.5)

Hence, d < d′. What the above proof shows is that any conservative updating rule

has a smaller additive normalization constant than any non-conservative updating

rule. To finish the proof, we show that there is just one conservative updating rule.

Here we can use D.4 again. If both updating rules are conservative, then we have

m = m′, and hence – making the necessary amendments in D.4, we have:

0 =
m′∑
i=m

(hi + ei) = (n−m)d′ − (n−m)d (D.6)

Hence it follows that d′ = d. But then the two updating rules are equivalent.
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Hence, there is only one conservative updating rule, namely the one that uses a

minimal additive normalization constant. This is predictive updating.

E General Bayesian updating is a special case of

inferential updating

The goal in this section is to show that Bissiri et al.’s (2016) general Bayesian up-

dating is a special case of inferential updating. For some normalization constant k,

we have:

p(H|E1, E2) = k ∗ Ev[E1|H,E2]Ev[E2|H]p(H) = k ∗ f(L(E1, H))f(L(E2, H))p(H)

(E.1)

But we also have:

p(H|E1, E2) = k ∗ Ev[E1, E2|H]p(H) = k ∗ f(L(E1, H) + L(E2, H))p(H) (E.2)

Comparing C.1 and C.2, we see that f obeys the following functional equation

for all x and y: f(x)f(y) = f(x + y). Let g(x) = log f(x). Then g(x + y) =

g(x) + g(y), which is the well known Cauchy equation whose solution is g(x) = −cx,

for some positive constant c (Aczél, 2006, p. 31) (since f , and therefore g, is strictly

decreasing). Consequently f(x) = e−cx, and hence p(H|E) = k ∗ e−c∗L(E,H)p(H),

which is Bissiri et al.’s (2016) general Bayesian updating rule.

F An alternative characterization of the combina-

tion step

In both everyday and scientific contexts, it’s common to think of evidence alge-

braically: multiple lines of evidence combine in order provide stronger evidence;
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some evidence favors a hypothesis, while other evidence goes against it; a piece of

evidence here can cancel out a piece of evidence there; and some purported evidence

has no effect at all. In other words, evidential favoring has all the hallmarks of a

mathematical group. Now, suppose – as we have been doing up to now – that we use

real numbers to represent evidential scores. Then the set of all possible evidential

scores, G, together with the combination function plausibly form a mathematical

group. Indeed, they plausibly form an Archimedean group, because intuitively there

is no maximal evidential score. That is, if we use • to denote the combination func-

tion, i.e. e1 • e2 = c(e1, e2), then it is plausible that (G, •) satisfies the following

axioms:

1. Closure. For all possible evidential scores e1 and e2, e1 • e2 is also a possible

evidential score.

2. Associativity. For all possible evidential scores e1, e2 and e3, (e1 • e2) • e3 =

e1 • (e2 • e3).

3. Identity. There exists a possible evidential score i such that for all e, i • e =

e • i = e. I.e., there exists a real number that represents evidence that has no

effect (either favorable or unfavorable).

4. Inverse. For each possible evidential score e, there exists a possible evidential

score e′ such that e•e′ = e′ •e = i. I.e. every evidential score could potentially

be cancelled out by other countervailing evidence.

5. Commutativity. For all possible evidential scores e1 and e2, e1 • e2 = e2 • e1.
I.e. the order in which the evidence is considered is irrelevant.

6. Archimedean property. For all possible evidential scores e1 and e2, there

exists an integer n such that e1 < e2 • e2 . . . • e2(ntimes).

It is also plausible that the set of evidential scores is totally ordered: for all

evidential scores e1 and e2, either e1 > e2 or e1 ≤ e2. If we assume that the set

of evidential scores form a totally ordered Archimedean group, then we can use the
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following important result from group theory (see (Kopytov and Medvedev, 1996, p.

33), for a proof):

Hölder’s theorem. Every Archimedean totally ordered group is order-

isomorphic to a subgroup of the additive group of real numbers with the

natural order.

The fact that (G, •) is order-isomorphic to a subgroup of the additive group of real

numbers with the natural order means there exists some subgroup, (S,+) of the real

numbers and a one-to-one function, g, from (G, •) to (S,+) that obeys the following

equation for all e1 and e2 in G: g(e1 •e2) = g(e1)+g(e2). Since g is one-to-one, it has

an inverse, f . Hence, for all e1 and e2 in G, we can write: e1 • e2 = f(g(e1) + g(e2)).

In the main text, I showed that the normalization procedure must be either addi-

tive or multiplicative, given that the combination function is either multiplicative or

additive. But, arguably, it is not unreasonable to simply assume that the normaliza-

tion must be either multiplicative or additive. Indeed, all updating rules that have

been proposed in the literature have implicitly relied on a normalization procedure

that is either multiplicative or additive. In particular, the normalization procedure

implicit in both standard Bayesian updating and Jeffrey updating (Jeffrey, 1983) is

multiplicative, and the normalization procedure implicit in Leitgeb and Pettigrew’s

(2010) alternative to Jeffrey updating is additive.

Finally, it is reasonable to assume – as we did in the main text – that the nor-

malization procedure commutes with the combination function in the sense that, for

all a, b, and c, we have: N(a • N(b)) = N(N(a) • b) = N(a • b). We can now give

the following characterization of the combination function:

Alternative characterization of the combination function. Sup-

pose the combination function, c(x, y) satisfies the following requirements :

1. The set of all evidential scores, G, and the combination function

c(x, y) = x • y together form a totally ordered Archimedean group.
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2. The combination function commutes with the normalization func-

tion N in the sense that, for all a, b, and c: N(a•N(b)) = N(N(a)•
b) = N(a • b).

Then c must have one of the following two forms :

1. If the normalization function is additive, then c(x, y) = x + y.

2. If the normalization function is multiplicative, then c(x, y) = xy.

Proof. The fact that the combination function commutes with the normalization

function implies that, for every e with inverse e−1:

N(e • e−1) = N(N(e) • e−1) = N(f(g(N(e)) + g(e−1))) (F.1)

Therefore, for all e, N(f(g(N(e))+g(e−1))) = N(i), where i is the identity element

of the group. Since N is one-to-one, this means that f(g(N(e)) + g(e−1)) = k, for

some constant k that does not depend on e. Furthermore, since f is one-to-one, this in

turn implies that g(N(e))+g(e−1) = k′, for some constant k′ that does not depend on

e. For the same reason, (F.1) also implies that g(e) + g(e−1) = k′′, for some constant

k′′ that does not depend on e. Hence we have, finally, that g(N(e)−g(e) = K, where

K = k′ − k′′. Hence, g(N(e)) = g(e) + K.

If the normalization procedure is multiplicative, then for some normalization

constant a, we have g(ae) = g(e) + K. Note that a depends on the set to which e

belongs. If {ei} is the set, then

a =
1∑
ei

(F.2)

Hence, depending on the other members of the set to which e belongs, a can be

any number in the half-open interval (0, 1
e
). Thus we have, for all e and all a in (0, 1

e
),

that g(ae) = g(e) + K, where K is a constant that may depend on a, but does not

depend on e.

Similarly, we have – for some normalization constant b – that g(bae) = g(ae) +

K ′ = g(e) + K. Here, b can be any number in the range (0, 1
ae

), i.e. in (0,∞). But
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if we let y = ab and x = e, then the preceding means that for all x and y in (0,∞)

we have:

g(yx) = g(x) + K (F.3)

Where K is a constant that depends on y, but not on x. Interchanging the role

of y and x, we also have:

g(xy) = g(y) + K ′ (F.4)

Where K ′ is a constant that depends on x, but not on y. Comparing the above

equations, we see that g(x) + K = g(y) + K ′. This implies the following:

g(xy) = g(x) + g(y) + C (F.5)

Where C is a constant that depends on neither x nor y. Now note that f(2g(i)) =

i•i = i = f(g(i). Since f is one-to-one, this implies that g(i) = 0. Next, (F.5) implies

that g(i) = g(1 ∗ i) = g(1) + g(i) + C. Thus g(1) = −C. Using (F.5) again, we have

g(1) = g(i ∗ 1
i
) = g(i) + g(1

i
) = g(1

i
). But since g is one-to-one, this implies that

1
i

= 1, i.e. i = 1. Hence −C = g(1) = g(i) = 0, so C = 0. Finally, then, we have, for

all x > 0 and y > 0:

g(xy) = g(x) + g(y) (F.6)

Now put r(x) = g(ex). Then (F.6) becomes, for all real x and y:

r(x + y) = r(x) + r(y) (F.7)

This is the Cauchy functional equation, whose only solution is r(x) = cx, for an

arbitrary constant c (Aczél, 2006, p. 31). Hence, g(x) = r(log x) = log xc. Since f is

the inverse of g, we have that f(x) = ex
1
c . Finally, then, we have:

x • y = f(g(x) + g(y)) = e(log(x
c)+log(yc))

1
c = e(c∗log(xy))

1
c = xy (F.8)
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I.e. the combination function is multiplicative, c(x, y) = xy.
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