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Abstract  

In this paper I show that the validity of the Indifference Principle (IP) in light of its related 

paradoxes, is still an open question. I do so by offering an analysis of IP and its related paradoxes 

in the way they are manifested within the framework of Kolmogorov's probability theory. I 

describe the conditions that any mathematical formalization of IP must satisfy. Consequently, I 

show that IP's mathematical formalization has to be a set of constrains (C) on probability spaces 

which mathematically describe the same events. I claim that the question whether IP related 

paradoxes undermine the validity of IP depends on the fact whether such a C exist. Since 

currently there is no mathematical proof of the existence of such a C, nor of the impossibility of 

there being one, the validity of IP remains undecided. 
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1. The Indifference Principle 

Bertrand's Paradox and similar paradoxes (such as the Box Factory Paradox and the Wine Water 

Paradox) are commonly presented as examples which undermine and even refute the 

Indifference Principle (IP). There is a vast literature about IP and its related paradoxes. Many 

scholars have offered different solutions to these paradoxes with the aim of salvaging IP ((Jaynes 

1973; Strevens 1998; Bangu 2010; Mikkelson 2004; Tissier 1984; Di Porto et al. 2011, 2010; 

Burock 2005)), while others have objected to them. Some scholars have claimed that the 

paradoxes simply cannot be solved and hence that IP faces a real problem ((Shackel 2007; 

Deakin 2006; Howson and Urbach 2006; Rowbottom 2013; Milne 1983)). Other scholars have 

claimed that the different paradoxes are not "real" paradoxes to begin with and hence that IP is 

valid ((Gyenis and Rédei 2014; Marinoff 1994; Aerts and de Bianchi 2014)). 

The literature about IP and its related paradoxes keeps growing (for example: (Drory 2015; 

Gyenis and Rédei 2014; Aerts and de Bianchi 2014)) which shows the ongoing interest in this 

topic. More importantly, it shows that there is no consensus on which of the proposed 

explanations to IP's paradoxes is correct. This lack of consensus can be attributed in part to the 

lack of consensus regarding which of the interpretations of probability is the "right" one1. This is 

because almost all the proposed explanations to IP's paradoxes are offered within a framework of 

a specific interpretation of probability (sometimes implicitly). As such these explanations are 

commonly based on assumptions which are part of specific interpretations and not necessarily 

shared by other interpretations of probability. Usually these assumptions are important to the 

different explanations since they concern the nature of probability (and hence IP and its 

paradoxes). To my best knowledge there has not been almost any attempt to explain IP and its 

related paradoxes without relying on assumptions which belong to specific interpretations of 

probability2. My aim in this paper is to fill this lacuna.  

In this paper I explain IP and its paradoxes based on how they are manifested in Kolmogorov's 

probability theory. Kolmogorov's theory is widely considered as the standard mathematical 

probability theory and the different interpretations are commonly considered as interpretations of 

                                                 
1 See (Gillies 2000; Hájek 2012) for good surveys of the different interpretations of probability, (Von Plato 1994) 

for a more historical perspective and (Lyon 2010) for a short survey which emphasizes the major problems each of 

the main interpretation faces. 
2 Deakin's discussion of the Wine Water Paradox in (Deakin 2006) is a step in this direction, 
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Kolmogorov's theory3. The distinction between mathematical probability theories such as 

Kolmogorov's, and philosophical probability theories known as "interpretations of probability", 

is widely accepted in the philosophy of probability. Roughly, the difference between these two 

types of theories is that they address different questions regarding the basic notions: 'probability' 

and 'event'4. According to Lyon, mathematical probability theories "[...] tell us how probabilities 

behave, how to calculate probabilities from other probabilities, but they do not tell us what 

probabilities are." (Lyon 2010, 93). The latter question is answered by interpretations of 

probability. Hence it can be said that mathematical probability theories provide the mathematical 

parts of the definitions of 'probability' and 'event', while interpretations provide the non-

mathematical parts. 

 

In this paper I analyze IP and its related paradoxes in the way they could (or should) be 

mathematically formalized within Kolmogorov's theory. My analysis relies on the common 

assumption that Kolmogorov's probability space is a correct mathematical description of the 

notions: 'probability' and 'event'. This assumption seems to be in common to all the main 

interpretations of probability. As such my analysis is relevant to all interpretations of 

Kolmogorov's theory. More specifically, I describe the conditions that a mathematical 

formalization of IP within Kolmogorov's theory must satisfy and show that such a formalization 

has to be a set of constrains (C) on probability spaces that have the equivalent σ-algebra 

components. These σ-algebras are equivalent in the sense that they mathematically describe the 

same events. As a result, the question whether IP related paradoxes undermine the validity of IP 

turns out to depend on the fact whether such a C exist. Since currently there is no mathematical 

proof of the existence of such a C (or a proof of the impossibility of there being one) the question 

remains open.  

 

                                                 
3 However, see (Lyon 2016) and (Hájek 2012) for objections to this common view. 
4 'Probability' here is used as a general term for notions such as: credence, degree of belief, propensity, chance etc. 

Similarly, 'event' is used as a general term for anything that has a 'probability' (for example: a proposition, a state pf 

the world, a metaphysical event, etc.)  
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The term "Principle of Indifference" was first coined by Keynes. According to him "[t]he 

Principle of Indifference asserts that if there is no known reason for predicating of our subject 

one rather than another of several alternatives, then relatively to such knowledge the assertions 

of each of these alternatives have an equal probability. Thus equal probabilities must be assigned 

to each of several arguments, if there is an absence of positive ground for assigning unequal 

ones." (Keynes 1921, 45). Interestingly, in the literature there are other phrasings of IP which are 

slightly different than Keynes'. For example, Bartha and Johns describe IP in the following way: 

"In the absence of any known reason to assign two outcomes different probabilities, they ought 

to be assigned the same probability." (Bartha and Johns 2001, 109). Howson and Urbach's 

describe IP as asserting that "[...] equal parts of the possibility space should receive equal 

probabilities relative to a null state of background information." (Howson and Urbach 2006, 266) 

and according to Mellor "[IP] says that evidence which gives us no reason to think that any one 

of a number of mutually exclusive possibilities [...] is more probable than any other will give 

those possibilities equal epistemic probabilities." (Mellor 2005, 28), and the list goes on. These 

different phrasings show that there is no consensus regarding the exact phrasing of IP. However, 

almost all of them seem to have the same three components which I describe in the next section. 

Roughly, in all of IP's phrasings it is assumed that events are comparable and that equivalent 

events should have equal probabilities if there is no information indicating otherwise. The 

differences between the different phrasings are mainly in the events' equivalence criteria. These 

differences depend on the exact definition of 'events' which in turn depends on the choice of 

interpretation of probability. 

 

IP is commonly treated as an epistemic principle in the sense that it is a principle that an agent 

can use when she has to assign subjective probabilities (such as degrees of belief or credences) to 

propositions (i.e. "subjective events"). As such, IP is commonly thought of as relevant only to 

subjective interpretations of probability. However, IP also appears in discussions within the 

framework of the classical interpretation and other interpretations in which probabilities and 

events are considered as objective. In such discussions, IP is treated as a tool that agents use to 

infer the events' objective probabilities (commonly referred to as "chances" or "propensities"). 

Thus, although IP is commonly thought of as a way of assigning subjective probabilities, it can 
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also be seen as a way of inferring objective probabilities. This means that using IP for assigning 

probabilities to events does not necessarily imply that these probabilities are subjective. Hence IP 

is relevant to both subjective and objective interpretations of probability.  

Recall that my purpose in this paper is to explain IP and its related paradoxes within 

Kolmogorov's theory. Therefore, it is sufficient to think of IP as a description of a connection 

between mathematical events and mathematical probabilities. The question whether IP is taken 

to be an epistemic principle or not, seems to be irrelevant to IP's mathematical formalization 

itself. Treating IP as a description of a mathematical connection between events and probabilities 

within Kolmogorov's probability theory framework is one of the keys which make my analysis 

relevant to all interpretations of Kolmogorov's theory. 

In the next section I give a general characterization of IP as a connection between events and 

probabilities in the aforementioned mathematical sense. 

 

 

2. A characterization of the Indifference Principle 

In this section I characterize the connection described by IP between events and probabilities. 

This characterization seems to be common to almost all of IP's different phrasings regardless of 

whether they are phrased within a framework of a subjective interpretation or an objective one.  

The connection described by IP has the following three components: 

1. Presumption - Events5 are comparable and thus can be considered as equivalent (or equal) in 

some sense.  

2. Assertion – Equivalent events have (or should have) equal probabilities. 

3. Conditionalization - There is no information indicating otherwise. Thus, equivalent events 

have equal probabilities if (or sometimes iff) there is no information indicating otherwise. 

                                                 
5 Here 'events' is used as a general term which refers to: alternatives, outcomes, possibilities, parts of the possibility 

space, etc. 
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The connection between events and probabilities described by IP's assertion is that equivalent 

events have equal probabilities6. This connection relies on IP's presumption that events can be 

considered as equivalent in some sense. For example: "equipossible cases" (Fraassen 1989, 298), 

"equal parts of the possibility space" (Howson and Urbach 2006), "possibilities of which we 

have equal ignorance" (Shackel 2007, 151), etc. Notice that equivalent events are not necessarily 

identical (but identical events are trivially equivalent because they are the same event). The 

important point is that different events can be considered as equivalent according to some 

criteria. The specifics of the criteria commonly depend on the choice of interpretation of 

probability. Obviously, the criteria cannot be that the events have equal probabilities because 

then IP would be the trivial assertion that events with equal probabilities have equal 

probabilities. The key point is that IP relies on there being a way of comparing events and 

deciding that they are equivalent which does not depend on their probabilities. This presumption 

is a necessary condition for IP's assertion. If events cannot be considered as equal, IP's assertion 

does not hold. 

Furthermore, according to the third component, IP's assertion is also conditioned on the fact that 

there is no information indicating that equivalent events do not have equal probabilities7. For 

example: "[...] in the absence of reasons to the contrary." (Fraassen 1989, 299), "[...] relative to a 

null state of background information." (Howson and Urbach 2006, 266), "[...] iff we have 

insufficient reason to consider any one of these outcomes more or less likely than any other." 

(Mikkelson 2004, 137), "[...] if we have no grounds for preferring one [outcome] over any other 

[...]" (Norton 2008, 47), "[...] in the absence of any known reason to assign two events differing 

probabilities [...]" (Strevens 1998, 231), etc.)  

IP also implicitly relies on the trivial assumption that the probabilities of the events are not 

given. It is obvious that if the events' probabilities are given, then the connection between them 

is already given explicitly and there is no need for IP to draw a connection between them. In 

other words, when the events' probabilities are given, if equivalent events have equal 

probabilities then IP is redundant, and if they do not then IP cannot be used. Because the 

                                                 
6 IP also implicitly asserts that if one event (e1) is greater than another event (e2) (in the sense in which the events are 

comparable), then e1 has (or should have) greater probability than e2. 
7 Some have argued that this condition is insufficient, and that IP must also depend on information which positively 

indicates that equivalent events have equal probabilities. This is an important point concerning IP, however, it does 

not affect the argument presented in this paper. 
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condition that there is no information indicating that equivalent events do not have equal 

probabilities, is violated. In section 5, I show that given a σ-algebra which mathematically 

describes the events, the connection drawn by IP is described by a specific probability space 

whose σ-algebra component is the given one. Thus, this trivial assumption is important because 

it means that the probability space which describes the events is not already given.  

 

Another important assumption concerning IP is that it is implicitly assumed that given a set of 

events, an application of IP results with a unique assignment of probabilities to these events. This 

is a crucial assumption since, as I will show in this paper, it is at the heart of all of IP's related 

paradoxes. Roughly, in all IP related paradoxes, an event is assigned different probabilities by 

different applications of IP, and this result is considered as paradoxical. Hence, IP's assertion that 

equivalent events have equal probabilities (conditioned that there is no information indicating 

otherwise) also implicitly implies that the given equivalent events have specific (equal) 

probability values. In other words, IP asserts that equivalent events have specific equal 

probabilities and no other equal probability values.  

In the next section I discuss how applying IP can lead to paradoxes.  

 

 

3. The Indifference Principle related paradoxes 

Arguably applying IP is the most common way for assigning probabilities to events. In many 

cases it is used implicitly. The following paradigmatic examples are commonly presented as 

successful applications of IP:  

1. The assignment of probability 1/2 to the event of a coin toss landing on heads (or tails). The 

two events ('heads' and 'tails') are considered as equivalent, having no information indicating 

that the coin is biased, and hence are assigned equal probabilities.  

2. The assignment of probability 1/6 to each of the events of a die toss landing on one of its 

faces, assuming that the die is unbiased.  
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3. The assignment of probability 1/2 to the event of a dart hitting the left (or right) half of a 

target board. Assuming that the dart hits the board, the two events ('left' and 'right') are 

considered as equivalent (having no other information about the marksman, the board, or any 

other relevant factor) and hence have equal probabilities.  

 

Very roughly, in all these examples some events are considered as equivalent in some sense and 

hence according to IP, have equal probabilities. 

 

IP related paradoxes are often presented as examples of unsuccessful applications of IP in the 

sense that they do not result with a unique assignment of probabilities to events, in contrast to the 

implicit assumption mentioned in the previous section. Roughly, in each of these paradoxes there 

is a question about the probability of a given event. Each of these questions, is answered by 

applying IP. However, IP is applied in more than one way and as a result the event in question is 

assigned different probabilities by the different applications of IP. These different assignments of 

probabilities are commonly treated as paradoxical because of the aforementioned assumption 

that an application of IP on given events results with a unique assignment of probabilities to the 

given events.  

A simple example of an IP related paradox is the Box Factory Paradox: "A factory produces 

cubes with side-length between 0 and 1 foot; what is the probability that a randomly chosen cube 

has side-length between 0 and 1/2 a foot? The tempting answer is 1/2, as we imagine a process of 

production that is uniformly distributed over side-length. But the question could have been given 

an equivalent restatement: A factory produces cubes with face-area between 0 and 1 square-feet; 

what is the probability that a randomly chosen cube has face-area between 0 and 1/4 square-feet? 

Now the tempting answer is 1/4, as we imagine a process of production that is uniformly 

distributed over face-area. This is already disastrous, as we cannot allow the same event to have 

two different probabilities [...]. But there is worse to come, for the problem could have been 

restated equivalently again: A factory produces cubes with volume between 0 and 1 cubic feet; 

what is the probability that a randomly chosen cube has volume between 0 and 1/8 cubic-feet? 

Now the tempting answer is 1/8, as we imagine a process of production that is uniformly 

distributed over volume. And so on for all of the infinitely many equivalent reformulations of the 
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problem (in terms of the fourth, fifth, … power of the length, and indeed in terms of every non-

zero real-valued exponent of the length). What, then, is the probability of the event in question?" 

(Hájek 2012, sec. 3.1) 

In the Box Factory Paradox, IP is applied several times. Each application of IP gives a different 

answer to the question about the probability that a randomly chosen cube would have a certain 

size (and hence a certain side-length, face-area and volume). The paradox is the fact that the 

same event is attributed different probabilities by different applications of IP. In this sense, the 

Box Factory Paradox is an example of an unsuccessful use of IP.  

 

Bertrand's Paradox is perhaps the most famous example of an unsuccessful application of IP. It is 

commonly described as the fact that there are three different answers to the following question 

(taken from (Clark 2007)): "What is the chance that a random chord of a circle is longer than the 

side of an inscribed equilateral triangle? 

(1) The chords from a vertex of the triangle to the circumference are longer if they lie within the 

angle at the vertex. Since that is true of one-third of the chords, the probability is one-third. 

(2) The chords parallel to one side of such a triangle are longer if they intersect the inner half of 

the radius perpendicular to them, so that their midpoint falls within the triangle. So the 

probability is one-half. 

(3) A chord is also longer if its midpoint falls within a circle inscribed within the triangle. The 

inner circle will have a radius one-half and therefore an area one-quarter that of the outer one. So 

the probability is one-quarter." (Clark 2007, 22) 

The above three solutions to the question presented in Bertrand's Paradox are said to be the 

results of different applications of IP. Hence the paradox is that an "[a]pplication of the principle 

of indifference is supposed to suffice for solving probability problems. Probability problems 

have, of their nature, unique solutions, because a solution is a single function from the events of 

interest into [0, 1]. The solution being a function entails that each event has a unique probability. 

Yet different ways of applying the principle here result in different probabilities for the same 

event." (Shackel 2007, 152) 
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Another important IP related paradox is the wine water paradox: "We are given a glass 

containing a mixture of water and wine. All that is known about the proportions of the liquids is 

that the mixture contains at least as much water as wine, and at most, twice as much water as 

wine. The range for our assumptions concerning the ratio of water to wine is thus the interval 1 

to 2. Assuming that nothing more is known about the mixture, the indifference or symmetry 

principle or any other similar form of the classical theory tells us to assume that equal parts of 

this interval have equal probabilities. The probability of the ratio lying between 1 and 1.5 is thus 

50%, and the other 50% corresponds to the probability of the range 1.5 to 2. 

But there is an a1ternative method of treating the same problem. Instead of the ratio water/wine, 

we consider the inverse ratio, wine/water; this we know lies between 1/2 and 1. We are again 

told to assume that the two halves of the total interval, i.e., the intervals 1/2 to 3/4 and 3/4 to 1, 

have equal probabilities (50% each); yet, the wine/water ratio 3/4 is equal to the water/wine ratio 

4/3. Thus, according to our second calculation, 50% probability corresponds to the water/wine 

range 1 to 4/3 and the remaining 50% to the range 4/3 to 2. According to the first calculation, the 

corresponding intervals were 1 to 3/2 and 3/2 to 2. The two results are obviously incompatible." 

(Von Mises 1981, 77) 

Like the Box Factory Paradox and Bertrand's Paradox, in the Wine Water Paradox we are 

presented with a question about the probability of an event and we are given different solutions 

to this question. Each of these solutions is the result of an application of IP. As such they are said 

to be "incompatible" and thus, the Wine Water Paradox is considered a paradox. 

 

To sum up, IP related paradoxes can be characterized as follows: 

1. There is a question about the probability of a given random event. 

2. The question is answered by applying IP. 

3. The problem is that the question is given different answers by different applications of IP. 
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4. The different answers are considered paradoxical because of the aforementioned assumption 

that applications of IP on given events result with a unique assignment of probabilities to the 

given events. 

 

Before I move on to describe how IP and its related paradoxes are manifested in Kolmogorov's 

theory, I wish to address the claim that these paradoxes are not well defined. Some writers have 

claimed that the questions posed (or the terms used) in the different IP related paradoxes are not 

well defined (they are vague, ambiguous, underdetermined, etc.). For example: "[...] Bertrand's 

original problem is vaguely posed [...]" (Marinoff 1994, 1), "Bertrand's problem cannot 

undermine Laplace's principle [i.e. IP] provided that the former is posed in non ambiguous terms 

[...]" (Aerts and de Bianchi 2014, 1), "[...] all so-called paradoxes to PI [i.e. IP] are simply 

disagreements and ambiguity in relation to sample space identification [...]" (Burock 2005, 2). 

Specifically, it has been claimed that the term 'random' is the source of the problem: 

"[randomness] is a notoriously difficult concept. In fact, it may not even be a single concept at 

all, but a cluster of concepts [...]" (Bangu 2010, 33), "Bertrand's paradox is of course not a 

logical paradox. The different results arise from assigning three different meanings to the phrase 

'at random' [...]" (Tissier 1984, 19).  

As already mentioned above, there is no consensus among philosophers regarding the exact 

meaning of the notion 'probability' and the same goes for 'randomness'. This lack of consensus is 

manifested in the different interpretation of probability theory. So philosophically speaking, IP 

related paradoxes and specifically the term 'random' might not be well defined. However, 

arguably anything that is considered as random according to some interpretation of probability, 

can be mathematically described by Kolmogorov's probability theory. This suggests that IP 

related paradoxes can be correctly described by his theory. The key point is that when such 

paradoxes are described by Kolmogorov's theory, they do not seem to be any more vague or 

ambiguous than any other mathematical question concerning the probability of a given event! 

Notice that such questions are exactly the sort of questions which appear in IP related paradoxes. 

In Kolmogorov's theory, such questions cannot be answered without being given the relevant 

probability spaces. And in all of IP related paradoxes, these spaces are assumed to be given by 

applying IP. However, applying IP within the framework of Kolmogorov's theory relies on 
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having a mathematical formalization of IP and, as I explain in the rest of this paper, this is an 

open problem. Thus, it would be more accurate to say that the problem with IP related paradoxes 

is that the mathematical formalization of IP is still an open question, rather than claim that they 

are not well defined. 

 

Since my aim in this paper is to explain IP and its related paradoxes based on the way they are 

manifested in Kolmogorov's probability theory, in the next section I give a brief description of 

Kolmogorov's probability space definition and emphasize how IP relates to it.  

 

 

4. Kolmogorov's probability space  

In this section I describe Kolmogorov's probability space definition8. I emphasize several points 

which are important for understanding IP and its related paradoxes and specifically how IP can 

be mathematically formalized within the framework of Kolmogorov's theory. 

 

Kolmogorov's probability space is defined as a triple <Ω,Σ,P> consisting of the following 

components: a sample space (Ω), a σ-algebra (Σ) and a probability measure (P). 

The probability space's components are defined as follows: 

1. A sample space (Ω) - a nonempty set.  

The members of the sample space are sometimes referred to as "elementary events". However, 

this name is misleading since these members are not a mathematical formalization of 'events'. 

'Events' are mathematically defined as the members of the σ-algebra component (which is 

defined just below). Nevertheless, there is a sense in which the sample space and its members are 

                                                 
8 The definition which I present in this paper is one of several standard ways to define Kolmogorov's probability 

space. See (Billingsley 1995, 23) for a slightly different definition.  



14 

 

indeed elementary, and it is the fact that Kolmogorov's mathematical formalizations of 'events' 

and 'probabilities' depend on them9.  

2. A σ-algebra (Σ) (defined over the sample space) - a subset of the power set of the sample 

space (i.e. a set of subsets of Ω) which satisfies the following conditions: 

2.1. Σ is not empty (or equivalently: Ω is in Σ) 

2.2. Σ is closed under complementation (i.e. if A is in Σ then so is Ω\A). 

2.3. Σ is closed under countable unions (i.e. if ��, ��, �� … are in Σ, then so is � = �� ∪ �� ∪
�� ∪ …) 

The members of Σ are Kolmogorov's mathematical formalization of 'events'. In other words, 

mathematically 'events' are sets of members of a sample space that together form a σ-algebra. 

Moreover, since the σ-algebra component is part of a given probability space, it is also connected 

to a specific probability measure. (The probability measure component is defined below). This 

means that mathematically 'events' are sets of members of a sample space that have specific 

probability values (described by the probability measure). This fact is very important to IP's 

formalization within Kolmogorov's theory. It is especially important to the formalization of IP's 

assertion that equivalent events have specific equal probabilities. 

3. A probability measure (P) - a real valued function defined over Σ which satisfies the 

following conditions: 

3.1. P is non-negative 

3.2. P
∅� = 0 

3.3. P is countably additive (which means that for all countable collections ���� of pairwise 

disjoint sets P
⋃ ��� � = 	∑ P
���� ) 

3.4. P returns results in the unit interval [0,1] and P
Ω� = 1 

The value assigned to a member of the σ-algebra (� ∈ Σ) by the probability measure function 

(i.e. P(e)) is the probability of e. This means that mathematically 'probabilities' are defined as the 

values of a real function from a σ-algebra to the unit interval which satisfies certain conditions 

(described by the definition of the probability measure).  

                                                 
9 For a detailed analysis of the interpretive meaning of the sample space component, see D. D. November (2018, 

chap. 1). 
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A key point regarding the possible mathematical formalizations of IP within Kolmogorov's 

theory is that according to the probability space's definition the same mathematical events can 

have different probability values. This point relies on the assumption that the identity relation 

between mathematical events is the identity relation between σ-algebras10. In other words, two 

mathematical events are in fact the same, iff they belong to the same σ-algebra and are set-

theoretically identical (i.e. contain the same members). Notice that according to the probability 

space's definition, there can be infinitely many probability measures defined over the same σ-

algebra (except for trivial σ-algebras11). This means that the same mathematical events can have 

infinitely many different probability values. Notice however, that each time a σ-algebra has a 

different probability measure defined over it, it belongs to a different probability space. In other 

words, each time an event has a different probability, it necessarily belongs to a different 

probability space. 

This point is very important for understanding both IP's mathematical formalization and its 

related paradoxes. Recall that IP's assertion that equivalent events have equal probabilities 

implicitly implies that the equivalent events have specific equal probability values. Thus, they 

have these values and not any other equal probabilities. Loosely speaking, it is assumed that an 

application of IP results with a unique assignment of probabilities to events. Naively, the 

mathematical formalization of this assumptions seems to be the claim that given a set (S) of all 

probability spaces which have the same σ-algebra component (i.e. contain the same events), an 

application of IP is a way to depict exactly one probability space out of S. However, this 

formalization is in fact inaccurate. The reason is that different σ-algebras can be considered as 

equivalent in the sense that they mathematically describe the same events. Similarly, different 

probability spaces (due to their different σ-algebra components) can be considered as equivalent 

in the sense that they mathematically describe the same events when having the same specific 

probabilities. Thus, a more precise formalization of the above assumption that an application of 

IP ends with a unique assignment of probabilities to events, is that it is a way to depict all 

                                                 
10 Kolmogorov's theory in fact does not include an explicit definition of an identity relation between events. See D. 

D. November (2018, chap. 2) for a thorough discussion of this issue.  
11 A trivial σ-algebra is a σ-algebra that contains only the sample space event and the empty event. The only 

probability measure that can be defined over a given trivial σ-algebra is its corresponding trivial probability measure 

which assigns 1 to the sample space event and 0 to the empty event. 
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equivalent probability spaces out of all probability spaces which have equivalent σ-algebra 

components. In other words, an application of IP is a way to depict all probability spaces which 

mathematically describe the same events when having specific probabilities, out of all 

probability spaces which mathematically describe the same events. 

The idea that different probability spaces are equivalent in the sense that they can mathematically 

describe the same events having specific probabilities, seems to be widely accepted. For 

example, the following probability spaces: ���,� and ���,� are commonly considered as 

equivalent: ���,� = 〈Ω�,�, Σ�,�, P�,�〉 where Ω�,� = �1,2�, Σ�,� = �∅, Ω�,�, �1�, �2�  and P�,� 

assigns the following probabilities to the events in Σ�,�: 
P�,�
∅� = 0, 	P�,�!Ω�,�" =

1, P�,�
�1�� = �
� , P�,�
�2�� = �

��. And ���,� = 〈Ω�,�, Σ�,�, P�,�〉 where Ω�,� = �3,4�, Σ�,� =

�∅, Ω�,�, �3�, �4�  and P�,� assigns the following values to the events in Σ�,�: 
P�,�
∅� =

0, 	P�,�!Ω�,�" = 1, P�,�
�3�� = �
� , P�,�
�4�� = �

��. The differences between ���,� and ���,� seem 

to be irrelevant for their expressive power. Anything describable by ���,� is also describable by 

���,� and vice versa, simply by mapping the sample space members '1' and '2' from ���,� to the 

members '3' and '4' from ���,� respectively. Arguably (see D. D. November (2018, chap. 2)), the 

events mathematically describable by ���,� and ���,� are also describable by the following 

probability space (���,�) but with different probabilities: ���,� = 〈Ω�,�, Σ�,�, P�,�〉 where Ω�,� =

�5,6�, Σ�,� = �∅, Ω�,�, �5�, �6�  and P�,� assigns the following probabilities to the events in Σ�,�: 


P�,�
∅� = 0, 	P�,�!Ω�,�" = 1, P�,�
�5�� = �
' , P�,�
�6�� = �

'�. The σ-algebra components of the 

above three probability spaces, ���,�, ���,� and ���,�, seem to be equivalent in the sense that any 

set of events mathematically describable by one of them is also describable by the other two. 

(This can be done by mapping the members of Ω�,� to those of Ω�,� (or Ω�,�)). Thus, loosely 

speaking, all three probability spaces mathematically describe the same events because their 

corresponding σ-algebra components are equivalent. But only ���,� and ���,� describe them as 

having the same specific probabilities (1/3 and 2/3). According to ���,� their probabilities are 

different (1/4 and 3/4). In other words, ���,� and ���,� are equivalent probability spaces while 

���,� is not equivalent to them in the sense that it describes the events as having other 

probabilities.  
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In this paper, I put aside the issues of equivalence relations between probability spaces and 

between σ-algebras. Instead, I focus on the much simpler case of probability spaces that have the 

same σ-algebra component. In other words, I take the set (Si) of all probability spaces which have 

the same σ-algebra component as a representative case of the set of all probability spaces which 

have equivalent σ-algebra components (Se). Notice that Si is contained in Se, because identical σ-

algebra components are trivially equivalent. I show that even in this much simpler case, there is 

no known mathematical formalization of IP which manages to depict exactly one probability 

space out of Si, and there is no known proof that there cannot be such a formalization. This 

implies that there is no known mathematical formalization of IP which manages to depict the set 

of all equivalent probability spaces out of Se, and that there is no known proof that there cannot 

be such a formalization. 

 

The fact that according to Kolmogorov's probability space definition, the same mathematical 

events can have different probabilities is important in understanding IP's related paradoxes. As 

already mentioned above, in all of IP's related paradoxes the same events are assigned different 

probabilities. These assignments are said to be the result of different applications of IP on these 

given events. The assignments of different probabilities to these events by applications of IP are 

considered as paradoxical because of the aforementioned implicit assumption that such 

applications should result with a unique assignment of probabilities to these events. It is 

important to understand that according to Kolmogorov's definition of the probability space, 

assignments of different probabilities to the same events in general are not considered as 

paradoxical. In other words, assignments of different probabilities by means which are not 

applications of IP, are not paradoxical. Such assignments are simply different probability spaces 

that have the same σ-algebra components (and hence the same sample space components12) but 

different probability measure components (i.e. <Ω,Σ,P1> and <Ω,Σ,P2> where P1≠P2). (In the rest 

of this paper I will refer to such probability spaces as: "same-events spaces"). Assignments of 

different probabilities to the same events by different applications of IP are considered as 

                                                 
12 Probability spaces that have the same σ-algebra components necessarily have the same sample space components. 

This is because a σ-algebra always contains the sample space which is defined over as a member. This means that σ-

algebras which are defined over different sample spaces have different members and thus are different. 
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paradoxical only because it is implicitly assumed that an application of IP depicts exactly one 

probability space from a given set of all same-events spaces. 

 

In the next section I elaborate on several important issues regarding IP's mathematical 

formalization within Kolmogorov's theory. 

 

 

5. IP's formalization within Kolmogorov's probability space 

In this section I discuss important issues regarding IP's mathematical formalization within the 

framework of Kolmogorov's probability theory. Roughly, I claim that IP's mathematical 

formalization has to be a set of constrains on probability spaces.  

Any mathematical formalization of IP has to address the three components of IP (IP's 

Presumption, Assertion and Conditionalization) and its underlying assumptions. The key issue is 

IP's assertion that equivalent events have specific equal probability values. Thus, a formalization 

of IP has to mathematically describe this connection between events and specific probabilities. 

Such a connection is mathematically described by a probability space. More accurately, given a 

σ-algebra which mathematically describes the events, the connection described by IP is 

mathematically described by a specific probability space whose σ-algebra component is the 

given one. Recall that there can be infinitely many probability spaces whose σ-algebra 

component is the same. This means that a mathematical formalization of IP has to be some 

mathematical way for uniquely selecting exactly one probability space from a given set of same-

events spaces. In other words, IP's mathematical formalization has to include constrains on sets 

of same-events spaces. Ideally, given a set of constrains (C) which is a mathematical 

formalization of IP, for each set (S) of same-events spaces, there is only one probability space (s) 

in S which satisfies the constrains in C. Furthermore, C is such that equivalent events in s have 

equal probabilities. Any such set of constrains would be a good mathematical formalization of IP 

in the sense that it successfully formalizes IP's assertion.  
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In addition to IP's assertion, it seems that a mathematical formalization of IP has to also address 

IP's presumption and conditionalization. Unfortunately, unlike IP's assertion, it is not clear how 

these components should be mathematically formalized within Kolmogorov's framework. In the 

rest of this section, I show that IP's presumption that events are comparable should be formalized 

as an order relation on the σ-algebra component. However, it is not clear what are the specifics of 

such a relation or even whether such a relation exists within Kolmogorov's framework. I also 

show that IP's conditionalization should be mathematically formalized as a set of constrains on 

sets of same-events spaces. However, due to the formalization of IP's assertion, the formalization 

of IP's conditionalization turns out to be redundant. Moreover, it is not clear that IP's 

conditionalization can be formalized in a non-redundant way within Kolmogorov's framework.  

 

Recall that IP's presumption is that events are comparable. Generally, when things are claimed to 

be comparable (non-mathematically), this claim can be mathematically formalized as an order 

relation on the set of those things13. However, because there seem to be different non-

mathematical senses according to which events are compared and are considered as equivalent, it 

is not clear which mathematical order relation on the σ-algebra should be used to mathematically 

describe their comparableness.  

There are two obvious candidates for an order relation on the σ-algebra component. Both stem 

from the fact that according to Kolmogorov's definition events are sets. Unfortunately, both are 

unsuitable to be the mathematical formalization of IP's presumption. The first order relation is 

based on the inclusion relation between sets. According to this relation, a set A is considered 

strictly bigger than a set B iff A includes B and B does not include A (i.e. � > ) ⇔ 
) ⊆
�	,-.	� ⊄ )�). This means that A and B are considered as equivalent iff A includes B and B 

includes A (i.e. � ≡ ) ⇔ 
) ⊆ �	,-.	� ⊆ )�)14. However, this relation fails to be a good 

mathematical description of the presumption that events are comparable because it is a partial 

                                                 
13 "Two elements a and b of A [where 
�, ≤� is a partially ordered set] are said to be comparable if either a ≤ b or b 

≤ a." (Potter 2004, 104) 
14 More precisely, in set theory, such sets are in fact the same set. I.e. they are considered as identical (A=B) and not 

just as equivalent (� ≡ )). 
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order relation. This means that according to this relation it is possible that not all events in a 

given σ-algebra component are comparable! And that is a problem for IP's formalization because 

if there are events that cannot be compared, one cannot use IP to assign them probabilities. 

The second candidate for an order relation on the σ-algebra component is based on the events' 

cardinality. According to this relation, a set A is considered strictly bigger than a set B iff A's 

cardinality is strictly bigger than B's cardinality (i.e. � > ) ⇔ 2
)� > 2
��). Which also means 

that A and B are considered as equivalent iff A's cardinality is equal to B's cardinality (i.e. � ≡
) ⇔ 2
)� = 2
��). This order relation is a total order relation which means that all events are 

comparable. However, it cannot serve as a mathematical description of IP's presumptions that 

events are comparable because of IP's assertion that equivalent events have equal probabilities. 

The reason is that there are cases for which comparing events by their cardinality and assigning 

them probabilities accordingly by using IP, contradicts Kolmogorov's definition. More 

specifically, the problem arises in cases when the sample space has cardinality of at least 0א and 

there are two mutually exclusive events whose union is the sample space event (i.e. ��, e�	|	�� ∪
�� = Ω) and they all have the same cardinality (i.e. 2
��� = 2
��� = 2
Ω�). In such cases, 

according to IP all three events should have the same probability since they all have the same 

cardinality (i.e. 5
��� = 5
��� = 5
Ω�) and according to Kolmogorov's definition 5
Ω� =
5
��� + 5
��� and 5
Ω� = 1. Unfortunately, there is no way to satisfy these three conditions 

together in Kolmogorov's theory. In such cases, either 5
Ω� = 0 or 5
Ω� ≠ 5
��� + 5
��� in 

contrast to Kolmogorov's definition, or the probabilities of events with equal cardinality are not 

equal. The latter option means that when IP's presumption is formalized using an order relation 

based on cardinality, IP's assertion can turn out to be false. This means that the mathematical 

formalization of IP's presumption cannot be the cardinality-based order relation. 

The above two failed attempts to formalize IP's presumption, are based solely on the fact that 

events are sets. This seems to suggest that any other attempt to formalize IP's presumption will 

require an order relation on the σ-algebra component which would be based on some additional 

information to the fact that events are sets. As such, any other attempt to formalize IP's 

presumption would require an addition to Kolmogorov's definition of events. (For example, 

Shackel's assumption which I discuss below, that the σ-algebra component has a measure defined 
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over it which is not a probability measure, and that the order relation between events is based on 

their measure values).  

 

The third component of IP is its conditionalization that equivalent events have equal probabilities 

only if there is no information indicating otherwise. Here the main question is how to 

mathematically describe the (non-mathematical) information which indicates that equivalent 

events do not have equal probabilities. It seems that there can be very different pieces of 

information which indicate the above, and thus it is not clear that all of them can be described by 

the same mathematical description. However, they all have one thing in common which is that 

they indicate that equivalent events do not have equal probabilities. In other words, they are 

different pieces of information which dismiss the possibility that equivalent events have equal 

probabilities. Thus, a formalization of any such piece of information would be a mathematical 

way for selecting one or more probability spaces from a given set of same-events spaces (S) such 

that in the selected spaces equivalent events do not have equal probabilities. In other words, a 

formalization of such information would be a set of constrains (Ccond) on a given S which 

restricts it to one or more spaces in which equivalent events do not have equal probabilities. 

However, the mathematical formalization of IP's assertion as a set of constrains (C) on a set of 

same events spaces, already precludes Ccond and thus makes it redundant! Recall that IP's 

assertion is conditioned on IP's conditionalization which means that C holds iff there is no Ccond 

given. But this is trivially true because any s in S which satisfies C is a space in which equivalent 

events have equal probabilities, and thus s does not satisfy Ccond. This means that when IP's 

assertion is formalized as C, IP's conditionalization is redundant and there is no need to explicitly 

formalize it. As a result, it turns out that the mathematical formalization of IP within 

Kolmogorov's theory must be a set of constrains on same-events spaces that is accompanied with 

a suitable order relation the σ-algebra component.  

 

In the next section I discuss the important implication of IP's formalization to its validity. But 

before I do so, I would like to address Shackel's discussion of Bertrand's Paradox. This 

discussion is important mainly because it includes one of the few attempts to explicitly 
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mathematically formalize IP. In his paper, Shackel mathematically defines IP as follows: 

"Principle of Indifference for Continuum Sized Sets. For a continuum sized set X, given a σ-

algebra, Σ, on X and a measure, µ, on Σ, and given that we have no reason to discriminate 

between members of Σ with equal measures, then we assign equiprobability to members of Σ 

with equal measures: For all x, y in Σ, if 8
9� = 8
:� then �
9� = �
:�. (This can easily be 

achieved by setting �
9� = 8
9� 8
;�⁄  for all x in Σ.)" (Shackel 2007, 159). Notice that 

Shackel's mathematical formalization of IP includes a formalization of IP's presumption and 

assertion and it does not include a formalization of IP's conditionalization. According to Shackel, 

the formalization of IP's presumption is that events are comparable by their measure values. 

Hence, equivalent events are events that have equal measure values. In other words, Shackel 

implicitly defines an order relation on σ-algebras that is based on the measure values of the 

events. Shackel even provides a method for assigning probabilities to events which guarantees 

that events with equal measure values (i.e. equivalent events) have specific equal probability 

values15.  

The problem with Shackel's formalization of IP lies in his formalization of IP's presumption. The 

key point is that this formalization relies on a strong assumption that is not part of Kolmogorov's 

theory. More specifically, Shackel assumes that each σ-algebra is given with a "regular" measure 

defined over it (i.e. a measure which is not a probability measure, at least not necessarily). This 

"regular" measure can be seen as an additional component to Kolmogorov's probability space. 

(According to its definition, the probability space includes only a probability measure component 

defined over the σ-algebra component). Due to his assumption, Shackel's formalization faces a 

serious problem: mathematically there can be infinitely many measures defined over any given 

σ-algebra. Hence it is unclear which one of these measures should be taken as the "regular" 

measure in Shackel's mathematical formalization of IP16. Without some way of choosing one of 

these "regular" measures, Shackel's mathematical formalization of IP's presumption is 

                                                 
15 Shackel relies on the fact that a probability measure is a special kind of measure. Notice that conditions 3.1-3.3 of 

the aforementioned probability measure's definition are just the formal definition of the mathematical notion of 

measure. Any measure which satisfies condition 3.4 is a probability measure. 
16

 This problem was already noticed by Gyenis and Rédei. According to them: "[...] there are infinitely many 

measures µ on S [a Boolean σ-algebra of certain subsets of X] that could in principle be taken as ones that define a 

probability p. Which one should be singled out that yields a p that could in principle be interpreted as expressing 

epistemic indifference about elements in X?" (Gyenis and Rédei 2014, 7)  
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incomplete. This means that without such a way, Shackel's formalization of IP remains not well 

defined and hence, despite its appeal, it cannot serve as a mathematical formalization of IP. 

 

The mathematical formalization of IP I have described above clarifies another issue concerning 

IP related paradoxes. Roughly, it shows that a certain type of solutions is simply misguided. 

More specifically, some writers (for examples (Di Porto et al. 2010, 2011)) believe that 

probabilities can only be obtained by measuring actual frequencies. (Since they adhere to 

(perhaps implicitly) an objective interpretation of probability). This means that according to 

them, IP related paradoxes can be solved by measuring the relevant frequencies. I call this type 

of solutions the "physical approach". The above mathematical formalization of IP shows that this 

approach cannot succeed. 

Recall that in every IP related paradox there is a question about the probability of a given event 

and that this question is given different answers by different applications of IP. Roughly, a 

physical approach solution to a given IP related paradox "solves" the paradox by running the 

"right" experiment. The right experiment is supposed to express the correct way in which IP 

should be applied. More accurately, a physical approach solution to an IP related paradox is the 

claim that the probability of the event in question can be obtained by measuring the relative 

frequency of the event when running the experiment in which IP is applied correctly.  

However, the physical approach to IP related paradoxes simply does not address the real problem 

raised by such paradoxes. As I have shown above, the mathematical formalization of IP is a set 

of constrains (C) on same-events spaces (S). The problem is to find such a C that for every S 

there is only one probability space in S which satisfies the constrains in C. This is a mathematical 

problem. As such, it does not depend on a particular interpretation of probability. Specifically, it 

does not depend on the interpretation being an objective one and furthermore it does not depend 

on relative frequencies.  

It is true that it is commonly held that there is a connection between relative frequencies and 

probabilities (expressed by the laws of large numbers). This means that relative frequencies can 

confirm or cast doubts on a priori assignments of probabilities. However, and this is the crucial 

point, relative frequencies can confirm or undermine assignments of probabilities only after these 
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assignments have been made! This means that they can confirm or undermine probabilities set by 

applications of IP only after IP has been used. And IP can be used only after it has been 

mathematically formalized. Hence measuring relative frequencies cannot serve as a mean to 

mathematically formalize IP and as a result it cannot solve IP related paradoxes. 

 

 

6. The implication of IP's formalization to its validity 

The major question concerning IP's mathematical formalization as a set of constrains on same-

events spaces, is the existence of such a set. Is there a set of constrains (C) which manages to 

constrain every set of same-events spaces in such a way that only one space in each of these sets 

satisfies C? This question is highly important. Mainly because a positive answer to this question 

settles the debate concerning whether IP related paradoxes are genuine paradoxes or not. A 

positive answer to the existence question means that there is at least one set of constrains that is 

always satisfied by only one probability space in every set of same-events spaces. In other 

words, there are no cases when IP's set of constrains (C) fails to constrain a given set of same-

events spaces (S) so that only one probability space in S satisfies the constrains in C. Hence if the 

answer to the existence question is positive then there are no cases of IP related paradoxes. This 

means that all IP related paradoxes are not genuine paradoxes and the aforementioned debate is 

settled.17 

On the other hand, a negative answer to the existence question means that there is no 

mathematical formalization of IP as a set of constrains (C) that is always satisfied by only one 

probability space in every set of same-events spaces (S). In other words, there are cases that 

either zero or more than one probability spaces in the given S, satisfy C. This means that there is 

at least one genuine IP related paradox. Thus, it is possible that Bertrand's Paradox or the Box 

Factory Paradox or the Wine Water Paradox, are indeed genuine IP related paradoxes.  

                                                 
17 A positive answer to the existence question raises an interesting question regarding the uniqueness of C: is this C 

unique or is there more than one such set of constrains? I do not address this question in this paper. 
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A negative answer to the existence question can also be seen as a solution to IP related paradoxes 

in the sense that it refutes one of their premises. Recall that IP related paradoxes rely on the 

assumption that IP is always sufficient for a unique assignment of probabilities to events. Notice 

however that a negative answer to the existence question would be a mathematical proof that this 

assumption is plain wrong. This means that a negative answer refutes one of the premises of IP 

related paradoxes and in this sense, solves them. 

Moreover, a negative answer to the existence question implies that IP is not a valid principle in 

the sense that applying it does not always result with a unique assignment of probabilities to 

events. As a result, the discussion surrounding IP should change: Instead of discussing whether 

IP is a valid principle or not (a negative answer to the existence question shows that it is not), the 

discussion should be on characterizing the cases when it is safe to use IP, if there are any such 

cases. 

 

The above discussion regarding the existence question sheds new light on Jaynes' famous paper 

on Bertrand's Paradox: "The Well-Posed Problem". In this paper Jaynes presents one of the most 

famous solutions offered to Bertrand's Paradox. Roughly, Jaynes believes that the question in 

Bertrand's Paradox, as any other probability problem, must have a unique solution: "The 

essential point is this: If we start with the assumption that Bertrand's problem has a definite 

solution in spite of the many things left unspecified, then the statement of the problem 

automatically implies certain invariance properties [...]" (Jaynes 1973, 480). Jaynes adds that 

"The transformation group, which expresses these invariances mathematically, imposes definite 

restrictions on the form of the solution, and in many cases fully determines it." (Jaynes 1973, 

488). Recall that a solution to Bertrand's Paradox is the probability of the event that a random 

chord of a circle is longer than the side of an inscribed equilateral triangle. This solution is 

mathematically described by a probability space. Hence Jaynes' invariance requirements of a 

solution to Bertrand's Paradox can be thought of as (and even translated to) a set of constrains on 

the set of same-events spaces which mathematically describes the question in Bertrand's 

Paradox.  
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Now the questions are: what exactly is Jaynes' set of constrains (Cj) and more importantly, does 

it provide a positive answer to the existence question? In other words, does Cj manages to 

constrain every set of same-events spaces in such a way that only one space in each of these sets 

satisfies Cj? Unfortunately, it seems that the answer is 'no'. Even according to Jaynes: "There 

remains the interesting, and still unanswered, question of how to define precisely the class of 

problems which can be solved by the method illustrated here. There are many problems in which 

we do not see how to apply it unambiguously; von Mises' water-and-wine problem is a good 

example." (Jaynes 1973, 490). In other words, Jaynes believes that his set of constrains does not 

manage to constrain every set of same-events spaces to just one. Specifically, Jaynes' set of 

constrains fails in the case of the Wine Water Paradox18. This means that Jaynes does not 

provide a positive answer to the existence question and the status of IP as a valid principle 

remains unknown. 

 

I hope that the above discussion clarifies the importance of the existence question of IP's 

mathematical formalization. However, despite its importance, to my best knowledge there has 

not been any explicit attempt to answer it. Mainly because IP's mathematical formalization has 

not been widely covered in the literature (notable exceptions are (Shackel 2007) (discussed 

above) and (Gyenis and Rédei 2014)). This does not mean that IP does not have a mathematical 

formalization, on the contrary. Since almost all writers about IP claim that they apply IP in 

different circumstances, it seems that each of them has in mind some implicit mathematical 

formalization of IP. These formalizations are used implicitly in each of the writers' calculations 

when IP is applied. However, since commonly IP is not explicitly formalized, it is not clear 

whether IP has one specific (implicit) mathematical formalization which can be considered as the 

mathematical formalization of IP. More importantly, this means that currently the existence 

question is still unanswered and thus the question regarding IP's validity remains open. 

                                                 
18 Moreover, according to Drory, Jaynes' set of constrains is not even sufficient to solve Bertrand's Paradox! Drory 

claims that: "[...] each of these solutions [the three answers which appear in Bertrand's Paradox] can be supported by 

invariance requirements and even by the very same requirements, in the sense that they will be all called rotation, 

scaling and translation invariance." (Drory 2015, 458). In other words, Drory believes that each of the three 

probability spaces which mathematically describe the three answers, satisfies Cj (Jaynes' invariance requirements). 

Hence Cj fails to be a good mathematical formalization of IP. See also (Nathan 1984) for a more general objection to 

several of Jaynes' assumptions and (Friedman 1975) for a criticism on the acceptability of Jaynes' invariance criteria.  
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