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Abstract

The celu of the philosophical literature on the hole argument is the 1987 paper by Earman &
Norton [“What Price Space-time Substantivalism? The Hole Story” Br. J. Phil. Sci ]. This
paper has a well-known back-story, concerning work by Stachel and Norton on Einstein’s
thinking in the years 1913-15. Less well-known is a connection between the hole argument
and Earman’s work on Leibniz in the 1970s and 1980s, which in turn can be traced to an
argument first presented in 1975 by Howard Stein. Remarkably, this thread originates with a
misattribution: the argument Earman attributes to Stein, which ultimately morphs into the
hole argument, was not the argument Stein gave. The present paper explores this episode
and presents some reflections on how it bears on the subsequent literature.

1. Introduction

The hole argument was originally articulated by Einstein, in 1913, as a challenge to any

“generally covariant” theory of gravitation. Briefly, it shows a certain sense in which general

relativity—or really, any theory of geometric objects formulated on a manifold—might be

said to be “indeterministic”.1 But by 1915, Einstein had rejected the hole argument. The

reason was that he had developed a convincing counter-argument, often referred to as his

“point-coincidence argument”, which he believed settled the issue. Soon after, he published

general relativity.

Email address: weatherj@uci.edu (James Owen Weatherall)
1I do not believe the hole argument shows what it is sometimes alleged to show (see Weatherall (2016b)

and Bradley et al. (2019)). But as I discuss below, there is an important mathematical (and conceptual)
issue in the vicinity of the hole argument, regarding what it means for a system of differential equations to
admit an initial value formulation “up to diffeomorphism”. See, for instance, Geroch (2004) for a discussion
of this issue.
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For the next 70 years, the hole argument received little attention.2 During the 1980s,

however, it resurfaced: in their highly influential paper, “What Price Space-Time Substanti-

valism”, Earman and Norton (1987) re-cast the hole argument as an argument that a certain

variety of substantivalism—here understood as the view that “points” of space and time exist

independently of and ontologically prior to the events that occur at those points—is com-

mitted to a pernicious form of indeterminism. They went on to argue that one can avoid

this variety of indeterminism by accepting what they call “Leibniz equivalence”, which they

take to be a hallmark of relationism. In the subsequent three decades, many philosophers,

attracted to the form of substantivalism Earman and Norton reject, have offered responses

to the hole argument, leading to a now-large literature.3

Reviews of the hole argument literature often mention that (Earman and Norton, 1987)

had a pre-history. In 1980, John Stachel presented a paper in Jena on Einstein’s search

for general relativity, later published as (Stachel, 1989), in which he argued that the hole

argument had lasting conceptual significance. Similarly, John Norton (1984) argued, on the

basis of Einstein’s Zürich notebooks, that the hole argument had played an essential role in

Einstein’s thinking about general covariance. From this perspective, (Earman and Norton,

1987) took insights from the historical literature on the hole argument and exposed their

philosophical importance.

Less widely recognized, apparently, is that John Earman also discussed the hole argument

prior to his 1987 paper with Norton. For instance, it appears in several 1986 publications

(Earman, 1986a,b).4 Importantly, in (Earman, 1986b), he explicitly connects the hole ar-

2This gloss is, perhaps, unfair: Marco Giovanelli, in unpublished work, has argued that the hole argument,
and the point-coincidence argument, were rediscovered multiple times during the ensuing decades, by groups
working on various approaches to quantum gravity. But it was not widely discussed in the physics or
philosophy of physics literatures.

3For recent reviews of this literature, see Norton (2011), Pooley (2013), and Stachel (2014).
4 In these 1986 publications, Earman cites the paper with Norton as forthcoming, suggesting that there

was a delay before publication of the Earman-Norton paper. That said, the published version of the 1987
Earman and Norton article reports that it was “Received December 1986”; it is difficult to square this timing
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gument with a different argument, which he first presented in (Earman, 1977a) but also

mentioned in (Earman, 1977b) and (Earman, 1979a). This other argument, on its face, has

nothing to do with general relativity. It concerns Leibniz.5

This thread represents a distinct and important part of the pre-history of the hole ar-

gument paper, as it is in this work that Earman develops a line of argument connecting

indeterminism to the idea that certain formulations of physical theories might have “excess

structure”. And perhaps most remarkably of all, considering the lasting influence of the ar-

gument, is that the thread appears to originate in a misattribution. In particular, Earman

attributes the argument concerning Leibniz that he discusses to a talk by Howard Stein,

first delivered in Minnesota in 1975 and later published as (Stein, 1977b). But a careful

reading of Stein’s paper, and a comparison with Earman’s recovery of the argument, reveals

that Earman’s version is importantly different from Stein’s. My goal in the present paper

is to draw out these differences and show why they matter. In the end, I will argue, they

reflect two different ways of understanding how space-time theories represent the physical

world—with different consequences for what significance we should take the hole argument

to have.6

The remainder of this paper will be organized as follows. First I will present Earman’s

work on Leibniz and explain its connection, in his writings, to the hole argument. In

the following section, I will introduce Stein’s version of the argument and argue that it is

with Earman’s citations in 1986, unless the December 1986 date reflects the receipt of the final version of
the article, after it was accepted. See also note 8.

5See also (Earman, 1989b), where he also draws connections between the hole argument and these earlier
arguments about Leibniz. One of the central proposals of these papers is that one can recover a version of
Leibnizian relationism by adopting an “algebraic” approach to space-time, both classically and in general
relativity; this proposal has subsequently been discussed by Rynasiewicz (1992), Bain (2003), and Rosenstock
et al. (2015).

6The fact that Earman’s version of the argument differs from Stein’s does not, by itself, reveal a short-
coming of Earman’s argument (or Stein’s)—after all, both versions might be compelling. But it does show
that, even at its origins, there have been disagreements concerning what significance the hole argument
has—and in particular, about whether the standard formalism of general relativity somehow suggests or
implies “substantivalism”.
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importantly different from Earman’s. I will then make a first pass at distinguishing the

arguments, by describing two senses of “determinism” that seem to be operative in the two

versions of the argument. I then suggest that something deeper is going on, regarding how

Earman understands the significance of manifolds in models of space-time theories. I will

conclude by bringing this discussion back to the hole argument.

2. An alternative prehistory

The hole argument may be stated as follows:7 Let (M, gab) be a relativistic space-time—that

is, a smooth manifold M equipped with a smooth, Lorentz-signature metric, gab—and let

O ( M be the interior of a compact set of M . Let ϕ : M → M be an automorphism of M

that acts as the identity outside of O, and which is not the identity on O. Then (M,ϕ∗(gab))

is also a relativistic space-time. The space-times (M, gab) and (M,ϕ∗(gab)) agree at all points

p ∈ M/O, but they disagree in O. Thus no specification of gab (or its derivatives) on M/O

could be sufficient to determine the values of gab within O.

In a 1989 essay, “Leibniz and the Absolute vs. Relational Dispute”, published in a

collection of essays on Leibniz, Earman presents what is essentially this argument and then

concludes “since the two models are identical for all past times [i.e., “before” O] but differ

in the future [i.e., in O], there is an apparent violation of Laplacian determinism” (Earman,

1989a, p. 17).8 In this regard, the treatment is much the same as in Earman and Norton

7I do not review the basic formalism of general relativity here; for background, see Wald (1984) or
Malament (2012), both of whom use essentially the same notation I do (including the so-called “abstract
index” notation).

8 Of course, 1989 comes after 1987, and so this article hardly counts as “pre-history” to the 1987
paper. But I begin with this essay because (a) the statement of the relationship between the relativistic
and Leibnizian arguments is particularly clear and (b) it demonstrates how Earman was thinking about
the relationship between the two arguments around the time that he wrote the paper with Norton. Indeed,
although this chapter only appeared in print in 1989, there is good reason to believe it was written well before
that—and, in fact, before 1987, because (Earman and Norton, 1987) is cited in the chapter as “Forthcoming”
in British Journal for Philosophy of Science, with anticipated publication date of 1986. (Recall note 4.) So
this article should probably be seen as contemporaneous with (Earman and Norton, 1987). I will presently
trace this connection back into his earlier work.
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(1987)—and indeed, after stating the argument and drawing this conclusion, Earman cites

that paper (as forthcoming). But I want to draw attention to how Earman prefaces these

remarks: he writes, “The conflict [between space-time substantivalism and the possibility of

determinism] can be brought out by a variant on the construction used above in Sec. III”

(p. 17).

The argument in Section III of that paper has nothing to do with general relativity,

or with Einstein. Instead, it is exclusively concerned with the structure of classical (i.e.,

non-relativistic) space-time theories. It arises in connection with a range of now-familiar

possible structures that one might attribute to space and time in the context of classical

physics.9 In all of these, one begins with a smooth, four-dimensional manifold, assumed

to be diffeomorphic to R4, and one adds further structure, resulting in a hierarchy of ever-

more-structured candidate space-times. In the present discussion, Earman considers first

(1) adding just “simultaneity structure”, which amounts to taking M to be (the total space

of) a (trivial) fiber bundle over R, i.e., to fixing an identification of M with R3×R. He then

considers (2) endowing each of the “leaves” of this foliated structure with a Euclidean metric,

hab, representing distances between simultaneous points (or events) in space.10 He then adds

(3) a temporal metric (i.e., a metric ta on R in the foliation R3×R) to construct “Leibnizian

space-time”; (4) a standard of rotation to get “Maxwellian space-time”;11 (5) a standard of

“straightness” for curves (i.e., a covariant derivative operator) that are not tangent to leaves

of the foliation to get “Galilean space-time” (or “Neo-Newtonian space-time”); and so on.12

9For further detail on these different classical space-time structures, see Earman (1989b) or Weatherall
(2017).

10I have written hab with raised indices because I am understanding it as a field on M that induces a
Euclidean metric on each leaf of the foliation. See Malament (2012, §4.1) for discussion on this field, and on
ta, introduced presently.

11He does not define a “standard of rotation” here, though he invokes the concept; in Earman (1989b),
he defines a standard of rotation as an equivalence class of covariant derivative operators agreement on the
“twist” of certain vector fields. An alternative, equivalent but in some sense more intrinsic, definition of a
standard of rotation in this context is given by Weatherall (2018a); see also Saunders (2013) for yet another
equivalent way of defining a standard of rotation.

12He does not use any of these names in the paper in question, but since he introduced them himself in
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After introducing these structures, Earman writes, “An interesting a priori argument in

favor of a space-time structure at least as rich as that of 5. [Galilean space-time] was given

by Howard Stein (1977)” (p. 13). He then states the argument as follows:

Grant that the space-time should be rich enough to allow for the possibility that
particle motions are deterministic. Then the space-times 1.–4. are ruled out.
For whatever the laws of particle motion are, a space-time symmetry should be
a symmetry of the laws, i.e., should carry a set of world lines that solve the
equations of motion to another set that is also a solution. But the symmetries
in 1.–4. ... have the property that a symmetry map d can be chosen with the
property that it is the identity for all t ≤ 0 but non-identity for t > 0. Applying
this map d to a solution to the laws of motion produces another solution that
agrees with the first for all past times but disagrees in the future, a violation of
Laplacian determinism. (p. 13)

I will have much more to say about this argument in the sequel, but for now observe that it

shares with the hole argument the feature that one starts with a solution of some (unstated,

in this case) equations and then one acts with a certain map d to produce a “new” solution

that agrees with the old one in one region of space-time, but not everywhere.

Earman discusses the hole argument alongside Stein’s “interesting a priori argument”

in other places as well (though not in (Earman and Norton, 1987)). For instance, in his

classic book A Primer on Determinism, Earman devotes two sections (§§III.2-3) to Stein’s

argument and Leibniz’s imagined response, and then later, in his discussion of the Cauchy

problem in General relativity, he presents the hole argument and explicitly compares it to

Stein’s argument as presented in §III.2 of that book. He also directly connects the two

arguments in his 1989 book World Enough and Space-Time, presenting Stein’s argument on

pp. 55–7, and then comparing it to the hole argument on p. 179 of (Earman, 1989b). And

in his 1986 paper “Why Space is not a Substance (At Least Not to First Degree),” though

Earman (1989b), it seems to me not too anachronistic, and much simpler, to just refer to these structures
in the now-standard ways. He goes on to introduce (6) “Newtonian space-time”, which includes a standard
of rest; (7) “Aristotelian space-time”, which includes a privileged location in space; and (8) an unnamed
structure wherein one has a privileged origin in time (and space).
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he does not explicitly compare the two arguments, he presents Stein’s argument (pp. 232-3),

and then on the immediately following page, he presents the hole argument, and identifies

the “relativity physicists” response (viz. to take isometric space-times to represent the same

physical situations) with what he supposes Leibniz’s response to Stein’s argument would

have been.

Given the subsequent attention devoted to the hole argument, one might imagine that

it was somehow primary—that is, that Earman considered Stein’s argument in order to

better explain the significance of the hole argument, in which case one might think that he

is reading Stein’s argument through that lens. Reading A Primer on Determinism or World

Enough and Space-Time can certainly give that impression, insofar as the classical issues

are presented as a prolegomenon to understanding modern physics. But there are reasons

to think the opposite is true, at least as a matter of the evolution of Earman’s thought.

In fact, Earman first discusses Stein’s argument almost a decade earlier (and shortly after

Stein first presented it), in his 1977 book chapter, “Leibnizian Space-Times and Leibnizian

Algebras”. There he writes:

A third difficulty was raised by Stein (1975) [sic]. If the history of a particle
is represented by a timelike world line (i.e. a world line which is everywhere
oblique to the planes of simultaneity) on [Leibnizian space-time], then determin-
ism cannot hold. For among the automorphisms [of Leibnizian space-time] are
those which are the identity on the portion of [Leibnizian space-time] on or below
some given time slice but which differ from the identity above; such a mapping
leaves fixed the entire past history of the particles while changing their future
behavior. Since the automorphisms of the space-time time [sic] should be sym-
metries of the dynamical laws (whatever they are), there will be two solutions
which describe the same particle histories for all past times but which describe
different future behaviors. If one desires determinism, as Leibniz did, then one
must either modify [Leibnizian space-time] or one must find a different way of
describing the history of a particle. Both of these alternatives will be explored
below. Ultimately, a combination of the two will be offered as an explication of
Leibniz.13 (Earman, 1977a, p. 96)

13Throughout this passage, Earman refers to Leibnizian space-time as “L1” in anticipation of defining
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Earman goes on to propose, apparently for the first time, that one can partially avoid this

kind of indeterminism by moving to a “Leibniz algebra” (Earman, 1977a, §5).14 A Leibniz

algebra is defined in analogy with Einstein algebras, as introduced by Geroch (1972). Briefly,

given a manifold, one can define a certain algebra C∞(M) of smooth scalar fields on that

manifold, and then proceed to define all of the structures we usually associated with general

relativity, such as a Lorentz signature metric or various fields representing matter, directly

using this algebra of functions. Geroch’s proposal is that one could just as well begin with

a suitable algebraic structure, without ever mentioning a manifold, and proceed from there

just as before.15 As I discuss below, Earman’s idea is that by avoiding mention of the

manifold, one can avoid any implicit “substantivalist” commitments.

The important point for the present discussion, however, is that the Hole Argument is

not mentioned in this paper; in 1977, it remained in the waste bin of history. Earman was

primarily motivated, it seems, by Leibniz exegesis—and to develop (and partially revise)

his own views as expressed in his classic “Who’s Afraid of Absolute Space?” (Earman,

1970), concerning the history of arguments for relational characterizations of space and time.

This strongly suggests, perhaps even demonstrates, that Earman’s thinking about the hole

argument was influenced by his understanding of Stein’s argument, which he had already

written and reflected on in some detail before ever discussing (or, perhaps, encountering),

the hole argument.

3. Probing the source

We saw in the last section that in the years immediately before and after the publication of

(Earman and Norton, 1987), Earman described the hole argument as a relativistic version

other possible space-time structures.
14Earman refers back to this argument—without citing Stein—in several other papers in the late 1970s,

including (Earman, 1977b, p. 225) and Earman (1979b, p. 272).
15See Nestruev (2003) and Rosenstock et al. (2015) for further details.
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of an argument concerning Leibnizian space-time that he attributed to Stein. We also

saw that Earman had discussed this Steinian argument as early as 1977, in the context

of an argument that to recover Leibniz’s views would require a move to Leibniz algebras,

or something like them. But as I will presently argue, Earman’s understanding of Stein’s

argument, and its significance, was importantly different from Stein’s own—and indeed, on

Stein’s understanding, the argument does not support the conclusions Earman drew from

it.

The argument Earman attributes to Stein originates in a paper given at a 1975 conference

at the University of Minnesota, which Earman attended; Stein’s paper was later published

in the 1977 proceedings of that conference, as “Some Philosophical Prehistory of General

Relativity” (Stein, 1977b). Stein writes, of Leibnizian space-time:

Now consider any smooth map of space-time onto itself that preserves simultane-
ity and ratio of time intervals, and that restricts, on each instantaneous space,
to a Euclidean automorphism. Such a map is an automorphism of the entire
Leibnizian structure, and should therefore be a symmetry of the dynamics: i.e.,
should carry dynamically possible systems of world-lines to dynamically possible
systems of world-lines. This immediately leads to the crucial difficulty: take
any time-interval [t1, t2], and any time t outside this interval; then there exists
a mapping of the sort described that is the identity map within [t1, t2] but not
at t. It follows that the dynamics cannot be such as to determine systems of
world-lines on the basis of initial data (for the automorphism just characterized
preserves all data during a whole time interval—which may even be supposed
to be infinite in one direction, say to include “the whole past”—but changes
world-lines outside that interval). (Stein, 1977b, p. 6, emphasis original)

Stein’s argument certainly bears a strong resemblance to Earman’s. In both cases, one

considers an automorphism of Leibnizian space-time that acts as the identity before some

time t, but is not the identity after that; and one argues in each case that, therefore, there is

a certain sense in which the future is not determined by the past. But there is an important,

if subtle, difference. Whereas on Earman’s reconstruction, what has been established is

that there exist “solutions” to any suitable Leibnizian laws of motion that agree up to a
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certain time and then disagree after that time—that is, that Laplacian determinism fails—on

Stein’s version, all that is established is that Leibnizian laws could not determine world-lines

of particles from initial data. The gap between these conclusions is that on Stein’s version,

one has ruled out deterministic laws that involve representations of motion of a certain sort;

whereas on Earman’s version, one has jumped to the stronger conclusion that there could be

no suitably deterministic Leibnizian dynamics. This stronger inference apparently depends

on a suppressed premise, which is that any conceivable deterministic dynamics for particle

motion would necessarily determine world-lines for particles.

That Stein wished to reject this suppressed premise, and to deny the stronger inference

that Earman draws, is made explicit in the passage that immediately follows the one I have

already quoted. Stein continues,

It must not be thought that this argument demonstrates the impossibility of
a deterministic Leibnizian dynamics; the situation is, rather, that all of the
systems of world-lines that arise from one another by automorphisms have to be
regarded as objectively equivalent (i.e., as representing what is physically one
and the same actual history). But the argument does show that a Leibnizian
dynamics cannot take the form of a system of “differential equations of motion,”
for such equations precisely do determine the world-lines from initial data. Or to
put what is essentially the same point in a more sophisticated way: in Leibnizian
space-time the “phase,” or instantaneous state of motion, of a system of particles
cannot be represented by an assignment of 4-vectors to the world-points of the
particles at that instant. In short, the basic conceptual apparatus for a cogent
formulation of a dynamics satisfying this version of “Leibnizian relativity” would
have to be significantly different from the structural framework we are used to.
So far as I know, the appropriate concepts have never been defined. (p. 6)

In other words, Stein explicitly rejects the claim that his argument rules out a determin-

istic Leibnizian dynamics, or that a theory set in Leibnizian space-time is incompatible with

determinism—whereas as we have seen, it is precisely this conclusion that Earman wishes

to draw from his version of Stein’s argument.16 On Stein’s version, the argument concerns

16Stein has reiterated this interpretation of his argument in recent correspondence, writing “I meant to
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only the form that the dynamics would need to take, which could not involve ordinary dif-

ferential equations governing the position and velocity of particles, since these give rise to

precisely the sorts of trajectories that Stein argues are not invariant under automorphisms

of Leibnizian space-times. What is not ruled out, for Stein, is a dynamics that would de-

termine, from suitable initial conditions, (merely) relative positions and velocities for all

subsequent times, since these would be invariant under the sorts of transformations that

preserve Leibnizian space-time. Indeed, it is hard to see how one could want more than this

out of a Leibnizian dynamics, since Leibniz apparently held that all motion was relative.

The difficulty, then, is how to express such a dynamics, i.e., to express a dynamics using

only the resources of Leibnizian space-time.17

4. Two Concepts of Determinism

The discussion above shows two things. First is that for Earman, during the period when the

1987 hole argument paper was drafted, there appears to have been a close connection between

the hole argument and Stein’s argument; and second is that Earman’s understanding of

Stein’s argument was importantly different from Stein’s understanding of the argument. The

remainder of this paper will be devoted to diagnosing these differences, and then exploring

how they bear on the interpretation and significance of the hole argument.

In the first instance, it seems that the difference concerns what should count as a de-

terministic theory.18 To get at the difference, consider first what sorts of assertions can be

expressed using the resources of Leibnizian space-time. Leibnizian space-time, by design,

disavow any claim of a demonstrative refutation of the possibility of a deterministic theory in the context
of such a space-time structure, but to point out that such a theory could not have the form we now regard
as “classical” (or, I would really add—although I don’t think I *said* this—any form that one can see as
suggested by Leibniz himself)” (Stein, 2015, Personal Correspondence).

17It is worth noting that Stein’s paper was delivered in 1975, whereas it was in 1977 that Barbour and
Bertotti presented a dynamical theory arguably of the sort that Stein claimed had not been developed
(Barbour and Bertotti, 1977, 1982). (That said, as Belot (1999) has emphasized, Barbour and Bertotti’s
theory cannot fully recover classical Newtonian gravitation, because it cannot deal with global rotation, and
so whether it should count as an “adequate” Leibnizian dynamics is controversial.)

18Here there is a connection to a thread in the hole argument literature on what is sometimes called

11



has the structure necessary to express: (1) assertions about duration between events; (2)

assertions about instantaneous distance between bodies; (3) assertions about instantaneous

angles between three or more bodies; and (4) assertions about how angles and distances

change over time. Together, these constitute facts about instantaneous configuration and

relative motion. These sorts of facts depend only on the Leibnizian structure (M, ta, h
ab), and

they are preserved under all isomorphisms—including automorphisms—of this structure.

As I read Stein, a deterministic Leibnizian dynamics would be one that could specify,

uniquely, changes in these facts—that is, facts about instantaneous distances and angle—

over time. In other words, given an initial configuration, referring only to the sorts of facts

that can be expressed using Leibnizian space-times as just described, a deterministic Leib-

nizian dynamics would specify subsequent facts of precisely (and only) that sort. Stein’s

argument, then, concerns the resources available to express these dynamics. Leibnizian

space-time has the resources to express these facts, including their change over time. But

standard ways of writing down dynamics require more than this: for instance, to express

Newton’s second law, F = ma, one needs to be able to make assertions about the ac-

celeration of a body, not as a relative matter, but absolutely. One cannot do this using

only the structure of Leibnizian space-time, which can be seen by observing that the trans-

formations Stein considers map curves to other curves with different acceleration (by any

standard). More generally, standard dynamics invoke differential equations, which generally

require further structure, such as a derivative operator, to express. Leibnizian dynamics,

presumably, could concern only the dynamics of distance and angles between bodies, and

not instantaneous rates of change of, for instance, velocity.

To get at this point in a different way, observe that one can always express differential

equations by choosing a coordinate system and working with coordinate derivatives. But

“sophisticated determinism” (as a contrast to “sophisticated substantivalism”): see Melia (1999), Brighouse
(2008), and Norton (Forthcoming).
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these dynamics—and their solutions—are not invariant under generic changes of coordinate

system, much less arbitrary Leibnizian transformations. And this is precisely the point.

Compare this situation to the one in Galilean space-time, where one does have a preferred

derivative operator, and so one can express differential equations whose solutions are in-

variant under arbitrary Galilean transformations, in the sense that any map that preserves

the space-time structure will also map a solution to a solution—and, in fact, a solution

that is the same as the original one with regard to all the assertions that can be expressed

using the resources of Galilean space-time (which include, in addition to those of Leibnizian

space-time, assertions about the acceleration of a body, and thus Newton’s first and second

laws).19

We can summarize these considerations compactly as follows. On Stein’s view, a de-

terministic Leibnizian dynamics would determine future states up to isomorphisms of Leib-

nizian space-time. This is because to determine future states up to isomorphism is precisely

to determine only those facts that are expressible within Leibnizian space-time.

Earman, by contrast, appears to demand more than this of a (deterministic) Leibnizian

dynamics. He seems to require that such a dynamics determine, at least, unique worldlines

for particles. In other words, two histories, agreeing on the distances and angles between

all particles over time, would be distinct if they disagreed on the locations occupied by the

bodies over time, where “location” is characterized by the points occupied by the bodies’

worldline/worldtubes. This is strictly stronger than what Stein requires: location in this

sense is not invariant under automorphisms of Leibnizian space-time, and so Earman’s notion

of determinism would require a Leibnizian dynamics to determine future states in a way that

19These issues, regarding how to express dynamics in different space-time settings, have recently been
discussed in detail in the context of Maxwellian space-time, where one has a standard of rotation but not
acceleration. Saunders (2013), for instance, argues that one can express suitable dynamics in this context
using difference equations, rather than differential equations, whereas Dewar (2018), Weatherall (2018a),
and Chen (2019) discuss more geometrical characterizations of (gravitational) dynamics in this setting. See
also Wallace (2017).
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distinguishes between isomorphic possibilities.

Something subtle is going on here. Earman suggests, in multiple places, that there are

two different ways to respond to the argument Stein presents. One of them, which Earman

describes as the Leibnizian response, is to claim that the different models considered in

Stein’s argument represent the same possible history (cf. Earman, 1986b, p. 233). The

other response, which Earman suggests is Newton’s strategy, is to “beef up” the structure

of Leibnizian space-time, by adding further structure.20 I will have much more to say about

how Earman understands the first of these responses in the next section. But the second

response is important here.

Earman seems to take for granted that Stein’s argument fails for any space-time with at

least the structure of Galilean space-time. (Recall, above, his remark that Stein’s argument

shows that one requires at least as much structure as Galilean space-time (Earman, 1989a,

p. 17); see also (Earman, 1986b, p. 233) and (Earman, 1989b, p. 182).) But there is a

certain sense in which even in Galilean space-time, no dynamics can uniquely determine the

future locations of particles. This follows from the hole argument itself, properly restated:

choose, in Galilean space-time (M, ta, h
ab,∇), some spacelike hypersurface Σ (on which one

will specify initial data), and a set O ⊂M with compact closure to the future of Σ.21 Now

consider a diffeomorphism d : M → M that is the identity (only) outside of O. Then

(M,d∗(ta), d∗(h
ab), d∗(∇)) is, again, Galilean space-time.

Thus, even if one specifies a dynamics using all and only the resources of Galilean space-

time, and it determines some system of worldlines in Galilean space-time from initial data

on Σ, the dynamics will not be sufficient to determine the future locations of particles. This

is because it cannot distinguish between a collection of trajectories {γi} and trajectories

{γi ◦d}, even though these both agree on Σ and if one is a solution to the specified dynamics

20The availability of this second strategy in the classical case leads Earman to conclude that Stein’s
argument is in fact weaker than the hole (Earman, 1989b, p. 182); see also Earman (1986b, p. 233).

21We are taking for granted, here, that the space-time is temporally oriented.
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in Galilean space-time, so is the other.22

How is this argument different from Stein’s? It seems the only difference is that in Stein’s

argument, the diffeomorphism d is an automorphism of Leibnizian space-time—that is, d is

chosen so that d∗(ta) = ta and d∗(h
ab) = hab—whereas in the Galilean space-time argument

I have just given, d is an automorphism of the underlying manifold, but not of the Galilean

space-time structure. Instead, it determines an isomorphism of Galilean space-time that

happens to be the identity map outside of a certain region. The key, it seems, is that any

automorphism of Galilean space-time that acts as the identity on certain initial data (in

this case, Σ and 4-velocities associated with points on Σ) necessarily preserves all timelike

curves, whereas this is not true of Leibnizian space-time.

Why should this difference matter? Earman does not say, and it is not perfectly clear

why automorphisms should have a special status to him.23 (For Stein, the difference mat-

ters because he is describing what would be required of a deterministic dynamics, and the

automorphisms of each structure reflect what sorts of dynamics can be expressed using that

structure.) The idea seems to be that one fixes some fields as representing “space-time

structure”, and if one can come up with a transformation that preserves initial data and

preserves all of the space-time structure, but does not preserve particle worldlines, then a

theory in that space-time setting is necessarily indeterministic.

I will not attempt to recover what Earman had in mind in further detail. It suffices

to point out a certain consequence of his view, which is: Earman apparently requires a

deterministic Leibnizian dynamics to specify future facts of a sort that Leibnizian space-time

22I want to be clear that I do not take this argument to have any force—my point is that prima facie, it
should have force for Earman, given his other commitments.

23I do not want to put too much weight on this issue, because in some places Earman seems to suggest
that the difference does not matter. For instance, Earman (1986a, p. 28) presents a schematized version of
the hole argument, similar to what I have presented here for Galilean space-time, and suggests it gets at the
core issue for Leibniz just as well as Stein’s argument. I will note, though, that he does not seem to connect
this argument to determinism; and he also seems to think that the issue at stake is a certain failure of our
modes of presentation of space-time models. See also the next section.
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does not have the resources to express—and of a sort that Leibniz would have disavowed.

In other words, Earman’s view renders Leibnizian space-time an unacceptable setting for

recovering Leibniz’s views, because it is not a suitable structure for a theory of how relative

positions evolve over time.

5. Manifolds, Substantivalism, and Structure

I noted in the previous section that Earman described two ways to respond to Stein’s ar-

gument. One, which I have already discussed, involved “beefing up” Leibnizian space-time

structure. The other was to insist that two models, related by the Steinian transformation,

characterize the same physical possibilities. I will now discuss the second of these, which

Earman calls the “Leibnizian response”.

One way of understanding Earman’s Leibnizian response would be as the view I have

already attributed to Stein: that is, to say that Leibnizian space-time has the resources to

express facts about relative position and angle, over time; and thus to suppose that it is only

those facts, represented by worldlines or worldtubes in Leibnizian space-time, that are to

be attributed to the world. On this view, any two isomorphic Leibnizian space-times (with

worldlines and worldtubes appropriately transformed along the isomorphism) represent the

same physical situations, because, by construction, they agree on precisely the facts that

are taken to be physically significant. Indeed, this is automatic and nearly trivial, since

isomorphic models agree on precisely those assertions that can be expressed in Leibnizian

space-time—which are just those assertions that one has adopted Leibnizian space-time to

represent. Leibnizian space-time is just a way of characterizing certain relative facts about

changes in instantaneous configuration of bodies: no more, and no less.

Of course, this would not be a response to Stein’s argument as Stein understood it, be-

cause Stein already took this attitude for granted in his argument;24 to respond to Stein’s

24Curiously, in (Earman, 1989a, note 4), Earman says Stein is “perfectly aware that this is the kind of
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argument one would need to, in addition, provide a dynamics for relative configurations,

using only the resources of Leibnizian space-time. It is also, I think, not quite how Earman

understood the situation. The reason is that Earman believed that to adopt the Leib-

nizian response, one would need to make an adjustment to Leibnizian space-time—one that

amounts to rejecting “substantivalism”.

What could this mean? Consider, first, how Earman characterizes the Leibnizian re-

sponse. For instance, in (Earman, 1989a), in describing the “Leibnizian” response, he writes:

...it is open to the relationist to reply that the violation of determinism is an
illusion fostered by the false presumption that space-time is a substance; for
on a non-substantivalist conception of space-time, the original solution and its
image under the symmetry map are merely different modes of presentation of
the same physical history. (p. 13)

Likewise, in (Earman, 1986b), he writes:

The failure of determinism here is only an apparent one, the false appearance
being due to the chimerical assumption of the reality of space-time in itself.
Dropping that assumption and realizing that space-time is something merely
relative, we see that [the Steinian argument yields] different ways of representing
the same physical history. (p. 233)

What is striking in these passages is the idea that somehow, in running Stein’s argument,

one has implicitly assumed substantivalism. And yet, I think it is clear that Stein did not

take the argument to assume substantivalism—since, again, doing so would vitiate any claim

to recovering Leibniz’s views.

The key to resolving the mystery is that Earman seems to have taken any space-time

structure in which a manifold is used to represent events in space and time to, ipso facto,

response that the relationist would make, but he is skeptical that the response can be made to stick.” On
my reading of Stein, this response is not to the point, much less the one Stein anticipates the relationist
making. I cannot find anywhere in the paper where Stein suggests that such a response cannot “be made
to stick”.
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carry with it substantivalist commitments. He says as much explicitly in (Earman, 1986b),

writing:

I began with space-time models M,O1, O2, . . ., which, prima facie, seem to call
for a full-blown substantivalism in which the space-time manifold M is the only
substance or basic object of predication and the fields Oi are properties of M .
Then in order to avoid an unpleasant consequence, I concluded that these models
must be grouped into equivalence classes, where M,O1, O2, . . . and M ′, O′1, O

′
2, . . .

are counted as equivalent just in case there is a diffeomorphism d : M → M ′

(onto) such that d∗Oi = O′i for each i, and that an equivalence class corresponds
to a single physical reality with different members of the class being merely
different representations of that reality. (pp. 236-7)

Likewise, when he defines space-time structures in (Earman, 1989a), he calls models of the

form we have been considering, and of the form one encounters throughout relativity and

contemporary philosophy of physics, substantival models:

A substantival space-time model has the formM,O1, O2, . . . whereM is the space-
time manifold (the collection of space-time points equipped with a differentiable
structure) and the Oi are geometric object fields on M . All familiar space-
time theories, whether classical, special relativistic, or general relativistic, can
be formulated in this form. (p. 17, emphasis original)

So it seems that what Earman has in mind as the “Leibnizian” response is not only to

recognize that Leibnizian space-time only has the resources to express facts about relative

motion—but also, to demand that one adopt some formulation of Leibnizian space-time

in which a manifold does not appear, lest one saddle the Leibnizian with substantivalism.

This, then, is what leads Earman to propose Leibniz algebras as a candidate alternative to

Leibnizian space-time: they avoid the implicit commitment to substantivalism that Earman

believes comes along with space-time structures that use manifolds.

There are several remarks to make at this point. The first is just to emphasize again

that Earman here takes space-time structures of the form (M,O1, O2, . . .) to have expres-

sive resources—roughly, “structure”—that is not preserved by diffeomorphisms. This is so
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because he takes the failure of determinism given by the Steinian argument to be a fail-

ure to determine the subsequent locations of—that is, points of M occupied by—bodies in

Leibnizian space-time. But by Stein’s argument or the modified hole argument described

above, this is precisely the sort of thing that is not preserved by diffeomorphisms, even when

one pushes forward the rest of the space-time structure. And yet, Earman does not con-

clude from such arguments that these sorts of facts cannot be expressed using the resources

of Leibnizian space-time (since they are not invariant under its automorphisms); instead,

he apparently concludes that they can be so expressed, but no dynamics can determine

them uniquely. Given the character of Stein’s argument as I have reconstructed it, this

conclusion is sharply at odds with how Stein understood the situation: after all, the point

of the argument was to emphasize what sorts of assertions could be expressed using the

resources of Leibnizian space-time, by pointing out what is and is not preserved under its

automorphisms. The “substantivalism” that Earman takes to be implicit in the structure

amounts to the ability to express assertions of a sort that are not invariant in this way—just

as statements of the form “this particle is unaccelerated” is not expressible in Leibnizian

space-time.

The second remark is that there is a certain irony to all of this. In (Earman, 1989b),

and indeed, throughout his work on substantivalism and relationism during the 1970s and

1980s, Earman carefully distinguishes between “relationist” conceptions of space-time and

“relativist” conceptions of motion, noting that neither implies the other (and, similarly,

that their “subtantivalist” and “absolutist” alternatives, respectively, also do not imply one

another). This distinction is important, correct, and seems not to have been clearly made

previously.25 But Earman’s argument for this distinction seems to rely on his insistence

25That said, one can identify a similar distinction in Stein’s suggestion, for instance in (Stein, 1967),
that substantivalism was not particularly important to Newton (especially given that Newton explicitly
disavowed it in De Gravitatione...); but that the doctrine of absolute space and time was essential to
Newton’s understanding of his laws of motion. On this view, it was arguably Leibniz, and perhaps Clark,
who mixed the two views, producing a morass that took centuries to extract ourselves from.
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that any characterization of space-time structure that begins with, or includes, a manifold

of space-time events is necessarily substantivalist. The irony is that these sorts of models

were introduced to philosophers, at least in the context of classical physics, by Stein (1967),

whose express purposes was to make a point about motion and laws, without endorsing

substantivalism. Another irony, I suppose, is that space-time models of the sort Earman

considers emerged out of work by Einstein, who likewise explicitly disavowed a substantivalist

interpretation: as Einstein writes, and as Earman often quotes: “Space-time does not claim

an existence of its own but only as a structural quality of the [metric] field” (Einstein, 1961

[1917], p. 155).26 It is hard to see why one should be compelled to take these models as

somehow implying substantivalist commitments.

So why does Earman take space-time models of this form to be inherently “substanti-

valist”? One plausible answer runs through Quinean ontology.27 Recall Quine’s oft-quoted

(and sometimes mocked) dictum: “To be is, purely and simply, to be the value of a variable”

(Quine, 1948, p. 32).28 If one adopts such a view, then flipping through classic texts on

general relativity reveals physicists quantifying over points p in M all over the place. And

so, it seems, Quinean physicists must be committed to the existence of space-time points,

in some sort of ontologically robust “realist” sense of “existence”. More generally—leaving

Quine aside—Earman takes it that the manifold (or its points) appears to be the “basic

object of predication” in these structures.29 In other words, it seems that there is an imme-

26See, e.g., Earman (1989a, p. 17).
27I am grateful to Jeremy Butterfield for suggesting this diagnosis—one he also applied to himself (But-

terfield, 1989)—though I am not sure if he endorses it. Belot (1996) also appears to link Quine’s dictum
and a general commitment to realism to Earman’s understanding of substantivalism. On the other hand, I
do not have explicit textual evidence of Earman endorsing Quine’s view, and so Earman’s contention that
use of a manifold is metaphysically loaded may well have a different origin.

28In more careful moments, Quine expressed a subtly different view: e.g., “The ontology to which an
(interpreted) theory is committed comprises all and only the objects over which the bound variables of the
theory have to be construed as ranging in order that the statements affirmed in the theory be true” (Quine,
1951, p. 11). Here, I take it, one must do more than merely peruse the quantifiers of one’s physics textbooks
to determine one’s ontological commitments.

29This argument echoes Field (1984), who argues for substantivalism on the grounds that without it one
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diate realist reading of any theory whose models include a manifold as one on which that

manifold reflects putative facts about the locations of events.

6. The Hole Argument, Revisited

I will conclude by returning to the hole argument in light of the considerations raised above.

First, as I argued in section 4, Stein and Earman are working with two different views of what

it would take to have a deterministic theory in the context of Leibnizian space-time. Now

compare these views of determinism, translated to general relativity. Given initial data for

Einstein’s equation, the Steinian view would be that a deterministic relativistic dynamics

should determine the evolution of the metric up to isomorphism (isometry); whereas the

Earmanian view would be that a deterministic relativistic dynamics must determine the

metric uniquely at each space-time point—unless one modified the formalism in some way.

How different are these? Of course in the end, Earman concludes that we ought to

adopt the Steinian view.30 What matters, though, is the route to this conclusion. In the

Leibnizian case, Stein, as we have seen, takes the argument to start from a structure with

certain expressive resources, and draws a conclusion about what sort of dynamics one can

have. Earman, meanwhile, takes the argument to start from a structure that presupposes

“substantivalism” and concludes that substantivalism is incompatible with determinism (of

any sort) in Leibnizian space-time—and thus, to avoid the dismal conclusion, one must

modify Leibnizian space-time by moving to some other structure, such as Leibniz algebras.

This latter version of the argument looks strikingly similar to the starting and ending

points of the hole argument, as presented, for instance, in (Earman, 1986b, pp. 234–9),

(Earman, 1989b, Ch. 9), or even (Earman and Norton, 1987). There, too, one begins with

cannot make sense of fields as distributions of properties (because those properties are, apparently, properties
of space-time regions). Earman (1986b, note 20) describes Field’s arguments as “the most interesting and
sustained defense of space-time substantivalism to be found in the modern philosophical literature”.

30In this sense, then, calling the second view the “Earmanian view” is unfair—though it does reflect what
Earman takes to be the “default” position.
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a structure (M,O1, O2, . . .) that is taken to presuppose “substantivalism” and, by consid-

ering the action of diffeomorphisms from M to itself, one concludes that substantivalism is

incompatible with determinism (of any sort) in a relativistic space-time—unless one modi-

fies the formalism of general relativity. In (Earman, 1986b) and (Earman, 1989b), Earman

goes on to propose moving to Einstein algebras as a suitable modification, though he also

takes it that “forming equivalence classes” under isometry would capture the same idea.

The important point is that Earman understands the hole argument just as he understood

the Steinian argument: it shows that there is an inadequacy in the standard formalism of

general relativity that arises from the apparent substantivalist commitments of that formal-

ism. It is an argument that Earman takes to reveal that general relativity exhibits “excess

structure”.31

Stein never published his reaction to the hole argument. But by studying his understand-

ing of his argument in Leibnizian space-time, one can extract a different view of what the

hole argument accomplishes.32 It begins with a structure with certain expressive resources—

those of a Lorentz-signature metric on a manifold—and it concludes that the only facts that

can be determined by a dynamics set in that structure are those that are preserved by isom-

etry. This payoff is somewhat different from in the Leibnizian space-time case, because one

can express partial differential equations, using the covariant derivative operator determined

by the metric, in a relativistic space-time. But it does show that the notion of “initial value

formulation” one should expect to get in general relativity will be somewhat different from

31In fact, Earman refers to the “space-time points” of the manifold as “descriptive fluff” (Earman, 1989b,
p. 170)—an expression he famously repeats in his oft-quoted critique of textbook presentations of the
Higgs mechanism: “neither mass nor any other genuine attribute can be gained by eating descriptive fluff”
(Earman, 2004, p. 190). This suggests an understanding of the manifold as strongly analogous to “gauge
structure”, as in electromagnetism. See Weatherall (2016c) and Bradley et al. (2019) for discussions of the
sense in which this sort of “structure” is “excess”, along with further arguments that general relativity does
not have excess structure in the sense that some formulations of electromagnetism do.

32Some (weak) evidence that Stein would not think of the hole argument as bearing on “substantivalism”:
“You [Grümbaum] tend to think of the world in terms of “things”—“primary substances,” in Aristotle’s
sense. I do not: I tend, rather, to think ... of “structures” and “aspects of structure” (Stein, 1977a, 395).
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classical treatments of symmetric hyperbolic systems of partial differential equations: in

particular, we can expect unique solutions only up to isometry. This is an important, even

deep, conclusion about the character of differential equations in general relativity—and one

that arguably has still not been fully understood. But it is a different moral from the one

Earman draws.

So it seems we have two different ways of understanding the hole argument, just as with

Stein’s argument. One is about substantivalism and excess structure; the other is about

the character of dynamics and differential equations. That these two understandings are

distinct, and both were present in the literature, in some form, in the 1970s, is the principal

moral I hope to draw from this discussion.

That said, it is worthwhile to reflect on which of these understandings is to be preferred.

I think Earman’s understanding has dominated the subsequent literature. But there are

several considerations to recommend what I have reconstructed as a “Steinian” attitude

towards the hole argument (with some unfairness, as Stein never expressed this view). One

is that Earman’s proposal for how to amend the formalism of general relativity in response to

the hole argument, by introducing Einstein algebras, signals a problem with the idea that the

hole argument reveals that the standard formalism has “excess structure”. This is because

in fact there is a strong sense in which Einstein algebras and relativistic space-times are

equivalent with regard to how much structure they have: the category of relativistic space-

times is dual to the category of Einstein algebras (Rosenstock et al., 2015).33 This result

captures the sense in which every Einstein algebra is associated with a relativistic space-time,

unique up to isometry, and vice versa; but it also captures a sense in which every isometry

of relativistic space-times, including those that are used in the hole argument, corresponds

uniquely to an isomorphism of Einstein algebras.

33For discussions of this criterion of equivalence of structure, see Barrett (2018) and Weatherall (2016a,c,
2018b).
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This latter fact, which Earman himself seems to have recognized (though perhaps not

fully appreciated), was the basis of a classic argument by Rynasiewicz (1992) that Einstein

algebras could not accomplish what Earman hoped. The reason, however, is not that Ein-

stein algebras, too, have excess structure.34 Rather, it is that the “excess structure” of

relativistic space-times was a chimera, arising because one took manifolds to include struc-

ture that is not preserved by diffeomorphism. To think otherwise is to mistake the structure

that mathematicians intend by “manifold”—a structure that is explicitly defined only up to

diffeomorphism—for something with further expressive resources.35

As I argue in Weatherall (2016b), that manifolds do not have these resources is not by

itself an argument against substantivalism. After all, one could introduce a new structure,

above and beyond manifolds, that would permit one to represent the further facts about

where events occur that the substantivalist wants to accept. Following Stachel (1993),

one possible structure would be a manifold endowed with a smooth individuating field—

essentially, a field of “labels” distinguishing points. The fact that one need not invoke

such structure in working with general relativity does not imply that it is not instantiated

by the world. But the crucial point is that in order to express the substantivalist’s facts,

one must add structure to the standard formalism of general relativity, which stands in

marked contrast to Earman’s conclusion that the hole argument reveals that one must remove

structure from the standard formalism in order to avoid commitment to these substantival

facts.

34For Earman’s reservations on this point, see Earman (1986b, p. 239) and Earman (1989b, p. 193), where
he observes that one gets a proliferation of isomorphic Einstein algebras corresponding to diffeomorphic
manifolds. He takes this to show that Einstein algebras may remove substantivalist commitments from
space-time models, but only to the “first degree”; there is some higher-order sense, which he does not
elaborate, in which Einstein algebras should still be seen as substantivalist. What Rynasiewicz (1992) adds
to this are the twin observations that one can recover “points” from Einstein algebras as certain maximal
ideals; and that the diffeomorphisms used in the hole argument give rise to isomorphism of Einstein algebras
whose action on these ideals corresponds to the action of the diffeomorphisms on points.

35As an aside, this perspective makes sense of Einstein’s claim about manifolds being structural qualities
of fields: a manifold is “nothing but” a means of characterizing a space of possible field configurations. It
also provides a hint at how to solve Field’s dilemma about fields (Field, 1984).
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From this perspective, the hole argument can be recast as, once again, an argument

against substantivalism. This is because the hole argument shows that the person who

endorses this “label” structure as representing true but unobservable facts about the world

apparently is committed to a certain kind of indeterminism.36 This might be good reason

to reject the substantivalist’s label structure. But doing so does not necessitate moving to

some new, weaker structure for representing space-time; to the contrary, it recommends a

retreat to precisely what we started with.
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