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Abstract. This paper poses a challenge to Schurz’s proposed meta-inductive

justification of induction. It is argued that Schurz’s argument requires a notion
of optimality that can deal with an expanding pool of prediction strategies.

1. Introduction

Schurz (2008; 2009; most recently, 2018; 20xx) proposes a justification of in-
duction based on meta-induction, induction at the level of competing methods of
inference. The argument proceeds in two steps. First, there is the analytical jus-
tification of meta-inductive strategies in the setting of sequential prediction. This
consists in mathematical results on these strategies’ optimality, as established in
the machine learning branch of prediction with expert advice (see Cesa-Bianchi and
Lugosi, 2006; Vovk, 2001). Second, there is the empirical observation that object-
induction, induction at the level of events, has been most successful so far. Hence,
the argument goes, the optimal meta-inductive strategy favors the object-inductive
strategy, thus justifying it.

Schurz’s proposal is a refinement of Reichenbach’s attempted pragmatic justifi-
cation or vindication of induction (see Salmon, 1967, 52ff, 85ff). The fundamental
idea underlying both is that the aim for reliability, guaranteed success, may be
replaced for optimality, guaranteed success whenever some method would be suc-
cessful. This weaker aim is still reasonable, because the cases in which no method
can be successful are in an obvious sense not so interesting—in those cases there is
simply nothing we could do. And, importantly, this weaker aim looks more feasi-
ble: while it appears impossible to design a single inductive method that can take
into account everything nature could possibly do (this is in a sense the original
problem of induction, see Howson, 2000), it looks more feasible to design a single
method that tracks what we could possibly do. Thus Schurz (2018, 3895) proclaims
that “optimality justifications constitute new foundations for foundation-oriented
epistemology.”

The obvious qualm is whether the aim of a truly general optimality is really more
feasible. This qualm finds a sharp expression in the question what class of methods
we should actually require optimality for. In this paper, I investigate this question
within the context of Schurz’s argument. My conclusion will be that the argument
needs an optimality that covers expanding pools of strategies, which suggests that
things may not be easier, after all.

The plan of the paper is as follows. First, I will briefly describe the presupposed
framework of sequential prediction (sect. 2) and the structure of Schurz’s argument
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(sect. 3). (This is based on a much more detailed reconstruction of the argument
elsewhere, Sterkenburg, 20xx.) In order to constitute an actual justification for
object-induction, the conclusion of the argument also needs us to accept that the
optimality of the meta-inductive strategy amounts to a justification for it. The
question whether this is really so then prompts us to have a closer look at the pool
of prediction strategies assumed.

I start with the objection due to Arnold (2010) that the optimality results that
Schurz relies on are restricted to finite pools of strategies (sect. 4). I point out why
Schurz’s argument, to go through at all, must presuppose a finite pool; but I argue
that it does not need an infinite pool to yield the desired justification: it only needs
optimality relative to the (necessarily finitely many) actually proposed alternatives.
However, I then argue (sect. 5) that this does involve something more: it needs a
notion of optimality that is robust against new strategies being proposed over time.

2. The framework of prediction

2.1. The framework of sequential prediction. We define a prediction game
as a triple (yyyω,Π, `) of a history yyyω, a pool Π of prediction strategies, and a loss
function `.

A history yyyω is an infinite sequence of events. Events are identified with values
in some set Val of possible values. Write yn for the n-th element of yyyω, or the event
in round n of the game (n ∈ N>0).

Predictions are elements in some set Valpred. A prediction strategy P , an element
of the pool Π, specifies in each round n a prediction predn(P ) about the next event.

In this paper, I will restrict attention to the central class of probabilistic prediction
games. In these games we assume binary events, Val = {0, 1}, and predictions that
are probabilities (for the next event being 1, say), Valpred = [0, 1].

Strategy P , when making prediction predn(P ) = pred ∈ Valpred for round n,
suffers, when the outcome is revealed to be yn ∈ Val, a certain loss `(pred, yn).
That is, a loss function ` : Valpred×Val→ [0,∞) quantifies how much a prediction
was off in light of the actual outcome.

A basic example is the absolute loss function, defined by `abs(pred, y) = |pred−y|.
Another loss function, prominent, among other things, for its strong connection to
Bayesian prediction (sect. 3.1 below), is the logarithmic or log-loss function defined
by

`log(pred, y) =

{
− ln(1− pred) if y = 0

− ln pred if y = 1
.

For given loss function, the cumulative loss of P by the conclusion of round n
is the sum Lossn(P ) :=

∑n
i=1 `(predn(P ), yn). The loss rate lossn(P ) of P by n is

the average Lossn(P )/n of its losses up to n.

2.2. The goal: an optimal strategy. Given a pool Π of prediction strategies, we
aim to design a meta-inductive strategy MI that, having access to the predictions
of all the other strategies, predicts in such a way that it is optimal with respect to
Π. That is, by following MI we will always do about as good as, in hindsight, we
possibly could have done—given that the strategies in Π represent what we could
have done. Here ‘always’ means: on every single history of events.

What it means for a meta-inductive strategy to be ‘about as successful’ as any
other strategy we make precise in terms of the divergence between MI’s loss rate
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and the quantity minlossn := minP∈Π∪{MI} lossn(P ), the minimum loss rate among
all the strategies (including MI itself) by round n. Specifically, we seek a function f ,
that depends on n and inevitably also on the size K := |Π| of the pool of strategies,
such that for all rounds n,

(1) lossn(wMI) ≤ minlossn + f(n,K).

A minimal requirement is that f is such that it entails long-run convergence,

(2) lim
n→∞

(lossn(MI)−minlossn) = 0,

for which it at least needs to be decreasing in n. But as we will see below, there
actually exist prediction algorithms that achieve bounds (1) for f that decrease in
n at a very fast rate, giving strong short-run guarantees.

3. The argument

3.1. Step one: the analytical optimality of meta-induction. A general type
of meta-inductive strategy is the weighted-average strategy waMI, specified by

(3) predn+1(waMI) :=
∑
P∈Π

wn(P ) · predn+1(P ).

Here the weight function wn assigns a weight to each strategy P based on its past
success.

An important example of a weighted-average strategy in the probabilistic binary
prediction game, for the particular choice of the log-loss function, is the Bayesian
strategy BayMI, that updates its weights via Bayes’s rule. It is given by

(4) wn(P ) =
w0(P ) · exp(−Lossn(P ))

Z
,

with normalization term Z =
∑

P∈Π w0(P )·exp(−Lossn(P )). Here w0 is some prior
probability assignment or initial weight function over Π. With a uniform initial
weight assignment, where w0(P ) = 1/K for each P ∈ Π, assignment (5) simplifies
to

(5) wn(P ) =
exp(−Loss(P ))

Z
,

so that the weights depend on the strategies’ performance only.
Now one can derive that BayMI, for the log-loss function, satisfies, for each

P ∈ Π,

(6) Lossn(BayMI) ≤ − lnw0(P ) + Lossn(P ).

Choosing again a uniform w0, this translates in the short-run optimality bound

(7) lossn(BayMI) ≤ minlossn +
lnK

n
.

That is, for this game we can achieve bound (1) with f of order 1/n. What is more,
it turns out to be possible, for a wider class of loss functions, to design strategies
that explicitly mimic the Bayesian strategy for the log-loss function, for these loss
functions, in order to achieve a similar bound. Thus for these so-called mixable loss
functions, which include the quadratic loss function, there also exist meta-inductive
strategies with bounds of order 1/n. These are the strongest possible bounds for any
game; but for an even wider class of loss functions, that also includes the absolute
loss function, it is still possible to define meta-inductive strategies—specifically,
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exponentially-weighted strategies that can also be seen as generalizations of the
Bayesian strategy—with bounds of order 1/

√
n.

Taking stock, we have that for a wide class of games there exist meta-inductive
strategies that are optimal in a very strong sense. Moreover, these optimal strategies
predict by combining weighted predictions of all the other strategies in the pool,
where the weights depend on these strategies’ attractiveness or past performance—
and in the case of uniform weights, on their past performance only. In particular,
the strategy in the pool that so far has been performing best receives the largest
weight: it is in that sense that we say that the meta-inductive strategy favors the
most successful strategies so far. Thus the first step of Schurz’s argument is that

(A)
The meta-inductive strategy MI, that at each point in time favors strate-
gies to the extent of their relative success so far, is an optimal method.

3.2. Step two: the empirical success of object-induction. The second step
is the empirical observation that “so far object-induction has turned out to be the
most successful prediction strategy” (Schurz, 2008, 304).

In (20xx), I argued that the relevant perspective here is to view the object-
inductive or scientific method as competing with a number of alternative nonscientific
methods. Importantly, for Schurz’s argument it is not necessary to further specify
what this scientific method actually consists in, the notorious problem of descrip-
tion (see, e.g., Lipton, 2004). It is enough to recognize that there is something
like the scientific procedure, that we wish to find justification for; and, plausibly,
that its predictions have been highly successful so far, at least more successful than
those of nonscientific alternatives. Thus the second step of Schurz’s argument is
that

(E)

As a matter of empirical fact, the object-inductive strategy OI, that
we identify with the scientific method (and that we imagine to be in
competition with various proposed nonscientific methods), has been, at
this point in time, the most successful prediction strategy (among the
pool Π of all of these competing strategies).

3.3. Conclusion: meta-induction favors object-induction. From (A) and (E)
it follows that

(C)
The meta-inductive strategy MI for the pool Π of OI and its nonscientific
competing strategies, an optimal strategy for Π, favors most, at this
point in time, the object-inductive strategy OI.

In (20xx), I noted that, for (C) to yield the desired justification of OI, we also
need to say that an optimal strategy favoring OI actually amounts to a justifica-
tion for it. The discussion of this step brings out an important limitation of the
argument: it cannot provide a justification for the object-inductive strategy (for
always sticking with object-induction), but at best—though this would still be an
important result—a justification for sticking with the object-inductive prediction
for now (thus allowing for the possibility that in the more distant future it will no
longer be a good strategy to follow).

Furthermore (ibid.), I noted that we would also still need to argue that the
optimality of the meta-inductive strategy actually amounts to a justification for
following it. I allowed that the notion of optimality is sufficiently strong that it
does—given that the pool of strategies is appropriate, a proper rendition of all we
could possibly do. We will now investigate whether this is truly so.
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4. The restriction to a finite pool

Arnold (2010) points out that the analytical justification of meta-induction does
not extend to pools of infinitely many strategies, and suggests that this is a problem
for Schurz’s proposal.

4.1. The impossibility result. Arnold’s observation, his impossibility theorem 3
(ibid., 589), comes down to the following. For every strategy MI we might propose,
nature can construct an adversarial history that makes it fail maximally: in each
round, it can choose y = 0 precisely if our strategy’s pred > 0.5. Then our strategy’s
total loss grows linearly, and its loss rate lossn(MI) never goes to 0. However, for
a rich enough infinite pool of strategies, say a pool that includes all computable
strategies, there exists for every finite history (including every finite initial segment
of the adversarial history we are constructing), some strategy that has managed to
predict this history perfectly. That is, minlossn = 0 for every round n. Hence our
strategy’s loss rate does not converge to the best strategy’s.

This shows that optimality is impossible to achieve in the general case of infinite
pools of strategies: at least for sufficiently rich such pools, we can for any given
strategy construct a history that refutes its optimality.

4.2. Universal but non-uniform optimality. Arnold writes (ibid., 592, empha-
sis mine), “If only a finite number of prediction strategies are taken into account,
then we exclude the overwhelming majority of possible prediction strategies from
the game right from the beginning.” Arnold’s suggestion that Schurz’s argument
needs a notion of optimality relative to infinite pools of strategies thus appears
to be motivated by a more definite demand: the argument would need a notion
of optimality relative to the infinite pool of all possible strategies. The argument
would need an optimality that is no longer relative but truly universal.

The general move from reliability to optimality actually makes universality look
genuinely more feasible. Namely, it seems reasonable to “take into consideration
only those prediction strategies that can be described by an algorithm” (ibid.; see
Sterkenburg, 2018 for more details). While there seems little justification for limit-
ing possible histories to computable sequences of events, it does seem reasonable to
limit the methods of prediction we could possibly devise to the computable ones.
Rather than the continuum of all possible histories, we then only need to consider
the vastly more restricted pool of computable prediction strategies.

Of course, this is also still a countably infinite number, and so optimality in the
original sense is ruled out by the impossiblity result above. However, we can still
attain a weaker, non-uniform optimality for countably infinite pools.

Consider again the Bayesian strategy in the log-loss game, and the bound (6)
on its cumulative loss: notably, this bound holds just as well for an initial weight
assignment over a countably infinite pool of strategies. Thus even in case of an
infinite pool Π, we can still derive, parallel to (7), that for every strategy P ∈ Π,
for all n,

(8) lossn(BayMI)− lossn(P ) ≤ − lnw0(P )

n
,

so that in particular, for all P ∈ Π,

(9) lim
n→∞

(lossn(BayMI)− lossn(P )) ≤ 0.
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The crux here is that (8) depends on the given predictor, specifically, on the
initial weight w0(P ) assigned to it. Now in case of only a finite number of strategies,
it is possible to uniformly assign each the same initial weight, and we can derive
a uniform bound (1), and consequently uniform convergence (2). But in case of
an infinite number of strategies, this is obviously impossible: we are forced to give
some non-uniform initial weight assignment. Consequently, the convergence (9) is
non-uniform: we are not guaranteed to eventually match the success of all strategies
in the pool, at the same time. We are guaranteed, for any given strategy in Π, to
eventually match the success of this strategy, but by the time we do other strategies
might always still be way ahead of us; this is the reason why this bound is consistent
with the impossibility result of sect. 4.1 above.

But it is still something—given a pool Π, and in the absence of stronger guaran-
tees, one can argue there is some justification for sticking to a non-uniformly optimal
strategy, for sticking to a strategy that is guaranteed for any selected strategy from
Π to eventually match this strategy’s success. Granted this, there is certainly some
justification for sticking to a strategy that is guaranteed for any possible strategy to
eventually match this strategy’s success—for a universally non-uniformly optimal
strategy.

Now if we identify all possible strategies with the computable ones, then the
Bayesian strategy over all computable strategies, that is non-uniformly optimal
relative to all computable strategies, would be universally non-uniformly optimal.
Could this then be a strategy that meets Arnold’s demand?

Unfortunately, it cannot, and the reason is that this Bayesian meta-inductive
strategy is no longer computable itself. This follows from a diagonal argument
that goes back to Putnam (1963), an impossibility argument that is actually very
similar to that of sect. 4.1 above. What it means is that, on our earlier restriction
of the possible strategies to the computable ones, the candidate optimal strategy
is actually no longer a proper strategy; nor is any optimal strategy for the pool
of computable strategies. This quandary holds with great generality: it is not
restricted to the log-loss function, and we cannot escape it by looking for weaker
computability constraints (Sterkenburg, 2018). Thus Arnold’s demand is, indeed,
unrealizable, even on a weaker notion of non-uniform optimality: there cannot be
a universally optimal prediction strategy.

4.3. Infinite pools in Schurz’s argument. On reading Arnold’s presentation,
one gets the impression that Schurz’s proposed justification of induction boils down
to the description of an optimal strategy. In contrast to “[m]ost of the proposed
solutions to the problem of induction [that] tried to prove the reliability of the in-
ductive procedure,” he writes, “Schurz, following Reichenbach, merely tries to show
the optimality of a specific inductive strategy” (2010, 585). With the understanding
that this must be universal optimality, such a project, we just discussed, is indeed
doomed to fail.

But Schurz’s actual argument is more subtle than that. As explained in sect. 3
above, the argument seeks to justify object-induction, a strategy that is presumably
not optimal itself. The meta-inductive strategy, optimal relative to all of OI’s
competitors, only comes in to confer justification to OI. Now even if one insists
that OI’s competitors are all possible strategies, things might still look better for
Schurz’s actual argument—perhaps, for instance, it is not so important here that a
universally optimal strategy cannot actually be a proper (i.e., computable) strategy
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itself? But we can save ourselves the trouble of going into this: unfortunately, there
is a more direct reason why the pool of competitors must be finite, for Schurz’s
actual argument to work.

To see this, we return to the observation in sect. 4.2 above that the optimality
bound (7), and in general a bound (3) for any meta-inductive strategy, must involve
an initial weight assignment w0. It is only with a uniform prior, which is only
possible for a finite pool, that the initial weights all cancel out and P ’s weights
in later rounds depend on its success only. Thus for a countably infinite pool of
strategies, a meta-inductive strategy must express some prior preference for some
strategies above others, that works through in the posterior weights.

But this is devastating to Schurz’s argument. Conclusion (C) follows from step
(E) if the optimal strategy at this point in time favors the most successful strategy,
OI. In case of a finite pool of strategies, where the weights are only determined by
the success, it does. But in case of an infinite pool, the meta-inductive strategy
only favors OI at this point of time if it assigned strategy OI a sufficiently high
initial weight. The meta-inductivist will not favor OI, even if OI has been the most
successful strategy, if it assigned OI too low an initial weight (and conversely, it
would favor OI, even if OI had not been successful at all, if this were compensated
by a high enough initial weight). In short, the meta-inductive justification of object-
induction would have to presuposse a sufficiently strong prior preference for object-
induction, and this would render it an obviously circular argument.

4.4. The finite pool of actually proposed alternatives. Thus in the end
Arnold is right to worry that Schurz’s argument is not compatible with an infi-
nite pool of competing strategies: indeed it is not. This leads us to “the philo-
sophical question whether an optimality result demonstrated for a finite number of
prediction strategies might suffice to answer the problem of induction” (ibid., 585).

Schurz writes, “I make the realistic assumption that [the meta-inductive strategy]
has finite computational means, whence I restrict my investigation to prediction
games with finitely many strategies” (2009, 206; also see 2008, 284). More precisely,
Schurz (2018, 3891) offers in defense of the limitation to finite pools an

Argument from cognitive finiteness: Epistemic subjects are assumed to
be finite beings. Finite beings can simultaneously access (and compare)
only finitely many methods of finite complexity. Therefore the opti-
mality justification of meta-induction is not affected by the finiteness
restriction.

The second statement is not strictly true, though, and anyway does not entail
the desired conclusion. It is not strictly true, because finite computational means
are consistent with weighing over an infinite enumeration of strategies. (We can
plausibly only give probabilistic—real-valued—predictions up to some finite accu-
racy, and since we also have to give decreasing weights to the strategies in the
enumeration, there are in each round only finitely many strategies that can have
an impact; yet this is different from stipulating a finite pool from the start.) But
more importantly, as Arnold noted already, the observation that a meta-inductive
strategy can only deal with finitely many strategies falls short of a justification
for this restriction: in itself, this “merely amounts to admitting that under this
‘realistic assumption’ [the meta-inductive strategy] simply cannot always perform
optimally” (2010, 592).
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Arnold continues, “[a]s there is no logical contradiction involved in the assump-
tion of an infinite number of alternative strategies, the only grounds on which it
could be defended are empirical” (ibid.). These are exactly the grounds, I will now
argue, on which it can be defended, in the context of Schurz’s actual argument.

Again, Schurz’s argument is not to identify a universally optimal strategy, op-
timal among the infinity of all possible strategies; it is to justify object-induction,
from the empirical observation (E) that object-induction has been most successful
so far. Most successful among what? Certainly not among all possible strategies—
we can probably conceive, in hindsight, of strategies that would have been more
successful still. No: object-induction has been most successful, so far, among all
actually proposed alternative strategies. The relevant empirical observation (E) is
that object-induction has been most successful among the various actually proposed
nonscientific strategies—of necessity a finite number of strategies.

It is in this sense that Schurz (2018, 3891) is surely right when he, after his
initial and unconvincing defense, adds that “[i]n any case, the problem of choosing
among finitely many competing methods captures the most important part of the
induction problem.” Now the problem is to give a good reason for sticking to OI,
rather than turning to one of its contestant strategies; and the hope, again, is to
derive such a noncircular reason with the help of the optimality of a meta-inductive
strategy, that by (E) favors it. But then it seems enough to have an optimality
relative to this same pool of all actually proposed strategies. The pool of all actually
proposed strategies seems to properly represent all we could have done, and so an
optimal strategy for this pool would be justified.

Unfortunately, there is still a crucial sense in which this optimality falls short of
including all we could have done.

5. The restriction to a fixed pool

The basic intuition, again, behind the optimality of the meta-inductivist over
the pool of all proposed strategies, is the one going back to Reichenbach: for every
possible history, and for every alternative strategy proposed, if this strategy is
successful, the meta-inductivist will mimic it and be successful, too. Thus Schurz
(2008, 304) concludes by once more evoking this intuition to answer the obvious
skeptical reservation: “how can it ever be possible to prove that a strategy is
optimal with respect to every other accessible strategy in every possible world—
without assuming anything about the nature of alternative strategies and possible
worlds?” To understand how this is possible, Schurz answers, one should note
that “meta-induction has an unlimited learning ability: whenever this strategy is
confronted with a so far better method, it will learn from it and reproduce its
success” (2018, 3892).

There is, however, a clear sense in which this is not true: namely, when the
meta-inductivist is confronted with a new strategy.

5.1. The expanding pool of actually proposed alternatives. A meta-inductivist
can be optimal for a finite pool of strategies, like the finite pool of actually proposed
strategies, but, crucially, we need to assume that this pool is fixed. Yet it is only
plausible that the pool of actually proposed strategies will expand in the course
of time: informed by the actual history of events, brand new strategies may be
proposed.
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The meta-inductive strategies we have been considering cannot guarantee opti-
mality with respect to new strategies—simply because they do not allow for dy-
namically incorporating new strategies in their pool. Imagine that we fix the pool
of strategies that have been proposed by this time in history, and design and fol-
low a meta-inductive strategy that is optimal relative to this pool. But in the
future a new strategy might be proposed, and this strategy might continue to be
forever much more successful than all the original strategies—and hence than our
meta-inductive strategy. This means that our meta-inductive strategy is no longer
optimal in the sense of being as good as we can possibly be: surely we could have
followed the new and much more successful strategy instead.

5.2. Truly analytical optimality. Is this really a problem for Schurz’s argument,
though? Was the goal, specified above, not to justify following object-induction
among the alternative strategies we have now?

Yes, this is still the goal, and the relevant empirical fact (E) is still that object-
induction has been most successful among the alternatives we have now. However,
I now claim, the analytical step (A), to be truly analytical, must involve a notion
of optimality that is robust against all possible empirical circumstances: against
all possible histories of events, but also against all possible evolutions of the pool of
strategies.

Again, the crucial component of analytical optimality is that it covers every
possible history: it should not and does not depend on the contingent fact of the
actual history of events we have seen occur. But likewise, it should not depend on
the contingent fact of the actual alternative strategies that we have seen proposed.
This does not mean that we must demand optimality relative to all possible finite
pools of alternative strategies at the same time (this would be Arnold’s infeasible
demand of optimality relative to all possible strategies); but it does mean that we
must demand optimality relative to all possible expanding pools, or histories of finite
pools.

Otherwise, the meta-inductive method is simply not optimal in the sense of ana-
lytically the best we could do. The meta-inductive method that we fix at this point
of time, relative to the current pool of alternative strategies, was not guaranteed to
be optimal: it might not have been if other, better, strategies had been proposed
in the past. And it might still fail to be, if other, better, strategies are proposed
in the future. As such, it is not a strategy one is justified to follow without any
empirical assumptions, and it cannot fulfill the analytical role required for Schurz’s
argument.

5.3. Dynamic optimality. What are the prospects for the design of a ‘dynamic’
meta-inductive strategy that is optimal in the above sense?

Such a strategy must allow for dynamically adding new strategies to its pool as
they appear, while somehow preserving optimality guarantees with respect to all
the available strategies in each round. There are some choices to be made here,
starting with a suitable standard of optimality.

It appears too strict, for instance, to demand that the meta-inductivist keep its
loss rate low with respect to new strategies on past data: it cannot, of course, guard
itself against new strategies that simply fit their past predictions to the past data
and thereby can claim to have a perfect score. This demand indeed goes beyond
a notion of optimality as the best we could do, since we could only have followed
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a strategy from the moment it is actually available. On the other hand, it also
appears infeasible to first measure the success of a new strategy from the moment
it comes in. As an extreme scenario: in each round a new strategy appears that
makes an initial perfect prediction and then stops predicting well; now after each
round the best strategy again has a perfect score while the meta-inductivist has
not necessarily been doing very well.

So perhaps we need to argue for a middle way, where new strategies are assigned
some ‘virtual’ loss for the rounds where they were not yet participating. This is
indeed an approach taken in the literature that comes closest to our problem, the
framework of ‘specialists,’ experts that are in each round allowed to ‘sleep’ and
refrain from making predictions (Freund et al., 1997). The ‘abstention trick’ due to
Chernov and Vovk (2009) advocates the assignment to asleep strategies of the same
predictions as the meta-inductivist; using this trick Mourtada and Maillard (2017)
derive bounds for the specific case of growing expert pools. However, it remains to
be argued that these results are truly applicable to the current context: that they
can still support both the analytical and the empirical step of the argument. I will
leave this here at this briefest of sketches, and suggest further investigation as a
challenge for Schurz’s research programme.

6. Conclusion

I identified as a challenge for Schurz’s proposed meta-inductive justification of
induction the need for a notion of optimality that is robust against newly proposed
prediction strategies. Notably, this challenge finds a parallel in the problem of new
theory in the traditional Bayesian framework (Earman, 1992, 195ff; Gillies, 2001).
This suggests that the aims of reliability and of optimality are confronted with
much the same structural difficulties, and that, unless this challenge can indeed be
met, a shift of focus to optimality might not be such an effective means of avoiding
foundational problems as Schurz advocates.
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