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Abstract

Many philosophers have claimed that Bayesianism can provide a
simple justification for hypothetico-deductive (H-D) inference, long
regarded as a cornerstone of the scientific method. Following up a
remark of van Fraassen (1985), we analyze a problem for the puta-
tive Bayesian justification of H-D inference in the case where what we
learn from observation is logically stronger than what our theory im-
plies. Firstly, we demonstrate that in such cases the simple Bayesian
justification does not necessarily apply. Secondly, we identify a set of
sufficient conditions for the mismatch in logical strength to be justi-
fiably ignored as a “harmless idealization”. Thirdly, we argue, based
upon scientific examples, that the pattern of H-D inference of which
there is a ready Bayesian justification is only rarely the pattern that
one actually finds at work in science. Whatever the other virtues of
Bayesianism, the idea that it yields a simple justification of a pervasive
pattern of scientific inference appears to have been oversold.
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1 Introduction

A venerable tradition in the philosophy of science offers the following
schematic description of the scientific method. Scientists propose a theory
about the world; they deduce testable empirical predictions from the theory;
they then perform observations or do experiments to see if the predictions are
true or false; if they are false then the theory is rejected, while if they are true
then the theory is confirmed or supported, at least to some extent. This of
course is the famous “hypothetico-deductive method” (H-D method), or the
“method of hypothesis” as it was called in previous centuries; its advocates
include Whewell, Hempel and Reichenbach to name but a few.

All parties agree that this schema is an oversimplification for a number
of reasons. Auxiliary hypotheses are usually needed to link theory with
empirical data; even then the link may not literally be deductive; theories
are rarely abandoned on the basis of a single false prediction; and some true
predictions seem to have greater confirmatory value than others. So clearly
there is more to be said; but even so, the H-D schema is still widely thought to
capture a key part of the scientific method. For there are numerous scientific
examples which the schema appears to fit (e.g. in classical astronomy) and
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many contemporary scientists claim to employ the H-D method in their work.
Even Glymour (1980), a staunch critic of hypothetico-deductivism, admits
that it is “obviously the correct account of a great deal of the history of
science” (p.48).1

The most controversial aspect of the H-D method concerns the inference
from a correct empirical prediction to the truth of the theory from which the
prediction was derived, which we call “H-D inference”. From the viewpoint
of deductive logic, H-D inference is of course fallacious; as Salmon (1967)
stressed, it is the fallacy of affirming the consequent. So if it is true that
scientists often employ H-D inference, or something like it, the question im-
mediately arises whether this is rationally justified. Is it ever rational to take
true predictions to confirm a theory, and if so then when, and why? This is
a classic question in the philosophy of science, that continues to be discussed
today.

Our concern here is with an argument frequently made by philosophers
of science of the Bayesian persuasion. They argue that Bayesianism yields
an immediate justification of H-D inference. The putative justification de-
rives from a simple point about probability. If theory T implies testable
consequence e, i.e. T ⇒ e, then for any probability function P such that
0 < P (T ), P (E) < 1, it follows that P (T | e) > P (T ). Therefore, if a scien-
tist’s initial (subjective) probability for T lies strictly between 0 and 1, and
similarly for e, then upon learning that e is true and updating by condition-
alization, they will necessarily become more confident in T . Thus it appears
that the core H-D idea – taking correct empirical predictions to confirm a
theory – admits of an immediate Bayesian rationale, for it follows from the
core Bayesian principle that one should update one’s subjective probabilities
by conditionalization.

This argument appears repeatedly in the Bayesian literature, often being
adduced as a point in favour of the Bayesian approach to confirmation over
its rivals. Thus Earman (1992) says that an important “success story” of
the Bayesian approach is that it can “explain why. . . hypothetico-deductive
evidence is confirmatory” (p.233). Howson and Urbach (2006) say that a

1The H-D schema has been heavily criticized, on the grounds that a deductive link
between theory and empirical data is neither necessary nor sufficient for the data to confirm
a theory. However, that the H-D schema does not yield a complete analysis of confirmation
is compatible with its being a central part of the scientific method. We share the view
of a number of recent authors, including Gemes (2005), Sprenger (2011) and Betz (2013),
that the H-D schema is right in important respects, despite the traditional objections.
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“characteristic pattern of scientific inference occurs when a logical conse-
quence of a theory is shown to be true and the theory then regarded as
confirmed”. They continue: “Bayes’ theorem shows why and under what
circumstances a theory is confirmed by its consequence” (p.93-4). In a simi-
lar vein, Salmon (2001) says that Bayesianism identifies “the grain of truth
in the H-D method” (p.70); while Talbott (2008) says that “one of the most
important sources of support for Bayesian confirmation theory is that it can
explain the role of hypothetico-deductive explanation in confirmation”. Fi-
nally, Strevens (2017) says that the Bayesian approach “reproduces the cen-
tral principle of hypothetico-deductivism and – what H-D never does – gives
an argument for the principle” (p.31). The list could easily be extended.

Note that all of these authors take for granted that H-D inference is actu-
ally used in science – for otherwise, they would hardly regard it as a point in
favour of Bayesianism that it supplies a rationale for such inference. In this
article, we similarly take for granted that H-D inference, or something like it,
is a central part of the scientific method; our aim is to critically examine the
supposed Bayesian justification of it. In short, we argue that the Bayesian
justification depends on characterizing H-D inference in a particularly sim-
ple way, and this characterization is not true to the actual pattern of H-D
inference that we find in science.

In a brief but insightful discussion, van Fraassen (1985) registers two
objections to the Bayesians’ attempt to justify H-D inference, an attempt
which he describes as “useless” (p.284). The first relates to the familiar
Duhemian point about the need for auxiliaries in prediction.2 If, as Duhem
taught, the logical relation between theory and evidence is not T ⇒ e but
rather T ∧A1 ∧ · · · ∧An ⇒ e, there is no longer any guarantee that learning
e will raise the probability of T . There is an extensive Bayesian literature
on how to deal with this point.3 Many Bayesians try to accommodate the
Duhemian point by supposing that the scientist has a joint prior over theory
and auxiliaries, which, they argue, yields an explanation for why the scientist

2Van Fraassen does not explicitly reference Duhem, but rather observes that the evalu-
ation of whether a hypothesis is confirmed when one of its consequences is verified “cannot
be without reference to background information” (p.243). Strictly speaking, the Duhemian
point is slightly different, namely that a hypothesis will only have testable consequences in
the presence of suitable background information; however this difference does not matter
here.

3See in particular Dorling (1979), Howson and Urbach (2006) pp. 92-102, Earman
(1992) pp. 83-5, and Strevens (2001).
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apportions praise / blame between theory and auxiliaries in the way that
they do. Whether this is a real explanation is moot; but in any case, the
complications raised by the Duhemian point are clearly well-known to those
Bayesians who claim to justify H-D inference.

By contrast, van Fraassen’s second objection is much less well-known. He
himself makes the objection only in passing, and it receives no attention at
all in the recent Bayesian literature. The objection turns on a simple point:
what we learn from observation or experiment will often be logically stronger
than what our theory implies. This point is independent of the Duhemian
point above, so for simplicity we may ignore auxiliaries and suppose that the
logical relation is given by T ⇒ e; equivalently, we may suppose that any
necessary auxiliaries are part of background knowledge. The point is that in
testing the truth of e, what we learn will often be some stronger proposition
e′ such that e′ ⇒ e but e 6⇒ e′. In other words, we do indeed learn that an
empirical consequence of our theory is true, but that is only part of what we
learn.

This mismatch in logical strength between a theory’s testable implica-
tion and what is learned empirically may arise for a number of reasons. For
example, a theory may predict that two variables will be correlated, but ob-
servation reveals a particular degree of correlation. Or a theory may predict
that a physical magnitude will lie in a certain interval, while experiment
shows that it lies in a narrower interval. Or a theory may predict that a
certain phenomenon will occur, while observation reveals that it occurs in
one specific way. These are not mere abstract possibilities, as we shall see.

To illustrate, consider the theory (or hypothesis) that humans share a
more recent common ancestor with chimpanzees than with gorillas. This, to-
gether with standard evolutionary assumptions, implies that humans should
exhibit greater genetic similarities with chimps than with gorillas. Now this
prediction was borne out by DNA sequencing of the three species’ genomes.
However the sequence data revealed a very specific pattern of similarity –
for example, it showed that what differences there are between humans and
chimps are concentrated in a few genomic regions (“human accelerated re-
gions”), which was not predicted (Pollard et al. 2006). Thus what was
learned empirically, from the sequence data, is that a consequence of the
theory is true, but that is only part of what was learned.

This simple logical point complicates the Bayesians’ claim to justify H-D
inference, as van Fraassen rightly saw, and as we explain in detail below. But
its precise significance for that claim needs to be carefully analyzed. That is
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the goal of this paper.
We proceed as follows. In Section 2 we spell out in detail the complication

raised, for the Bayesian justification of H-D inference, by the mismatch in
logical strength between prediction and observation. We illustrate the com-
plication with a toy example then a real example. In section 3, we consider
a possible response on the part of the Bayesian, namely that the mismatch
in logical strength may be ignored as a “harmless idealization”. We show
that although this response fails in the general case, it succeeds under cer-
tain specifiable conditions; however these conditions have limited scope. In
section 4, we turn to examples of successful H-D inference from science. We
begin with the famous case of Semelweiss, originally used by Hempel to il-
lustrate the H-D method, and then discuss three cases from modern particle
physics. We show how the logical mismatch problem arises in these cases.
In section 5, we conclude that the pattern of H-D inference of which there is
a ready Bayesian justification is only rarely the pattern actually at work in
science.

2 The complication

Suppose it is true that in a typical successful test of a theory, what a sci-
entist learns from observation / experiment is logically stronger than what
their theory implies. This has an immediate bearing on the putative Bayesian
justification of H-D inference, presuming that the version of Bayesianism in
question is the standard one, in which updating by conditionalization plays
an essential role.4 To see why, it is crucial to state the conditionalization rule
carefully (as many authors do not). The rule tells an agent how to change
their prior probabilities upon learning new information, where “learning new
information” means that some proposition about which the agent was pre-
viously unsure suddenly gets probability 1. But crucially, this proposition
must be the logically strongest thing that the agent learns. So the condition-
alization rule does not say that if Pt is your probability function at time t and

4There is a purely “synchronic” form of Bayesianism that deals with an agent’s beliefs
at a single point in time, and so has no need for any updating rule. We share Earman’s view
that “Bayesianism without a rule of conditionalization is hamstrung”, as it is too weak to
say anything useful about scientific inference (1992, p.161). Moreover, those philosophers
who claim that there is a Bayesian justification of H-D inference do not appear to have
the conditionalization-free version of Bayesianism in mind.
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you learn e between times t and t + 1, then your new probability function
Pt+1(−) should equal your old conditional probability function Pt(− | e).
Rather, it says that this is how Pt and Pt+1 should relate if e is the logically
strongest proposition that you learn between t and t+ 1.

Importantly, the requirement to conditionalize on the logically strongest
proposition learned is not an optional extra, or a piece of methodological
advice about which there might be a philosophical dispute.5 Rather it is an
integral part of the definition of Bayesian updating. There is good reason
for this, since if an agent attempts to conditionalize on only part of what
they have learned this quickly leads to contradiction. Thus suppose that the
strongest proposition that an agent learns between times t and t + 1 is X,
but instead they try to conditionalize on Y , where X ⇒ Y and Y 6⇒ X. To
reveal the contradiction we need only ask: what is the value of Pt+1(X)? On
the one hand it should equal 1, since the agent has learnt X. But on the other
hand, Pt+1(X) should equal Pt(X | Y ), since the agent has conditionalized on
Y , which yields contradiction except in the special case where Pt(X | Y ) = 1.

With this point clearly in mind, consider again a circumstance where the-
ory T implies testable consequence e but observation reveals that a stronger
proposition e′ is true. Again, we assume that the scientist’s prior proba-
bilities for T , e and e′ lie strictly between zero and one. Now although
P (T | e) > P (T ), we can conclude nothing about whether P (T | e′) is
greater than, less than, or equal to P (T ); all of these are possible. This is
easily seen from Figure 1; we can vary the value of P (T | e′), while keeping
that of P (T ) fixed, simply by moving the position of the set T while keeping
its size fixed, so that the hashed area (T ∧ e′) constitutes a larger or smaller
fraction of the set e′. Therefore when the scientist conditionalizes on what
they learn from observation, there is no guarantee that they will become
more confident in T . Indeed, it is even possible that P (T | e′) = 0, i.e. that
e′ conclusively refutes the theory. (In terms of Figure 1, this would mean
that T and e′ were disjoint.) In short, learning that a theory’s empirical
consequence is true will not automatically lead a Bayesian agent to become
more confident in the theory, unless the truth of the empirical consequence
is the logically strongest thing that they learn.

A variant on an example of Rosenkrantz (1982) illustrates how additional

5For this reason the requirement should not be thought of as a version of the “prin-
ciple of total evidence”; for that principle, as usually construed, is precisely a piece of
methodological advice.
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Figure 1: Logical relations between T , e and e′

information, over and above what a theory implies, can radically change
confirmatory relationships. Five guests are at a dinner party, and each places
their hat on a peg by the door. Consider the “theory” T that each guest will
leave the party with someone else’s hat. A scientist wishes to test this theory,
so stands outside the door and asks each departing guest to check whether
they have inadvertently taken someone else’s hat. Suppose that the scientist
learns that the first four guests have indeed left with someone else’s hat (e).
Since e is a logical consequence of T , learning e confirms T . However suppose
instead that the observer learns the stronger proposition e′, which says that
guest 1 leaves with guest 2’s hat, guest 2 with guest 1’s, guest 3 with guest
4’s, and guest 4 with guest 3’s. Clearly, e′ ⇒ e. But notice that e′ not merely
fails to confirm T but conclusively refutes it (since e′ implies that guest 5
leaves with their own hat). Thus in this case, we have P (T | e) > P (T ) but
P (T | e′) < P (T ), since P (T | e′) = 0.

This is a toy example, but it is not difficult to find real examples with a
similar structure. Consider the famous Michelson-Morley experiment of 1887.
Following Brown (2005), this example can be mapped onto our framework
as follows. Let T be the 1880s ether theory given by the Maxwell-Lorentz
equations for electromagnetism defined in some inertial frame of reference S,
identified as the ether’s rest frame. Let e be a core prediction of T , namely
that relative to S, the two-way light speed in vacuo is constant, in the sense
that it is isotropic, independent of the speed of the source and has the value
c ≈ 3× 108 ms−1. (Brown calls e the “light principle” and quotes Pauli who
called it the “true essence of the old aether point of view”.) Thus we have
that T ⇒ e. What about e′, the experimental finding? According to Brown,
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the null result of the Michelson-Morley experiment, that is, the absence of
interference fringes, has the “obvious implication” that the two-way light
speed in vacuo is constant (in the above sense) in both the ether rest frame
and an approximately inertial frame co-moving with the earth; so we may
identify e′ with this conjunctive statement. We then have e′ ⇒ e and e 6⇒ e′.
Now of course, e′ was regarded by many scientists in the period following
the experiment, including Einstein, as strongly disconfirming theory T , or
even refuting it outright. That is, from the Michelson-Morley experiment,
scientists learned that a prediction of T was true, but that was only part
of what they learned; and the additional information radically changed the
evidential situation.

What about the reverse case, in which the logical mismatch between a
theory’s testable implication (e) and what is learned empirically (e′) is in the
other direction, i.e. e is logically stronger? This occurs, for example, when
a theory predicts that a given physical magnitude has a precise point value
but experiment shows that it lies in an interval around that value. Such
cases, which are also commonplace in science, are not similarly problematic
for the putative Bayesian justification of H-D inference. For it is still true
that what is learned empirically is a logical consequence of the theory, since
T ⇒ e⇒ e′. Therefore when the scientist learns e′ and conditionalizes, their
confidence in T will necessarily increase, though of course by less than if they
had learned e. Thus the Bayesian justification works fine in this case.

What is the moral? For all its popularity, the idea that there is a Bayesian
justification of H-D inference is less clearcut than it seems. Even in the best-
case scenario in which auxiliaries are treated as known, this idea relies on
an implicit assumption. It assumes that the pattern of scientific inference in
question, whose justification is at issue, can be characterized as “becoming
more confident in a theory when one learns that one of its empirical conse-
quences is true and nothing stronger”, rather than “becoming more confident
in a theory when one learns, inter alia, that one of its empirical consequences
is true”. Only on the former characterization is there an automatic Bayesian
justification of the inference pattern. The key questions then, are whether
this is an accurate characterization of the H-D inferences actually found in
science, and if not, whether it is a legitimate idealization. We address these
questions in the next two sections, in reverse order.

Firstly a preliminary worry must be addressed. We have emphasized
that a Bayesian agent must always conditionalize on the total information,
or logically strongest proposition, that they learn. However, when a scientist
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makes an observation or does an experiment, there may be no unambigu-
ous way of saying what exactly the total information is that they thereby
learn. Consider, for example, the 2015 experiments at the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO), the results of which were
published under the title ‘Observation of gravitational waves from a binary
black hole merger’ (Abbott et al. 2016, our emphasis). What exactly was
it that was “observed” in the experiment? The binary black hole merger it-
self? Transverse waves of spatial strain traveling at the speed of light? That
the interferometer’s arms had undergone a momentary and minute change in
length? That a “chirp” signal of a characteristic frequency, amplitude and
duration had been received? The difficulties here are familiar: scientists’
observation reports are couched in theoretical language; observation and in-
ference are often partly intertwined; and “raw” observational data needs to
be processed and interpreted before it can be related to theory.

This suggests that the notion of “the strongest proposition learned em-
pirically” is not completely determinate – there may be multiple candidates
for what this proposition is, and no good way of choosing between them.
So perhaps we should conclude that there is simply no objective fact about
whether, in a given empirical test, what a scientist learns is or is not stronger
than what their theory implies? However, this is surely an overreaction. For
after all, there clearly is such a thing as throwing away information. If a sci-
entist observes that the thermometer reading is 20, then the proposition that
the thermometer reading is below 25 is only part of what they have learned.
We suggest that in many cases, on any “reasonable” account of what exactly
was learned from observation, there will be a straightforward answer to the
question of whether its content exceeds the theory’s implication or not.

3 A harmless idealization?

One possible response to the foregoing argument is this. “The traditional
H-D schema – ‘T implies e, we learn that e is true, thereby confirming T ’
– is not intended as a literal description of scientific practice, but rather as
an idealization that captures its methodological essence. So although strictly
speaking, a scientist may learn more from observation than what their theory
implies, it is usually harmless to ignore this.”

This response may appear too quick, given that additional information
can easily alter confirmatory relations, as we have seen. But on the other
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hand, there is something intuitively right about the response, since a max-
imally specific account of what a scientist learns from observation would
include lots of irrelevant detail. Consider the following toy example. A the-
ory implies the empirical prediction: “in test conditions C, the needle on the
dial will point to 4”. A scientist sets up test conditions C and observes that
the needle does indeed point to 4. As they are observing the dial, the fire
alarm in the lab goes off. Strictly, the information learned from the act of
observation is “the needle points to 4 and the fire alarm has gone off”, which
is stronger than what the theory implies. But the additional information –
that the fire alarm has gone off – is completely irrelevant, we may assume. So
for the purposes of methodological reconstruction it seems harmless, indeed
preferable, to treat the scientist as having learned the truth of the theory’s
prediction rather than the stronger proposition that implies it.

To assess this response, we need to probe the “harmless idealization”
defence further. Suppose as before that T ⇒ e, but a scientist learns the
stronger proposition e′, where e′ ⇒ e and e 6⇒ e′. As before, P is the scien-
tist’s initial probability function, and we assume that 0 < P (T ), P (e) < 1.
Suppose that, as a deliberate idealization, we treat the scientist as having
learned e, the prediction of the theory, rather than e′. Clearly, this ideal-
ization will be harmless whenever P (T | e′) = P (T | e). More generally,
whenever the quantities [P (T | e′) − P (T )] and [P (T | e) − P (T )] have the
same sign, the idealization will be harmless if our interest is only in the
qualitative question of whether the scientist’s evidence confirms their theory,
rather than in the quantitative question of by how much. Now as we know,
in general neither of these “harmlessness” conditions need obtain. But we
can identify three special cases in which one or both of them will.

3.1 Case 1: Conjunctive evidence

The first case is where the stronger proposition e′ is the conjunction of e with
something else, i.e. e′ ≡ e ∧ X. Of course it is always possible to express
e′ in this form by taking X to be the material conditional (¬e ∨ e′). But
in some cases, it will be possible to express e′ as e ∧X where X is distinct
from (¬e ∨ e′). If so, we will say that e′ is “conjunctive”. More precisely, e′

is conjunctive with respect to the probability function P iff the domain of
P contains a proposition X, distinct from both e′ and (¬e ∨ e′), such that
e′ ≡ e∧X. Note that when e′ is not conjunctive, this may either be because
no such X exists, or because the domain of P is insufficiently rich to contain
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it.6

Intuitively, if e′ is conjunctive and if X is an entirely irrelevant piece of
information, as in our fire alarm example above, then treating the scientist
as having learned e, the prediction of theory T , rather than e′, should be
harmless. To assess this, consider the following two conditions:

P (e ∧X) = P (e) · P (X) (1)

P (T ∧X) = P (T ) · P (X) (2)

Condition (1) says that X is probabilistically independent of e, while (2) says
that X is probabilistically independent of T . These are natural formaliza-
tions of the idea that the additional conjunct X contains information that is
irrelevant to e, the theory’s prediction, and also irrelevant to T , the theory
itself.

It is straightforward to show that conditions (1) and (2) jointly suffice
for the numerical equality of P (T | e) and P (T | e′).7 So where the evidence
is conjunctive, and these two independence conditions hold, the idealization
is entirely harmless, whether we are interested in the qualitative question of
whether the scientist’s evidence confirms their theory, or in the quantitative
confirmation of by how much. This explains what is going on in the fire
alarm example above. And it justifies the intuitive thought that, as method-
ologists, using a maximally specific statement of what a scientist learns from
observation or experiment is not always necessary.

To see why the distinction between conjunctive and non-conjunctive evi-
dence matters here, note that if e′ is non-conjunctive – that is, can only be
expressed in the form e∧X by taking X to be the material conditional – then
condition (1) is logically unsatisfiable; for the material conditional (¬e ∨ e′)
cannot be probabilistically independent of e (except in the trivial case where
P (e) = P (e′)). Therefore, while conditions (1) and (2) themselves make no

6No such X need exist, since there is no well-defined operation of “subtracting” part
of the content of a proposition from it to leave a unique propositional remainder, as Yablo
(2015) emphasizes. Note that it is not correct to identify the material conditional (¬e∨e′)
as the additional information provided by e′ over and above e; the factorization of e′ into
the conjunction of e and (¬e ∨ e′) is one among many such, and not uniquely privileged,
as Redhead (1985) observes.

7By definition, P (T | e′) = P (T | e∧X) = P (T ∧ e∧X)/P (e∧X) = P (T ∧X)/P (e∧
X) = P (T )/P (e) (by conditions (1) and (2)). But P (T | e) = P (T )/P (e), since T ⇒ e.
Therefore P (T | e′) = P (T | e).
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reference to the conjunctive / non-conjunctive distinction, their joint satis-
faction is only possible when e′ is conjunctive (again, excluding the trivial
case where P (e) = P (e′)).8

What about a case where condition (2) holds but (1) does not (which can
occur whether or not e′ is conjunctive)? In such a case, P (T | e′) will not
in general equal P (T | e). However, given that T ⇒ e, from condition (2)
alone it follows that both P (T | e′) − P (T ) > 0 and P (T | e) − P (T ) ≥ 0,
with equality only in the trivial case where P (e∧X) = P (X).9 So excluding
this trivial case, both e and e′ confirm T ; and thus the idealization will
be harmless if we care only about the qualitative question of whether the
scientist’s evidence confirms their theory. But if we are also interested in
degree of confirmation, it will not be harmless. Conversely, if condition
(1) holds but (2) does not, the idealization will not in general be harmless,
whether we are interested in qualitative or quantitative confirmation.

3.2 Case 2: Interval-valued prediction

Our second case in which it is harmless to treat the scientist as having learned
e rather than e′ is quite different. It concerns theories that make “interval-
valued predictions”. Suppose that theory T predicts that some real-valued
quantity λ lies in a given interval [a, b] ∈ R; while experiment reveals that
λ lies in a particular sub-interval [c, d] of [a, b] (Figure 2). Such cases arise
not uncommonly in scientific practice, and are easily seen to instantiate the
pattern described above: what the scientist learns empirically is logically
stronger than what their theory implies. Thus we may define e ≡ λ ∈ [a, b]
and e′ ≡ λ ∈ [c, d], where T ⇒ e and e′ ⇒ e.

Figure 2: Interval-valued prediction

8Note that this does not mean that in a non-conjunctive case, the idealization in ques-
tion cannot be harmless, for conditions (1) and (2) are sufficient for P (T | e) = P (T | e′),
not necessary.

9By definition, and using condition (2) and the fact that T ⇒ e, we have P (T | e′) =
P (T | e∧X) = P (T ∧ e∧X)/P (e∧X) = P (T ∧X)/P (e∧X) = P (T ) ·P (X)/P (e∧X) ≥
P (T ), with equality only if P (X) = P (e ∧X).
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As before, we have P (T | e) > P (T ), but nothing follows about whether
P (T | e′) > P (T ), nor therefore about whether the scientist will become
more confident in T when they conditionalize on e′. However, given two
fairly natural assumptions about the prior distribution P , it follows that
P (T | e) = P (T | e′), and thus that the idealization is harmless vis-à-vis
both qualitative and quantitative confirmation. The assumptions are:

(U1) conditional on λ ∈ [a, b], λ is uniformly distributed on [a, b]
(U2) conditional on T , λ is uniformly distributed on [a, b]

Assumption U1 means that the prior probability that λ lies in any given
sub-interval of [a, b] is proportional to the length of the sub-interval; while
U2 means that this proportionality also holds conditional on the truth of T .
Plausibly, P will satisfy these two assumptions if the scientist has no prior
information about where in the interval λ lies; and if theory T provides no
information about this either. For then, the scientist may well consider that
λ is no more likely to lie in one sub-interval of [a, b] than in another of equal
length; and that this will continue to be so on the assumption that theory
T is true. We show in Appendix 1 that these two uniformity assumptions
jointly imply that P (T | e) = P (T | e′).

Clearly, assumptions U1 and U2 represent applications of the classical
principle of indifference, and as such are no better or worse than other appli-
cations of that principle. A proponent of the indifference principle would hold
that if the scientist is entirely ignorant about where in the interval [a, b] λ lies,
and if theory T says nothing about this, then they are rationally required to
satisfy U1 and U2. Most contemporary Bayesians would be reluctant to insist
on this, given the well-known problems that arise from unrestricted applica-
tion of the classical indifference principle.10 But whether rationally required
or not, the point here is simply that if the scientist’s prior P satisfies these
two uniformity assumptions, for whatever reason, then it makes no difference
to their posterior credence P (T | e′) which sub-interval of [a, b] experiment
reveals λ to lie in. That is, even though what the scientist learns empirically
is stronger than what the theory implies, it is harmless to ignore this and to
treat the scientist as having learned the weaker statement that λ ∈ [a, b].

Importantly, conditions U1 and U2 are sufficient for P (T | e) = P (T | e′),
10The best known of these is Bertrand’s paradox; see Gyenis and Rédei (2014) for a

recent treatment.
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not necessary. One might wonder whether, in the case of interval-valued
prediction, we can find necessary and sufficient conditions for this equality to
hold? In a trivial sense, we clearly can. Suppose that the following condition
holds:

P (λ ∈ [c, d])

P (λ ∈ [a, b])
=
P (λ ∈ [c, d] | T )

P (λ ∈ [a, b] | T )
(3)

That is, the ratio of the prior probability that λ lies in [c, d] to the probability
that it lies in [a, b] remains unchanged when we condition on T . It is easy to
verify that this is necessary and sufficient for P (T | e) = P (T | e′) (recalling
the definitions e ≡ λ ∈ [a, b] and e′ ≡ λ ∈ [c, d]). More generally, if and only
if the same holds true not just for [c, d] but for every sub-interval of [a, b],
then the idealization will be harmless irrespective of which sub-interval λ is
found to lie in experimentally.

Though necessary and sufficient, condition (3) is not especially useful,
since it is really no more than a simple re-arrangement of the equality P (T |
e) = P (T | e′). By contrast, our uniformity conditions U1 and U2, are more
useful, for we can give a plausible if not completely compelling argument,
based on the indifference principle, for why a scientist’s prior P might satisfy
them; but the price for this is that the conditions are merely sufficient for
the idealization to be harmless, not necessary.

Finally, one might wonder whether, in the case of interval-valued pre-
diction, we can isolate a sufficient condition for [P (T | e′) − P (T )] and
[P (T | e) − P (T )] to have the same sign, and thus for the idealization to
be harmless vis-à-vis qualitative confirmation alone? Unlike in the case of
conjunctive evidence, no non-trivial condition suggests itself.

3.3 Case 3: Disjunctive prediction

Our third case is in effect a discrete analogue of case 2, but merits separate
discussion as the scientific contexts in which it applies are different. Suppose
that theory T makes a prediction of disjunctive form, that is, of the form
[e1 ∨ e2 ∨ · · · ∨ en], where the ei are pairwise exclusive. Through observation,
a scientist learns that one particular disjunct, say e2, is true; again, this is
stronger than what the theory implies. So in terms of our previous notation,
e ≡ [e1∨e2∨· · ·∨en] and e′ ≡ e2. A natural interpretation is this: the theory
predicts that a given phenomenon will occur but leaves open certain aspect(s)
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of how it will occur; observation reveals that the phenomenon occurs in one
particular way.11

As before, we know that P (T | e) > P (T ), but it is open whether or not
P (T | e′) > P (T ). However, suppose that the scientist’s prior P satisfies
two conditions. Firstly, they regard each of the ei as equally likely; secondly,
they also regard the ei as equally likely conditional on the truth of T . That is:

(U3) P (ei | e) = 1/n for all i
(U4) P (ei | T ) = 1/n for all i

Again, conditions U3 and U4 represent standard applications of the indif-
ference principle. If the scientist has no information about which disjunct
will occur, and if theory T says nothing about the matter, then plausibly,
they will regard all n disjuncts as equi-probable, and also as equi-probable
conditional on T . It is straightforward to show that U3 and U4 suffice for
the equality of P (T | e) and P (T | e′), and thus for the idealization to be
harmless: the scientist’s posterior credence, on learning the truth of the one
of the disjuncts, will be exactly the same as if they had learned merely that
the disjunction is true.12

As in the interval-valued case, it is controversial whether a scientist who
knows nothing about which disjunct will occur is rationally compelled to
satisfy U3 (and similarly for U4). But in practice, relying on the indifference
principle in discrete cases is fairly common, in both everyday and scientific
reasoning. As before, we do not need to take a stand on this issue here. Our
point is simply that, if a scientist’s prior does satisfy U3 and U4, for whatever
reason, then the idealization in question is harmless.

Finally, as in the interval-valued case, note that conditions U3 and U4 are
sufficient for the equality of P (T | e) and P (T | e′), not necessary. Again, a
necessary and sufficient, though trivial, condition for this equality is simply
that P (ei | e) = P (ei | T ) for each i. That is, the proportion of the total
probability of e that P gives to disjunct ei should remain unchanged by

11Note that we could trivially treat every case where e′ ⇒ e as disjunctive, by writing
e ≡ [e′∨(e∧¬e′)]. We could exclude this, if desired, by requiring that each of the disjuncts
must be strictly stronger than (e ∧ ¬e′). However there is little point to this exclusion,
since conditions U3 and U4 are satisfiable even if we take e to be [e′ ∨ (e ∧ ¬e′)]. In this
respect, the logic of the situation is quite different from that of conjunctive evidence (case
1), above.

12An analogue of the argument in Appendix 1 shows this.
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conditioning on T . The uniformity conditions U3 and U4 simply represent
one natural and obvious way of ensuring that this is so.

3.4 Summary

This section has explored the suggestion that applying the simple H-D schema
(“T implies e, we learn that e is true, thereby confirming T”) to a situation
where in reality, a scientist learns the truth not of e but of a stronger propo-
sition e′, can be justified as a harmless idealization. In general it cannot,
since there is no guarantee that P (T | e) will equal P (T | e′), nor even that
[P (T | e′)−P (T )] and [P (T | e)−P (T )] will have the same sign. However we
identified three special cases which suffice for the idealization to be harmless.
The first is where e′ is conjunctive and the independence conditions (1) and
(2) are satisfied. The second is where e is an interval-valued prediction and
the uniformity conditions U1 and U2 are satisfied. The third is where e is a
disjunctive prediction and the uniformity conditions U3 and U4 satisfied.

These results go some way towards defending the putative Bayesian justi-
fication of H-D inference from the objection outlined in Section 2; they show
that for the purposes of methodological analysis, it is not always necessary
to use a maximally specific description of what a scientist learns empirically.
But the results are fairly limited in scope, and seem unlikely to cover all the
examples in which a scientific theory is regarded as confirmed when one of its
empirical consequences is verified. We turn next to an examination of some
examples.

4 Scientific examples

In Section 2, we saw that the putative Bayesian justification relies upon
characterizing H-D inference as “becoming more confident in a theory upon
learning that one of its empirical consequences is true and nothing stronger”.
In this section, we examine whether this characterization is true to scientific
practice. We argue that very often, it is not.

Consider the case that Hempel originally used to illustrate H-D infer-
ence in science: Semelweiss’s study of the causes of puerperal fever in the
Vienna General Hospital in the 1840s (Hempel 1966). As Hempel recon-
structs the story, Semelweiss considered various hypotheses for why the rate
of puerperal fever was higher in one maternity division, staffed by doctors,
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than in another, staffed by midwives. Eventually he hit on the hypothesis
that cadaveric matter on the doctor’s hands was the cause of puerperal fever
(midwives did not perform autopsies). To test this, he required that doc-
tors wash their hands in chlorinated lime immediately after performing an
autopsy, predicting that this would lead the rate of puerperal fever in the
doctor-staffed division to fall. The prediction was borne out, thus confirming
Semelweiss’s hypothesis.

As Hempel describes it, the Semelweiss story instantiates the simple H-
D schema: “T ⇒ e, we learn that e is true, thus confirming T”. But this
is clearly a considerable oversimplification.13 Though the rate of puerperal
fever did indeed fall after the hand-washing measures were introduced, the
rate did not fall to zero but continued to fluctuate, remaining higher in the
hospital than outside it; and sporadic outbursts still occurred (Tulodziecki
2013). So if e is the proposition that the rate of fever will fall after hand-
washing is introduced, then although Semelweiss did indeed learn the truth
of e, this was only part of what he learnt; and the additional information was
not a logical consequence of his hypothesis.

The moral of the Semelweiss example likely generalizes to other cases
where a causal model is subjected to empirical test. For example, a simple
non-parametric causal model of the form X → Y implies that intervening
on variable X will alter the value of Y ; but what we learn when we do the
experiment is a specific statement about the values of Y for different values
of X. So again, what is learned empirically is stronger than what the causal
model implies. The same is true when more complex causal models are
tested, whether by experimental intervention or by comparing the model’s
predictions against observational data.

These examples are suggestive but not decisive. For if a hypothesis under
test yields a fairly broad-brush prediction, to the effect that changing one
variable will have some effect on another variable, it is almost inevitable that,
in a successful test, what is learned empirically will be logically stronger
than that the prediction is true. It is hard to see how Semelweiss could
have learned only that hand-washing reduces the incidence of puerperal fever,
without learning anything about the pattern and magnitude of the reduction.
So a more telling example would involve a theory which makes a highly

13To be fair to Hempel, he does acknowledge that his description of the Semelweiss
case is oversimplified, though for reasons other than the one emphasized here. Tulodziecki
(2013) argues that the Semelweiss case is rather more complex than its standard portrayal
in the philosophy literature.
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specific prediction; as then, it will not be a foregone conclusion that what
is learned empirically exceeds what the theory implies. The obvious place
to seek such examples is physics. In particular, the field of particle physics
is characterized by a combination of quantitatively precise novel prediction
and high-precision experimentation, which makes it the ideal testing ground
for the Bayesian justification of H-D inference.

4.1 Higgs scalar boson

Our first example is particle physics’ most famous recent prediction: the
Higgs boson. Following Dawid (2015), the crucial elements of the case are
as follows. In the 1960s it was proposed by Higgs and others that a particu-
lar mechanism for “spontaneous symmetry breaking” based upon a massive
scalar boson (i.e. the Higgs particle) would provide an explanation for parti-
cle masses, and would thus be the final piece in the jigsaw of the “standard
model” of particle physics.14 In and of itself, the theory of the Higgs mech-
anism does not put any constraint on the mass of the relevant particle: any
non-zero mass Higgs particle could play the relevant role in the spontaneous
symmetry breaking mechanism. However, when combined with data from
previous experiments, certain broad features of the Higgs model imply an
upper bound on the Higgs mass of 141 GeV at the 95% confidence level
(where GeV is giga electron-volts, and the speed of light is set to one).15

Previous experiments also imposed a lower bound on the Higgs of 115 GeV,
at the 95% confidence level. The Higgs was detected at the LHC in 2012
with a mass between 125 and 127 GeV.

Dawid (2015) offers an in-depth discussion of how the prior constraints on
the Higgs mass affected the evidential connection between the LHC experi-
ment and the Higgs model. Whilst the details of his analysis are orthogonal

14The particular problem is that unbroken gauge symmetry does not allow for the ob-
served massive vector bosons, like W± and Z0, that mediate the weak nuclear force, nor for
the mass spectra of fermionic matter, like quarks and electrons, that are the constituents
of atoms. The Englert-Brout-Higgs-Guralnik-Hagen-Kibble spontaneous symmetry break-
ing proposal is that, due to the existence of a massive scalar boson, although the theory’s
Lagrangian remains gauge symmetric, the electroweak gauge symmetry is broken at the
theory’s ground state, thus allowing for massive vector bosons and fermionic particles. See
Dawid (2015, p.77) and Friederich (2014) for more details.

15The relevant feature here is the ability of “virtual” Higgs particles to contribute to
scattering cross sections in experiments at energies below the level needed to produce
genuine Higgs particles. See Dawid (2015, pp. 84-85) for details.
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to our concerns, his conclusion is highly relevant. If, as Dawid suggests, we
adopt what he calls the “theoretician’s perspective” on the Higgs discovery,
and take the prediction being tested to be not just the existence of the Higgs
but also the bounds 115–141 GeV, then the case neatly illustrates our point.
Let T be the theory of the Higgs mechanism, and assume that previous ex-
perimental results (prior to 2012) were part of background knowledge. Let
e be the prediction that the Higgs exists and has a mass between 115–141
GeV. Let e′ be the result of the LHC experiment, namely that the Higgs
mass lies between 125–127 GeV. So we have T ⇒ e, e′ ⇒ e but e 6⇒ e′, i.e.
the experimental finding is logically stronger than what the theory implies.

Two points merit emphasis here. Firstly, the Higgs example is surely a
paradigm of H-D inference in science: a theory makes a prediction which
is put to empirical test, the prediction is correct, and the theory is thereby
confirmed. Secondly, the 2012 experiment was widely regarded as a scientific
triumph, and had a tangible impact on physicists’ confidence in the correct-
ness of the theory. The fact that the experimental finding was stronger than
what the theory implied in no way dented the physicists’ conviction that
the standard model had received striking empirical confirmation. Now as we
have seen, many philosophers argue that H-D inference admits of a simple
Bayesian justification. Since the Higgs case involves H-D inference, then if
these philosophers are right, we should expect the Bayesian justification to
apply here. But it does not: since e′ is stronger than e, learning e′ need not
increase scientists’ confidence in T .

Might the “harmless idealisation” defence be invoked at this point? The
Higgs example is a case of interval-valued prediction, and as we saw in §3.2,
in such cases the two uniformity conditions U1 and U2 jointly suffice for the
equality of P (T | e) and P (T | e′). Do these conditions apply in the Higgs
case? Arguably not. U1 says that the prior probability that the Higgs mass
lies in any sub-interval of 115–141 GeV is proportional to the size of that
sub-interval (given relevant past experimental knowledge). U2 says that this
proportionality also holds conditional on the theory of the Higgs mechanism.
Now although the issue is complex and not fully settled, there is a general
consensus that different possible values of the Higgs mass between 115–141
GeV place different constraints on the possible physics “beyond the standard
model”. In particular, before the 2012 experiments, it was widely taken to
be a fairly generic prediction of low energy supersymmetric extensions to the
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standard model that the Higgs mass should not be much above 140 GeV.16

Thus physicists’ background beliefs plausibly meant that they had a non-
uniform prior distribution over the interval 115–141 GeV. There is no reason
why conditioning on T should induce uniformity, so it seems that both U1

and U2 fail in this case.
Of course, U1 and U2 are sufficient rather than necessary conditions for

the harmless idealization defence to apply, so the defence might go through
via some other route. But the onus is on the Bayesian to establish this.
On the face of it, the Higgs case is a paradigm of successful H-D inference in
science, but one to which the putative Bayesian justification of that inference
pattern does not apply.

Importantly, we are not arguing that no possible Bayesian reconstruction
of the scientists’ reasoning in the Higgs case could be given. Quite possibly
it could, as Dawid (2015) has suggested. However, such a reconstruction
would necessarily have to go beyond imputing to scientists the simple H-D
schema (“T implies e, we learn that e is true, therefore confirming T.”) For
this schema is untrue to the Higgs case, given the logical mismatch between
prediction and observation; and thus the Bayesian justification of that schema
does not apply here.17

4.2 W± vector boson

Our next example is the discovery of the W± vector boson. This is a type of
force-carrying particle, the mass of which the Higgs scalar boson was called
in to explain. Together with the Z0 vector boson, the W± is a key part of the
standard model explanation for nuclear decay processes such as Beta-decay.
In particular, the W± plays a key role in mediating fermonic interactions
within the Glashow-Weinberg-Salam theory of unified electroweak interac-
tions. The force-mediating role of the W± in electroweak theory is directly
analogous to the role of the photon in mediating electromagnetic interactions
in quantum electrodynamics. Unlike the photon, however, the W± is a mas-
sive gauge boson. In fact, the value of its mass plays a crucial theoretical
role in that it is directly constrained by electroweak theory.

Following Franklin (1986, pp. 170-2), we can reconstruct the key steps
in the prediction and discovery of the W± as follows. By the early 1980s,

16See for example Espinosa et al. (1993) and Zhang et al. (2008).
17Thanks to Richard Dawid and Radin Dardashti for discussions on this issue.
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electroweak theory was well corroborated even though the W± had not been
detected.18 Since the W± was a core part of electroweak interaction, there
was enough interest in detection to spur the construction of a new “Super
Proton Synchrotron” (SPS) Collider at CERN with the primary goal of de-
tecting the particle. The report on the experiment was published in 1983
and indicated a missing transverse energy of the correct magnitude for W±

decay. From the SPS experiments, the “observed” value of the W± mass was
calculated and found to be in excellent agreement with the value predicted
by electroweak theory. Furthermore, Franklin notes, both the number of ob-
served production events and the transverse momentum distribution of the
W± particles were in good agreement with theory. Again, this is a paradigm
of the H-D method: a theoretical prediction is put to empirical test, the
prediction is correct, and the theory thereby confirmed.19

To apply our framework, let us take T to be electroweak theory, e to be
the predicted value of the W± mass, and e′ the experimentally determined
mass. Now the theoretical prediction, in this case, is not a point-value but
rather the interval 82±2.4 GeV. It might seem odd that the theory only fixes
one of its fundamental parameters to an interval. But in this case, as in many
others in physics, the extraction of a quantitative prediction from the the-
ory involves both mathematical approximation techniques and reliance upon
prior experimental data, which is why electroweak theory does not yield a
point-valued prediction for the W± mass. What about the experimentally-
determined mass? As in the Higgs case, we again find that the experiment
yields an interval-valued result.20 In the W± case, the experimental determi-
nation of the mass was 81±5 GeV, an interval that entirely encompasses the
predicted interval. We thus have that e⇒ e′ but e′ 6⇒ e. So the logical mis-
match is exactly the opposite of the Higgs case: what was learnt empirically
was weaker, not stronger, than what electroweak theory implies.

In §2, we noted that when e′ is logically weaker than e, the standard

18In fact, Glashow, Weinberg and Salam had already been jointly awarded the 1979
Nobel prize for developing electroweak theory based upon the discover of the Z0 at CERN
in 1973.

19Franklin notes that in these experiments, the agreement with theory was also taken
by scientists to validate the observations. This illustrates the Duhemian point made in
§1: the theory-observation relation is often more complex than as depicted by the simple
H-D schema. Again, however, we leave this complication aside here.

20This is usually the case, since even well-validated experimental procedures can only
resolve a value to a finite degree.
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Bayesian justification of H-D inference works fine: since T ⇒ e⇒ e′, learning
e′ will necessarily increase the probability of T , though by less than if e had
been learnt. Since the experiment in question did indeed lead physicists to
become more confident in electroweak theory, the W± case may seem to
support those who argue that H-D inference in science admits of a simple
Bayesian justification.

Taken on its own, the W± case does indeed support the Bayesians’ argu-
ment. However, when taken in conjunction with the Higgs case, matters look
different. In both cases, a theoretical prediction was put to experimental test,
the prediction was verified, and scientists’ confidence in the respective theory
increased. But the logic of the two cases is fundamentally unalike, for in the
Higgs case e is logically stronger than e′, while in the W± case the reverse is
true. And as we know, this makes a big difference from a Bayesian point of
view. So if the Bayesians’ story is correct, we should expect scientists to see
a fundamental distinction between these two cases in respect of their status
as instances of qualitative confirmation. But this is not what we find. On
the contrary, in both cases the scientific consensus was that the experimental
findings had confirmed the theory.

That scientists’ judgments of whether the evidence qualitatively confirms
the theory are insensitive to the relative strength of e and e′ casts doubt on
the putative Bayesian justification. Moreover, in the W± case it is clearly a
contingent fact that the experimentally-determined mass interval was larger
than the predicted interval, for the former depends on the degree of experi-
mental precision possible at the time. Imagine that a global recession had de-
layed the construction of the accelerator needed to detect the W± by twenty
years. Technological advances would almost certainly have meant that the
precision of the experiment was greatly increased, so that the experimentally
determined interval could have lain inside the predicted interval. If so, the
logical relation between e and e′ would be inverted, and the simple Bayesian
story would no longer apply. However, it is hard to believe that the scientific
community would regard the resulting evidential situation as fundamentally
different. In this counterfactual scenario, no less than in the actual scenario,
a theory makes a correct prediction and is thereby confirmed.

In fact, we do not need to invoke counterfactual scenarios to demonstrate
the insensitivity of scientists’ confirmatory judgments to the direction of logi-
cal mismatch between e and e′. For experimental precision and mathematical
approximation techniques can both evolve over time, so it sometimes happens
that the observed and predicted intervals are successively and independently
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restricted. We turn to such a case next.

4.3 Fine Structure Constant

The fine structure constant α characterizes the strength of the electromag-
netic interactions described by quantum electrodynamics, and its measure-
ment is a remarkable example of successful quantitative prediction. In fact,
the measurement of α is the basis for the much-heralded claim that quantum
electrodynamics is the most precisely tested theory in the history of science.21

Recently, α has been subject to hyper-precision measurements with accuracy
of the order of 10−10 (Bouchendira et al. 2011). Again, we have what looks
like the classical H-D inference pattern. The theory yields a prediction, the
prediction matches the observation, and the theory is thereby confirmed.

Is the case of α akin to that of W±, where e is logically stronger than e′,
or to the Higgs, where the reverse is true? Revealingly, we in fact find both of
these logical structures at different points in time. Over the last forty years,
the precision of the experimental measurement of α has sometimes been
greater than the precision of the theoretical calculation; while at other times
the reverse has been true. This is because better and better approximation
techniques for evaluating the relevant integrals in quantum electrodynamics
have evolved in tandem with the refinement of the relevant experimental
techniques.22

This presents an interesting test case for the Bayesian justification of H-D
inference. Let T denote quantum electrodynamics, et the predicted interval
for α at time t, and e′t the experimentally determined interval at time t. Both
et and e′t are time-indexed, as explained above. Thus it is possible that for
some times t, e′t ⇒ et and e′t 6⇒ et while for other t, et ⇒ e′t and et 6⇒ e′t.
And this is in fact what has happened. Over the last forty years, the relative
logical strength of et and e′t has flipped back and forth again and again, due to
a combination of factors including technological development, experimental
funding, computational power and scientific ingenuity.

21In fact, strictly speaking, the measurement of α is not a test of quantum electro-
dynamics since it is an unconstrained parameter in the theory. Rather, two alternative
values of α are derived and compared via the experimental measurement and theoretical
determination of the anomalous magnetic moment of the electron. These complications
do not alter the basic inferential structure of the case.

22See Figure 1 of Bouchendira et al. (2011) for details. The current best predicted value
is given in Aoyama et al. (2012).
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Now, if the putative Bayesian rationale for H-D inference were right, we
should expect the confirmational significance of the experimental findings to
depend on whether or not theoretical precision was ahead of experimental
precision at the time in question. At times when et was logically stronger than
e′t, we should expect the experimental findings to definitely increase scientists’
confidence in quantum electrodynamics; while at times when e′t was stronger,
we should not automatically expect this. However, in fact this distinction
carried no such significance. So far as we know, there is nothing to suggest
that scientists took experimental confirmation of quantum electrodynamics
to depend on the contingent circumstance of whether et or e′t was logically
stronger.

Might the “harmless idealization” defence be invoked at this point? For
example, perhaps scientists at times when e′t was stronger than et were im-
plicitly appealing to the uniformity conditions U1 and U2 of §3.2? This is
certainly possible. But it is equally possible that, as in the Higgs case, U1

and U2 did not apply, for example because scientists’ background beliefs led
them to expect that the value of α was more likely to be at the upper or
lower end of the predicted interval.23 The onus is thus on the Bayesian to
explain why, if their analysis of H-D inference is correct, scientists’ judgments
were insensitive to the relative logical strength of et and e′t, and why, in cases
where e′t was stronger, scientists nonetheless took the experimental findings
to support quantum electrodynamics.

5 Conclusion

Many Bayesians claim to be able to justify H-D inference, which they adduce
as a major selling point of their approach over its rivals. van Fraassen (1985)
dismissed this putative justification as “useless” on two grounds: firstly be-
cause it ignores the role of auxiliaries in deriving predictions; and secondly
because it ignores the fact that what is learned empirically is often logically
stronger than what the theory implies. The first point has been extensively
discussed in the literature, but the second completely ignored. Our aim here
has been to fill this lacuna.

23An example of such a background belief would be scepticism regarding specific parts
of the code used for the calculation and thus an expectation that future refinements will
lead to a value at the lower or upper end of the interval.
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Since a Bayesian agent must always conditionalize on the logically
strongest proposition they learn, it follows that the putative Bayesian jus-
tification of H-D inference relies on characterizing it in a particular way,
namely “becoming more confident in a theory when one learns that one of
its empirical consequences is true and nothing stronger”. The key questions
then, are whether this is an accurate characterization of the H-D inferences
actually found in science, and if not, whether it can be viewed as a harmless
idealization of the methodologist?

We have found that the answer to both questions is “no”. In general, if
T ⇒ e but a scientist learns the stronger proposition e′, then it is not harmless
to treat the scientist as having learned e. We showed that under specific
conditions, P (T | e) and P (T | e′) will indeed be equal, but there is no reason
to think that these conditions usually obtain in practice. Our case studies
suggest that it is quite common for experimental data to be logically stronger
than the theoretical prediction being tested; indeed this occurs in paradigm
instances of H-D inference in science. Moreover, scientists’ judgments about
evidential support are insufficiently insensitive to the relative logical strength
of theoretical prediction and experimental data to be consistent with the
rationale for H-D inference that the Bayesians offer.

In conclusion, while “useless” is perhaps too strong, our analysis suggests
that the putative Bayesian justification of H-D inference has much less ex-
planatory power than many philosophers think. The pattern of inference
of which there is a ready Bayesian justification is not the pattern that one
finds actually at work in science. Whatever its other virtues, the idea that
Bayesianism offers a simple justification of a pervasive pattern of scientific
inference appears to have been oversold.
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Appendix 1

By assumption U1:

P (λ ∈ [c, d] | λ ∈ [a, b]) =
P (λ ∈ [c, d])

P (λ ∈ [a, b])
=
d− c
b− a

By assumption U2:

P (λ ∈ [c, d] | T )

P (λ ∈ [a, b] | T )
=
d− c
b− a

Therefore:

P (λ ∈ [c, d])

P (λ ∈ [a, b])
=
P (λ ∈ [c, d] | T )

P (λ ∈ [a, b] | T )

Cross-multiplying:

P (λ ∈ [a, b] | T )

P (λ ∈ [a, b])
=
P (λ ∈ [c, d] | T )

P (λ ∈ [c, d])

Multiplying across by P (T ):

P (T ) · P (λ ∈ [a, b] | T )

P (λ ∈ [a, b])
=
P (T ) · P (λ ∈ [c, d] | T )

P (λ ∈ [c, d])

Applying Bayes’ theorem:

P (T | λ ∈ [a, b]) = P (T | λ ∈ [c, d])

Applying definitions e ≡ λ ∈ [a, b] and e′ ≡ λ ∈ [c, d]:

P (T | e) = P (T | e′)

Q.E.D.
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