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Abstract 

In 1907 Einstein had the insight that bodies in free fall do not “feel” their own weight. This has 

been formalized in what is called “the principle of equivalence.” The principle motivated a 

critical analysis of the Newtonian and special-relativistic concepts of inertia, and it was 

indispensable to Einstein’s development of his theory of gravitation. A great deal has been 

written about the principle. Nearly all of this work has focused on the content of the principle and 

whether it has any content in Einsteinian gravitation, but more remains to be said about its 

methodological role in the development of the theory. I argue that the principle should be 

understood as a kind of foundational principle known as a criterion of identity. This work extends 

and substantiates a recent account of the notion of a criterion of identity by William Demopoulos. 

Demopoulos argues that the notion can be employed more widely than in the foundations of 

arithmetic and that we see this in the development of physical theories, in particular space-time 

theories. This new account forms the basis of a general framework for applying a number of 

mathematical theories and for distinguishing between applied mathematical theories that are and 

are not empirically constrained. 

1. Introduction 

“The principle of equivalence,” which Einstein originally used to refer to one particular 

statement, has come to refer to a number of interrelated principles in the theory of gravitation.1 

																																																								
1 Einstein’s first formulation of the principle can be found in his article “On the Relativity Principle and the 
Conclusions Drawn from It” (1907, p. 454). Other early accounts include his “On the Influence of Gravitation on the 
Propagation of Light” (1911, pp. 898-99), his review article “The Foundation of the General Theory of Relativity” 
(1916a, pp. 772-3), his note “On Friedrich Kottler’s Paper: ‘On Einstein’s Equivalence Hypothesis and Gravitation’” 
(1916b, p. 639), his popular exposition Relativity: The Special and the General Theory (1916c [2004], Chapter 20), 
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The principle formalizes an insight into gravitation that Einstein had in 1907. This is the insight, 

roughly speaking, that objects in free fall do not “feel” their own weight. The principle motivated 

a critical analysis of the Newtonian and 1905 inertial frame concepts, and it was indispensable to 

Einstein’s argument for a new concept of inertial motion. 

But setting aside its role in Einstein’s argument, the principle is generally held to be one 

of the foundations of Einstein’s theory of gravitation, even if the sense in which it is a foundation 

is disputed. For these reasons, a great deal has been written about the principle. Nearly all of this 

work has focused on the content of the principle and whether indeed it has any content in 

Einsteinian gravitation, but more remains to be said about its methodological role in the 

development of the theory. A methodological analysis must consider two basic questions: what 

kind of principle is the equivalence principle? What is its role in the conceptual framework of 

gravitation theory? I maintain that the existing answers are unsatisfactory and I offer new 

answers. I argue that the equivalence principle should be understood as expressing a kind of 

foundational principle known as a criterion of identity. The principle functions as a criterion for 

recognizing when the motions of different reference frames are the same motion; it has the 

consequence that the motion of an inertial frame is the same as the motion of locally freely falling 

frame. My new account illuminates the methodological role of the equivalence principle in the 

conceptual framework of gravitation theory and also our understanding of the application of the 

theory of pseudo-Riemannian manifolds in Einsteinian gravitation. Furthermore, this account of 

the role of the principle informs our understanding of Einstein’s analysis of the inertial frame 

concept, and so of the transition from the conceptual framework of special relativity to that of the 

general theory. 

This is a novel use of the notion of a criterion of identity, one that may be surprising even 

to those already acquainted with the literature in the philosophy of mathematics and the 

metaphysics of individuals. This study owes several things to the former and nothing to the latter. 

It builds on the recent account of the notion of a criterion of identity by Demopoulos in Logicism 

and its Philosophical Legacy (2013). Demopoulos argues that the notion of a criterion of identity 

																																																								
and his Princeton Lectures (1922, Lecture III). So far as I know, the first time he uses the term “principle of 
equivalence” is in his reply to Kottler. Further remarks about Einstein’s insight of 1907, including his remark that it 
was “the happiest thought of my life,” can be found in his “Fundamentals and Methods of the Theory of Relativity” 
(1920). It is worth noting, however, that the principle would find a more precise formulation only much later in the 
general relativity literature. 
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can be employed more widely than in the foundations of arithmetic and that we can see this in the 

development of physical theories, in particular space-time theories. Demopoulos’ contribution is 

a penetrating analysis of the criterion of identity and this study aims to further extend and 

substantiate it. Although this employment of the notion of a criterion of identity in the 

foundations of space-time theories may seem at first surprising and even questionable, I hope to 

show that it is in fact a natural one and that in the case of the equivalence principle it allows us to 

recover the features of the gravitational interaction that the principle is generally held to establish. 

In §2 I will introduce the 1905 inertial frame concept. Since the equivalence principle 

motivates a critical analysis of this concept, I will present the concept in overview, beginning 

with its Newtonian and nineteenth-century antecedents. In §3 I will consider a number of 

principles that have been called “the equivalence principle,” and I will examine the relations 

between them. I will draw attention to one particular principle that, I will argue, fully captures 

Einstein’s insight of 1907. In §4 I will survey and evaluate some notable accounts of the 

principle. In §5 I will present Demopoulos’ account of the criterion of identity and his claim that 

other criteria of identity underlie the analysis and interpretation of a number of space-time 

theories. I will argue that understanding the equivalence principle as a criterion of identity 

illuminates its methodological role in the conceptual framework of gravitation theory. Last, in §6, 

I will examine a few implications of this account. I will show, in particular, that it isolates what is 

distinctive about Einstein’s contribution to our understanding of the gravitational interaction. 

2. Background: The 1905 Inertial Frame 

Let us begin by getting clear on the concept of an inertial frame, specifically, Einstein’s 1905 

concept that was the object of his 1907 analysis. It is instructive to introduce this concept by way 

of Newton’s. 

Newton’s laws of motion express empirical criteria for the application of the basic 

concepts of mechanics, namely force, mass, and inertial motion – and all those concepts that 

depend on them. Inertial motion is that state in which a body moves in uniform rectilinear motion 

unless acted upon by a force.2 Now associate with a body moving inertially a reference frame. In 

																																																								
2 It is worth noting that all three laws of motion are necessary to give an account of inertial motion – the first law is 
sufficient only for ideal point-particles. This is clear in Newton’s account of inertia. Hence, referring to the first law 
as “the principle of inertia” encourages the widespread view that it alone is enough. So far as I know, Newton 
himself did not use the term. I do not know at what point it appeared, but it can be found in Euler’s “Réflexions sur 
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the most general sense, a frame is a space. It is a “small” space in the sense that it is sufficiently 

local, homogeneous, and isotropic; furthermore, it is a space in which an accelerometer would 

detect no acceleration. We can give a geometrical description of bodies in the space among 

themselves using a coordinate system. But we can do more than just give a geometrical 

description: in any such space, the outcomes of mechanical experiments, calculated using the 

laws of motion, will be the same. (And the same outcomes would be calculated in any space in 

uniform rectilinear motion relative to it – this is the Galilei-Newton relativity principle.) This is 

the Newtonian concept of an inertial frame. 

While these frames are empirically indistinguishable, for Newton, they were not 

theoretically equivalent: Newton thought of them as moving with various velocities relative to 

what he called “absolute space,” even though those velocities cannot be known. Although 

Newton introduced this term to refer to the resting backdrop against we can talk about uniformly 

moving relative spaces, many of his contemporaries understood it to have certain ontological 

implications and criticized its introduction on those grounds. It was not until the nineteenth 

century that Newton’s theory was given its proper form, by the insight into its complete 

independence from the notion of absolute space in the work of Neumann (1870), Thomson 

(1884), Lange (1885), and others.3 The nineteenth-century inertial frame concept was the 

outcome of their work. This is the concept that is assumed at the start of §1 in the 1905 paper and 

that Einstein subjects to a critical analysis. 

In “On the Electrodynamics of Moving Bodies” (1905), Einstein showed that the 

Newtonian framework uncritically assumes that two inertial frames agree on whether spatially 

separated events happen simultaneously. He showed that determining whether two spatially 

separated events are simultaneous depends on a process of signalling. Beginning with the 

empirical hypothesis that the velocity of light is the same in all reference frames, Einstein showed 

that a criterion involving emitted and reflected light signals allows us to judge when two spatially 

separated events occur simultaneously. This criterion – the Einstein synchronization criterion – is 

expressed as follows: given two locations A and B, and having placed a clock at each, an event at 

A occurs at the same time as an event at B when “the ‘time’ required by light to travel from A to 

																																																								
l’espace et le temps” (1748), if not in any earlier source. See (Samaroo, 2017) for a detailed account of the role of 
each of the three laws in the account of inertia. 
3 Other notable contributors include Mach (1883 [1919]), Muirhead (1887), and MacGregor (1893). 
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B equals the ‘time’ it requires to travel from B to A” (Einstein, 1905 [1952], p. 40). With this 

criterion, Einstein showed that inertial frames can agree on the invariance of the velocity of light 

only if they disagree on which events are simultaneous, and he showed that from this criterion the 

Lorentz transformations can be derived. 

With Einstein’s analysis of simultaneity, no longer could the laws of motion be taken as 

the sole empirical criteria for constructing an inertial frame. A new criterion – one based on the 

hypothesis that the velocity of light is the same in all reference frames – is needed. In this way 

the nineteenth-century inertial frame concept was replaced by the 1905 inertial frame concept: an 

inertial frame is not merely one in uniform rectilinear motion in which the outcomes of all 

mechanical experiments are the same but one, furthermore, in which light travels equal distances 

in equal times in arbitrary directions and in which the outcomes of electrodynamical experiments 

are the same.4 (These frames are related not by the Galilean transformations but by the Lorentz 

transformations, and a number of quantities that were invariant under the Galilean 

transformations are revealed to be frame-relative.) This is the 1905 inertial frame or “Lorentz 

frame,” and it was this concept that Einstein subjected to a critical analysis in 1907. That analysis 

turns on an insight into gravitation that has been formalized in what is called “the equivalence 

principle.” 

3. The Equivalence Principle 

“The equivalence principle” has come to refer to a great many principles, all of which capture 

one or another feature of gravitation. To some, the fact that there are so many versions suggests 

that the equivalence principle has at best a chequered status. I contend that this is not a problem. 

That there are many versions should neither surprise nor concern us, though it is reason for taking 

care to identify the particular features of gravitation that they isolate. 

In what follows, I will offer a brief account of the work that led to the principle that 

encapsulates Einstein’s insight of 1907. There are a number of ways one might organize such an 

account. For present purposes, it is important to draw a distinction between those versions of the 

principle formulated in the context of theory development and those formulated in the context of 

																																																								
4 It would be shown later in the twentieth century that the laws governing all non-gravitational interactions are 
Lorentz invariant. 
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Einstein’s completed gravitation theory. For now, our focus will be solely on the former; we will 

turn to the latter further on. 

By “the equivalence principle,” some will think immediately, and with some reason, of 

the principle of the universality of free fall, also known as Galileo’s principle and the principle of 

the uniqueness of free fall. This is the assertion that all bodies fall with the same acceleration in 

the same gravitational field. It may also be stated as follows: the path of a body in a given 

gravitational field is independent of its mass and composition. This is the principle that Galileo 

confirmed to a high degree of accuracy with experiments involving a pendulum and an inclined 

plane; Newton also tested it by way of pendulum experiments. 

Another statement with the same empirical content can be found in Newtonian 

gravitation. As is well known, Newton’s theory contains two different concepts of mass: inertial 

mass m, the quantity that figures in the second law, that is, the measure of a body’s resistance to 

acceleration; gravitational mass µ, the quantity that figures in the inverse-square law and that is 

the gravitational analogue of electric charge. It is well-established experimentally that the ratio of 

gravitational mass to inertial mass is the same for all bodies to a high degree of accuracy. And 

once we accept that the ratio is a constant, we can choose to use units of measurement that make 

the two masses for any body equal, so that µ/m = 1. In this way we can ignore the distinction 

between gravitational mass and inertial mass. This is summarized in what is often called the weak 

equivalence principle: inertial mass is equivalent or proportional to gravitational mass.5 This 

statement implies that the acceleration of any body due to a gravitational field is independent of 

its mass and composition.6 

																																																								
5 There have been many taxonomies of equivalence principles, but it is worth noting the influential one due to 
Clifford Will (1993). Will distinguished between the weak, Einstein, and strong equivalence principles. He 
characterized the weak principle in the same way as I have. And it is worth noting that the weak principle was tested 
by laboratory experiments up to Einstein’s time, whereas Einstein’s hypothetical extension, which we will come to 
shortly, requires new tests. In Will’s taxonomy, the Einstein equivalence principle is the claim that “(i) WEP is valid; 
(ii) the outcome of any local nongravitational test experiment is independent of the velocity of the (freely falling) 
apparatus; (iii) the outcome of any local nongravitational test experiment is independent of where and when in the 
universe it is performed.” (1993, Chapter 2) Will’s strong principle modifies (i) by specifying that it holds not only 
for test matter but also for self-gravitating bodies (1993, Chapter 3). This characterization is unorthodox and, further 
on, I will contrast it with that of Anderson (1967) and Ehlers (1973). 
6 This is easy to show. Consider the law of universal gravitation ïF12ï = (Gµ1µ2)/ïx1 – x2ï2, where F12 is the force 
on particle 1 of gravitational mass µ1 due to particle 2 of gravitational mass µ2. The equality or proportionality of 
inertial mass and gravitational mass implies that µi in this equation may be replaced by mi (from the second law of 
motion) to obtain ïF12ï = (Gm1m2)/ïx1 – x2ï2. The acceleration a1 of particle 1 due to this force is given by F12 = 
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The term “equivalence principle,” however, is generally associated with the statements 

that are intended to capture Einstein’s insight into gravitation in 1907. This is the insight, roughly 

speaking, that bodies in free fall do not “feel” their own weight. I will not state the principle 

directly, but by way of the interpretive extrapolation from the universality of free fall – the 

thought experiment – that Einstein himself used to motivate the principle: this is what we now 

know as “Einstein’s elevator.”7 Introducing the principle in this way is instructive; it will also fix 

a few ideas that will be helpful later on. 

There are two versions of Einstein’s elevator: the “gravity-producing” version and the 

“transforming-away” version. Consider the gravity-producing version. Suppose you stand in an 

elevator cabin from which you cannot see out. You feel a “gravitational force” towards the floor, 

just as you would at home. But you have no way of excluding the possibility that the cabin is part 

of a rocket moving with acceleration g in free space and that the force you feel is an accelerative 

force. Particles dropped in the cabin will fall with the same acceleration regardless of their mass 

or composition. Einstein also runs the thought experiment the other way: you are inside the 

elevator cabin. You feel no gravitational force, just as in free space. But you have no way of 

excluding the possibility that the cabin is falling freely in a gravitational field. 

Although Einstein considers both versions, he held the latter to be problematic: true 

gravitational fields are never transformed away or cancelled by free fall; furthermore, what is 

transformed away in the thought experiment is only the homogeneous gravitational field. In 

practice, there is a way of distinguishing locally between a freely falling cabin and a cabin in free 

space. For example, an astronaut in a space shuttle that is freely falling in the gravitational field 

of the Earth could perform experiments to determine that a water droplet is not spherical but 

prolate, that is, to determine that it is subject to a “tidal effect” and lengthened towards the source 

of the field.8 For this reason, Einstein attached particular importance to the gravity-producing 

version and formalized its empirical content in the statement that we might call Einstein’s own 

equivalence principle: it is impossible to distinguish locally between immersion in a 

																																																								
m1a1. Hence, m1a1 = (Gm1m2)/ïx1 – x2ï2. Both sides can be divided by m1, so the acceleration of any body subject 
only to gravitation will be independent of its mass. 
7 This can be found in The Evolution of Physics (Einstein and Infeld, 1938, pp. 226–35). 
8 For a good discussion of tidal forces, see Ohanian and Ruffini (1994). 



	 8 

homogeneous gravitational field and uniform acceleration.9 The field produced by a uniform 

acceleration is not a mere “inertial field”; it is not simulated or pseudo-gravity, but a genuine 

homogeneous gravitational field. 

But in spite of Einstein’s stating the equivalence principle in this particular way, for the 

reasons just given, the transforming-away version of Einstein’s elevator and the corresponding 

principle is essential to the 1907 insight and ultimately more important. We might state the 

corresponding equivalence principle as follows: so far as tidal effects can be ignored, the 

outcome of any mechanical experiment performed in a freely falling frame is the same as would 

be obtained in a Lorentz frame. It was by way of the transforming-away version that Einstein 

began to recognize that inertially moving frames and freely falling frames are different 

presentations of the same motion. 

But this is not the full extent of Einstein’s insight of 1907. Einstein argued from the 

principle that all bodies fall with the same acceleration in the same gravitational field to a 

stronger hypothesis: not only the outcome of any mechanical experiment but that of any non-

gravitational experiment performed in a freely falling frame is the same as would be obtained in a 

Lorentz frame.10 Einstein’s bold hypothesis is summarized in the principle of universal coupling: 

all physical processes couple to gravitation and couple in the same way.11 

This hypothesis was motivated by Einstein’s conviction that there are no physical 

phenomena that are unaffected by gravitation, that couple differently to gravitation, and hence 

																																																								
9 Note that this principle differs from the one Will (1993) calls “the Einstein equivalence principle” – we will come 
to that principle further on. For further details on Einstein’s understanding of the equivalence principle, see Norton 
(1985). But note that, although Einstein did attach particular importance to the gravity-producing version of the 
principle, on at least one occasion he expressed it as a transforming-away principle regarding reference frames. See 
his Princeton Lectures (1922, pp. 67-8). 
10 This is also readily illustrated by Einstein’s elevator. Consider the gravity-producing version. Suppose you stand in 
the elevator cabin. You feel a “gravitational force” towards the floor, just as you would at home. And, as before, 
there is no way of excluding the possibility that the cabin is part of an accelerating rocket in free space, and that the 
force you feel is an accelerative force. But this time there is a light source affixed to one of the cabin walls that emits 
a beam horizontally. Photons carry energy, so even though they have no mass, they have momentum and the beam 
emitted will not travel across the cabin horizontally to hit a point opposite its point of emission, but will curve 
downwards towards the floor – in analogy with a ball thrown horizontally in the gravitational field of the Earth. 
Assuming that the slight curve of its path were measurable, the beam cannot distinguish the cabin on Earth from the 
cabin that is part of the accelerating rocket. 
11 Given this bold hypothesis, it is significant that the first test of Einsteinian gravitation was the observation of the 
deflection of starlight in the eclipse observations of 1919. This was an important step in vindicating universal 
coupling. 
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that could distinguish a freely falling frame from a Lorentz frame. Einstein expressed this as 

follows: 

If there were to exist just one single thing that falls in the gravitational field differently 
from all the other things, then with its help the observer could recognize that he is in a 
gravitational field and is falling in it. If such a thing does not exist, however – as 
experience has shown with great precision – then the observer lacks any objective ground 
on which to consider himself as falling in a gravitational field. Rather, he has the right to 
consider his state as one of rest and his surroundings as field-free with respect to 
gravitation. (Einstein, 1920, p. 265-6; trans. DiSalle, 2006) 

Without the assumption of universal coupling, something that falls differently from all other 

things would be a basis for measuring the acceleration of a freely falling particle. Suppose, for 

example, that electromagnetic phenomena did not couple to gravitation in the same way as 

Newtonian particles; then the acceleration of a freely falling particle could be measured relative 

to electromagnetically accelerated trajectories. The assumption of universal coupling implies that, 

if any phenomena failed to couple to gravitation or coupled in a different way, they would 

indicate the existence of a background-structure distinguishable from the gravitational field. As 

Will has put it, the assumption allows us to “discuss the metric g as a property of space-time 

itself rather than as a field over space-time” (Will, 1993, p. 68). 

The transforming-away version of Einstein’s own equivalence principle, together with the 

principle of universal coupling, leads us to another version. I will refer to it simply as the 

equivalence principle12: 

So far as tidal effects can be ignored, the outcome of any local non-gravitational 
experiment performed in a freely falling frame is the same as would be obtained in a 
Lorentz frame. 

This formulation emphasizes that, at least in a sufficiently local region of space-time, no test can 

distinguish freely falling frames from Lorentz frames.13 This is the principle that fully captures 

Einstein’s insight of 1907. Hereafter, when I write “the equivalence principle,” it is to this 

principle that I am referring. 

																																																								
12 In the taxonomy of Will (1993) and other standard references, this principle (and close relatives with the same 
essential content) is known as “the Einstein equivalence principle”; it can be found in Einstein’s Princeton Lectures 
(1922, pp. 67-8), so the name is clearly not misapplied. Evidently, it is different from the principle that I, following 
Norton (1985), have called “Einstein’s own equivalence principle” in that it incorporates universal coupling. 
13 By “sufficiently local,” what is meant is that the region is small enough for gravitational forces to act nearly 
equally and along parallel lines. 
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What does this principle establish? It establishes that the Lorentz frame is not uniquely 

determined by its empirical criteria.14 For this conclusion to hold, it is important to acknowledge 

an idealization that we have been making explicitly all along: this is the qualification, “so far as 

tidal forces can be ignored.” Ohanian (1977, Section III) perhaps better than anyone else has 

stressed that there are experiments that are sensitive to tidal effects. But he stresses in the same 

measure that, so far as we acknowledge the idealization and restrict attention to those 

experiments that are not sensitive to tidal forces, we gain an important insight into gravitation, 

namely that a locally freely falling frame cannot be distinguished from a Lorentz frame. Or, to 

put this yet another way, the equivalence principle expresses the conditions under which we can 

judge that the motions of freely falling frames and Lorentz frames are identical. The principle 

leads us to recognize these motions as different presentations of the same motion.15 

It is worth noting that the equivalence principle has both destructive and constructive 

aspects. The principle is destructive because it fatally undermines the uniqueness of the Lorentz 

frame. That is to say, the principle establishes that the Lorentz frame is not uniquely determined 

by its empirical criteria. It is constructive because it motivates a new inertial frame concept – a 

new concept of “natural motion.” 

4. What Kind of Principle is the Equivalence Principle? 

With a clear understanding of the content of the equivalence principle – at least in the context of 

theory development – let us turn our attention to its role. A great deal has already been written 

about the principle, by physicists, historians of physics, and philosophers of physics. 

Physicists have examined the evidential basis for the principle (e.g., Dicke, 1964; Will, 

1993), the principle’s approximate character and the scope of its applicability (e.g. Pauli, 1921 

																																																								
14 The argument, implicit in the foregoing, is the following: (P1) If the Lorentz frame is uniquely determined by its 
empirical criteria, then an observer floating in an elevator cabin should be able to tell whether he is in free space or 
freely falling in a gravitational field. (P2) An observer in an elevator cabin cannot tell whether he is in free space or 
freely falling in a gravitational field. (C) Therefore, the Lorentz frame is not uniquely determined by its empirical 
criteria. 
15 Recall that in Newtonian theory the proportionality of inertial mass m to gravitational mass µ is a remarkable fact 
that lacks an explanation. This proportionality is explained by way of the equivalence principle. The principle 
establishes that immersion in a homogeneous gravitational field and uniform acceleration are identical in their 
effects. Since the two concepts of mass figure in the expressions for gravitational force and accelerative force, the 
principle implies that inertial and gravitational mass are not merely proportional or equivalent but “identical in 
essence.” Einstein himself (1912, p. 1063; 1918, p. 241) used the suggestive term wesensgleich – identical in 
essence, essentially the same, consubstantial – to express this identity. 
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[1958]; Eddington, 1923; Synge, 1960; Ohanian, 1977), and the problem of expressing the 

content of the principle in Einsteinian gravitation (e.g., Trautman, 1966; Anderson, 1967; 

Anderson and Gautreau, 1969). Others, among them historians of physics, have focused on 

Einstein’s understanding of the principle (e.g., Pais, 1982; Norton, 1985). Philosophers of physics 

have examined a range of issues: the significance of particular statements of the principle (e.g., 

Ghins and Budden, 2001); the question of its methodological character (e.g., Friedman, 2001 and 

2010); the significance of the principle for the correct mathematical setting of Newtonian 

gravitation (e.g., Knox, 2014); the question whether quantum mechanics poses a challenge to the 

principle (e.g., Okon and Callendar, 2011). 

Virtually all of this work has focused on the content of the principle and whether indeed it 

has any content in Einsteinian gravitation. But there is more to say about its methodological role 

in the context of theory development. A methodological analysis asks the following questions: 

what kind of principle is the equivalence principle? What is its role in the conceptual framework 

of gravitation theory? Furthermore, those answers that have been given tend to reflect deflationist 

and what might be called “eliminativist” accounts of the principle. An example of the deflationist 

account can be found in the preface to Synge’s Relativity: The General Theory: 

I have never been able to understand this principle [...] The principle performed the 
essential office of midwife at the birth of general relativity […] I suggest that the midwife 
be now buried with appropriate honours. (Synge, 1960, pp. ix-x) 

The suggestion in this and other remarks is that the principle is a mere heuristic, a ladder to be 

kicked away. Its value lies, or so it is often put, in the fact that it motivates differential equations 

of a certain form. The principle is no doubt a heuristic, in the strict sense of the word: a search 

principle. It is part of the empirical basis, the “physical strategy,” that motivated Einstein’s 

development of his gravitation theory. But the idea that the principle is a “mere” heuristic is 

problematic. For one thing, the fact that it does motivate certain equations, that those equations 

are adequate to the description and prediction of physical phenomena, and that a violation of the 

principle would result in different equations undermines the idea that the principle is a mere 

heuristic. 

The aspiring eliminativist is motivated by a counterfactual: if Einstein had not developed 

his gravitation theory in 1915, particle physicists would have 20 years later and without the help 

of the equivalence principle. The eliminativist account, which is suggested in the work of a 
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number of twentieth-century figures and which is implicit in the recent work of Pitts (2016a, 

2016b, 2018), is fleshed out with the help of the massless spin-2, and to a lesser extent massive 

spin-0 and spin-2, theories of gravity.16 These research programs assume the framework of 

relativistic field theory and a “graviton” field, and from these and other assumptions recover 

versions and relatives, both close and distant, of Einstein’s field equations. In the massless spin-2 

theory, the equivalence principle holds and it becomes a theorem, a consequence or feature of the 

field equations, rather than a foundational principle; in the massive theories, the principle is 

violated.17 

There are three main objections to the eliminativist account. First, of these alternative 

theories, only the massless spin-2 one recovers precisely Einstein’s equations, and then only in 

their source-free linearized form. The massive spin-0 theory – empirically refuted since 1919 

since it does not “bend light” – gives a single equation that is not part of, or compatible with, 

Einstein’s equations; it is not intended as a modern competitor in its own right. The massive spin-

2 equations are all different from Einstein’s equations, albeit subtly. Second, the equivalence 

principle is, so far as we know, exceptionless; therefore, the theories in which it is violated must, 

at a minimum, bring something to our understanding of gravitation that outweighs the cost. 

Third, although it is true that there are multiple paths to (at most) versions and relatives of 

Einstein’s equations, there is a feature of gravitation – the identity of freely falling frames and 

Lorentz frames – that the principle singles out. This feature is integral to our understanding of 

gravitation and the principle not only singles it out but ties it to a number of other concepts. For 

these reasons, the alternative theories of gravity can hardly be said to support a successful 

eliminativist account since none of them allow us to recover the full Einstein field equations, 

which are founded on the principle. 

A notable exception to the deflationist and eliminativist accounts is that offered by 

Michael Friedman (e.g., 2001 and 2010), who offers an account of the principle’s methodological 

role. Friedman claims that the equivalence principle is a “constitutive principle”: 

																																																								
16 See Pitts (2016a, 2016b, 2018) for details and for a near-exhaustive list of the original research papers. 
17 For example, in massive spin-2 gravity, immersion in a homogeneous gravitational field and uniform acceleration 
are not identical in their effects. The difference between gravitational effects and inertial effects is observable only in 
experiments sensitive to the graviton mass term in the gravitational field equation, that is, only if one looks carefully 
enough to observe the influence of the mass term on inertial effects. See Pitts (2016b, p. 82) for details. 
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[The theory of pseudo-Riemannian manifolds and the equivalence principle] function 
rather as necessary parts of the language or conceptual framework within which [the field 
equations make] both mathematical and empirical sense. (Friedman, 2001, p. 39) 

This is, roughly speaking, the claim that the equivalence principle is a condition of the possibility 

of conceiving of gravitation as a geometrical phenomenon. I have argued (Samaroo, 2015) 

against Friedman’s account of the principle’s methodological role, though I maintain that 

something close to Friedman’s view is defensible. 

What, then, is the correct account of the equivalence principle’s methodological role? In 

what follows I develop a new account that draws on and extends Demopoulos’ recent work. 

5. The Criterion of Identity 

The notion of a criterion of identity has come to be bound up with a number of philosophical 

programs and a large literature, but the sense at issue here is that found in the Foundations of 

Arithmetic (1884 [1989]). I will present Frege’s use of the notion of a criterion of identity in his 

analysis of number. Then I will consider Demopoulos’ account of the criterion of identity and I 

will show that it provides the basis for a new account of the equivalence principle’s 

methodological role. 

5.1. For Numbers 

The notion of a criterion of identity has its origin in Frege, who made it the cornerstone of his 

theory of number.18 Frege sought to provide an analysis of the concept of number by showing 

that the theory of the natural numbers can be derived from a principle that has the same scope and 

generality as conceptual thought itself. The principle in question is the following: for any 

concepts F and G, the number of Fs is the same as the number of Gs if, and only if, there is a 

one-to-one correspondence between the Fs and the Gs. (Frege, 1884 [1989], §62-3) Frege 

introduced this principle as a criterion for assessing the conditions under which we should judge 

that the same number has been presented to us in two different ways, as the number of two 

different concepts. 

																																																								
18 Frege claimed to have reduced arithmetic to logic – the familiar construal of logicism – even though he understood 
this reduction in a very particular way. He defends this claim by offering arguments that aim to establish the 
analyticity and apriority of arithmetic. In contrast with Frege’s own defence, Demopoulos (2013, Chapter 1) has 
argued for a reconstruction of Grundlagen that is independent of the truth of logicism or the doctrine of logical 
objects, and of Frege’s views about primitive truths and their natural order. 
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In the context of second-order logic, this principle – Frege’s criterion of identity for 

numbers – implies the Peano-Dedekind axioms. But its role does not end there: the criterion also 

underlies our judgements of equinumerosity in our applications of the theory of the natural 

numbers, for example, our everyday application of the theory of the natural numbers in counting. 

In this way, the criterion of identity controls the application of the theory of the natural numbers. 

Let me elaborate on the sense in which the criterion “controls the application” of the 

theory. To apply arithmetic, we need to explain the notion of the number of a concept, that is, the 

content of an ascription of number involves the predication of something of a concept. For 

example, the concept horse that draws the King’s carriage has the property of having four 

objects falling under it. For Frege, this notion is explained when we have a means of judging that 

two concepts have the same number of objects falling under them – a judgement established by 

our grasp of the equivalence relation (equinumerosity) that is appealed to in the criterion of 

identity. Hence, the criterion of identity “controls the application” of arithmetic in the sense that 

it is a necessary presupposition of our ability to make judgements of equinumerosity, and so of 

our ability to count. 

The question of the methodological character of the criterion of identity is the subject of 

enduring interest and dispute. To some, taking the criterion as the basis for the construction of the 

natural numbers is questionable since it seems to presuppose the notion of number, and so makes 

the construction circular. Because of this supposed circularity, it has been argued, notably by 

Wright (1997), that the principle is an “abstraction principle,” a stipulation governing the use of a 

new class of terms. But Demopoulos has worked to restore a proper understanding of the 

criterion as the expression of an analysis of a preexisting notion: number. The criterion captures 

explicitly what our pre-analytic notion of numerical identity implicitly presupposes; it is this 

notion that is at work in our applied arithmetical reasoning. 

Setting aside this work on its methodological character, Demopoulos claims that the 

notion of a criterion of identity has a role to play in the analysis of physics. Let us now turn our 

attention to his argument in Logicism and its Philosophical Legacy (2013). 

5.2. For Lengths 

Logicism and its Philosophical Legacy (2013) brings together a number of contributions to the 

foundations of mathematics and physics, general philosophy of science, and philosophy in 
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general. But there is a line of argument that is particularly relevant to this study: the notion of a 

criterion of identity can be employed more widely than in the foundations of arithmetic and we 

see this in the development of physical theories, in particular space-time theories.19 Demopoulos 

claims, furthermore, that Frege’s notion of a criterion of identity can form the basis for a new 

account of the application of a number of mathematical theories: just as Frege showed that his 

criterion of identity for numbers controls the application of the theory of the natural numbers in 

counting, other criteria of identity control the application of other mathematical theories, among 

them, Euclidean and Minkowskian geometry. Moreover, Demopoulos claims that the criterion of 

identity forms the basis of a general framework for distinguishing between applied mathematical 

theories that are and are not empirically constrained. 

To defend these claims, Demopoulos examines Einstein’s account of the application of 

geometrical theories in “Geometry and Experience” (1921 [1922]). In this Einstein gave an 

analysis of the concept of length – and through this, an analysis of the basic equivalence relation 

(congruence) of Euclidean geometry. He points out that congruence can be understood only by 

way of the principle of free mobility, which interprets the concept by expressing a criterion for its 

application. The principle of free mobility is as follows: if two tracts are found to be congruent 

once and anywhere, they are congruent always and everywhere. (Einstein used the term “tract,” 

which is the translation of the German Strecke, to refer to a bounded line-segment on a practically 

rigid body.) The principle is a presupposition of our ability to make measurements of length 

using a measuring rod, a chain, or a pair of dividers; it is a presupposition of our ability to carry 

out the compass-and-straightedge constructions of classical geometry, on homogeneous spaces.20 

In this way the principle controls the application of Euclidean geometry.21 

																																																								
19 Demopoulos’ claim that the notion of a criterion of identity is relevant to the analysis of space-time theories can be 
found in Chapter 2 of Logicism and its Philosophical Legacy (2013). His first example is that of Euclidean geometry, 
which, together with the principle of free mobility (understood as a criterion of identity for lengths), becomes a 
space-time theory. His second example is that of Minkowskian geometry, which, together with the Einstein 
synchronization criterion (understood as a criterion of identity for times), becomes a space-time theory. 
20 In fact, the concepts of practically rigid body and congruence are interdefinable and the principle of free mobility 
expresses a criterion for the application of both at once. 
21 As is well known, the principle of free mobility controls not only the application of Euclidean geometry but also 
that of elliptic geometry and hyperbolic geometry, that is, the geometries of constant positive and negative curvature. 
The geometrical result that underlies this is the Helmholtz-Lie theorem. See Stein (1977) and Torretti (1978) for 
details. 
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Demopoulos argues that the principle of free mobility functions as a criterion of identity 

for the lengths of tracts: the length of one tract is the same as the length of another if, and only if, 

the tracts are congruent. (Demopoulos, 2013, p. 39) The criterion expresses the conditions under 

which we can judge that the lengths of tracts are identical. In the same way that Frege’s criterion 

of identity is an analysis of equinumerosity and number, this criterion of identity is an analysis of 

congruence and length. The criterion makes explicit our pre-analytic conception of the free 

mobility of practically rigid bodies: the conception that is manifested in our capacity for making 

ordinary judgements of size, shape, spatial orientation, and distance; the conception that is the 

basis for geometric constructions, and so for constructive proofs.22 

Like the criterion of identity for numbers, this criterion of identity also controls the 

application of a mathematical theory, in this case, Euclidean geometry. But there is an important 

difference between these criteria of identity: the criterion of identity for the lengths of tracts is 

empirically constrained. Because it is empirically constrained, applied Euclidean geometry is 

transformed into a part of empirical science: it becomes a part of physics. It is just this difference 

that secures the apriority of arithmetic, the case for which Frege argued. 

It is one of Demopoulos’ principal goals to clarify the relative epistemic status of applied 

arithmetic and applied geometry – to show why the different epistemic status of arithmetic and 

geometry has nothing to do with one being “pure” and the other “applied.” Both the Peano-

Dedekind theory of the natural numbers and Euclidean geometry can be applied, but the 

application of the latter transforms it into a part of physics, while in applications arithmetic 

retains its status as a mathematical theory. It is this point that, before Demopoulos’ analysis, had 

not been properly made. As we will see, Demopoulos’ employment of the notion of a criterion of 

identity to clarify both the application of mathematical theories and the distinction between 

applied mathematical theories that are and are not empirically constrained is vindicated by 

considering two further cases. 

 

																																																								
22 Demopoulos’ claim that the notion of a criterion of identity can be employed more widely than in the foundations 
of arithmetic is foreshowed in Grundlagen. Frege (1884 [1989], §64-7) claims that the notion of the direction of a 
line turns on the provision of a criterion of identity for directions: the direction of l is the same as the direction of m 
if, and only if, l is parallel to m. See Demopoulos (2013, pp. 187-8) on the role of this discussion in Frege’s account 
of the criterion of identity. 
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5.3. For Times 

Demopoulos then turns to Einstein’s analysis of time. In “On the Electrodynamics of Moving 

Bodies” (1905) Einstein gave an analysis of time – and through this, an analysis of the basic 

equivalence relation (relative simultaneity) of what would later be called “Minkowskian 

geometry.” This analysis was offered as a solution to a problem at once practical and theoretical: 

the problem of determining when spatially separated events occur at the same time. Einstein 

showed that this problem can be solved by a procedure involving emitted and reflected light 

signals, as outlined in Section 1. 

Demopoulos offers a close reading of Einstein’s 1905 analysis of time. He shows that this 

analysis turns on Einstein’s provision of a criterion of identity for the times of occurrence of 

spatially separated events. To illuminate Einstein’s analysis, Demopoulos uses a now-familiar 

geometrical construction. Consider the world-line of some inertial observer O. Choose point-

events e1 and e2 on O. Construct a forward light cone emanating from e1 and a backward light 

cone emanating from e2 such that they swallow one another. e1 and e2, together with the two new 

points (label one of them q), are the vertices of a “light parallelogram.” Now construct a line 

through the newly-created vertices; label it SimO. Label the point of intersection of O and SimO p. 

SimO represents the plane of simultaneity relative to O and it is the set of all events that are 

simultaneous with p. (Note that we can just as well take another inertial world-line as a starting 

point and construct its corresponding plane of simultaneity in the same way.) 

 
This construction incorporates the Einstein synchronization criterion: it lies in SimO’s bisection of 

the interval between e1 and e2. 
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Demopoulos (2013, pp. 37-8) argues that the synchronization criterion functions as a 

criterion of identity for the times of occurrence of spatially separated events: the time of 

occurrence of a distant event q is the same as the time of occurrence of p if, and only if, p bisects 

the interval along O that is bounded by the events marking the emission and reception of a light 

signal sent from e1 and reflected back from a distant event q. The criterion expresses the 

conditions under which we can judge that the times of occurrence of p and q are identical. 

As in the case of the criterion of identity for the lengths of tracts, this criterion of identity 

controls the application of a mathematical theory, namely Minkowskian geometry. To apply 

Minkowskian geometry, we need to explain the notion of the time of occurrence of an event. This 

is necessary for defining a reference frame in which to measure motion. This notion is explained 

when we have a criterion for judging when two spatially separated events have the same time of 

occurrence; in this case, the criterion appeals to an equivalence relation between events 

(simultaneity). The explanation provided by Einstein’s criterion consists in its explication of 

when two events are simultaneous relative to an inertial frame by a procedure based on light 

signals, and so, in Minkowskian geometry, in terms of a construction based on paths that, 

according to the usual coordinating principles, are interpreted as the paths of light rays. The 

criterion, therefore, is the basis for the construction – the diagonal of the “light parallelogram” – 

that encodes the structure of Minkowskian geometry.23 In this way Minkowskian geometry is 

revealed to be the natural geometrical interpretation of a physical world with an invariant finite 

velocity. And note that because the criterion is empirically constrained, involving as it does 

nomological properties of emitted and reflected light signals, it not only controls the application 

of Minkowskian geometry but transforms it into a part of physics. 

Einstein’s analysis of simultaneity is not, as the logical empiricists maintained, an 

“epistemological analysis” that merely supplies a coordinative definition or correspondence rule 

for giving an empirical meaning to a theoretical concept that had previously lacked one: it is an 

analysis, in several steps, of unacknowledged assumptions about the measurement of time and 

motion, the culmination of which is Einstein’s analysis of the problematic coordinative definition 

																																																								
23 Demopoulos’ (2013, pp. 37-8) account tacitly presupposes that the world-lines of free particles define a projective 
structure, and that projective structure plus the conformal structure defined by the propagation of light determines the 
metric (up to a scale factor). While Demopoulos does not reference Weyl (1918, 1921) and Ehlers, Pirani, and Schild 
(1972), he takes for granted their results. 
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that is embedded in the Newtonian framework. This analysis of simultaneity and its place in an 

established conceptual framework reveals that the criterion for the concept’s application is tied to 

an empirical hypothesis, namely the hypothesis that the speed of light is the same in all reference 

frames. And with the provision of this criterion, we are led to a relation of simultaneity (relative 

simultaneity) that is fundamentally different from the relation that the Newtonian framework 

assumes (absolute simultaneity).24 

5.4. For Motions 

Let us return to the question of the equivalence principle’s methodological role. At the end of 

Section 2, we saw that the principle expresses the conditions under which we can judge that the 

motions of freely falling frames and Lorentz frames are identical. And, by this point, one might 

already think that the case for understanding the equivalence principle to express a criterion of 

identity is established. But there is another question that needs to be answered: can it be shown 

that the equivalence principle, so understood, controls the application of the mathematical 

framework of Einsteinian gravitation? 

So far, we have discussed the equivalence principle only within the context of theory 

development. How might we formulate the principle in the context of Einstein’s completed 

gravitation theory? There are proposals by Trautman (1966, p. 321) and Anderson (1967, p. 335) 

that are particularly apt; here is a paraphrase: all non-gravitational experiments serve 

(approximately) to determine the same affine connection in a sufficiently local region of space-

time.25 In more detail, what this formulation expresses is that, in a sufficiently local region of 

space-time such that tidal forces can be ignored, the laws governing non-gravitational interactions 

are constructed with the same affine connection. That is, no experiments reveal that certain 

physical processes couple to the gravitational field and not others, and so require a theoretical 

account involving a different affine connection. It is the universal coupling that this formulation 

captures that allows us to say that there exists in the neighbourhood of every point-event p a 

reference frame and an associated coordinate system such that the neighbourhood’s size and the 

first derivatives of the connection relate so that the connection components are close enough to 

																																																								
24 See DiSalle (2006, Chapter 4; 2010, §2) for a careful examination of Einstein’s analysis. 
25 The affine connection is the geometric object that, in Newtonian terms, expresses the gravitational field strength; 
in Einsteinian terms, it expresses how an observer in motion relative to you moves so that, from his point of view, 
you are travelling in a straight line. 
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constant, and so close enough to zero, and thus the laws governing non-gravitational interactions 

are the same as in special relativity.26 

With the Trautman-Anderson formulation of the principle in hand, we can now formulate 

the following criterion of identity for the motions of freely falling frames and Lorentz frames: the 

motion of a freely falling frame is the same as the motion of a Lorentz frame if, and only if, all 

non-gravitational experiments determine the same affine connection in a freely falling frame as 

would be determined in a Lorentz frame.27 This formulation explicitly ties the equivalence 

principle to Lorentz frames and freely falling frames, to non-gravitational interactions and the 

laws governing them, to the geometric objects that figure in the laws, and in this way to the local 

affine structure of space-time. 

Does this criterion of identity control the application of the theory of pseudo-Riemannian 

manifolds in Einsteinian gravitation? The criterion incorporates the affine connection, which 

figures in the geodesic equation28: 
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When the affine parameter l is the proper time along the path of a free particle, this is the 

assertion that “free massive test particles traverse time-like geodesics”; it is the counterpart, in 

Einsteinian gravitation, of the statement, in Newtonian theory, that “a body unacted upon by 

forces moves in uniform rectilinear motion.” The geodesic equation for light rays takes the same 

																																																								
26 Now, in addition to the equivalence principle, there is another principle that is necessary to ensure that special 
relativity is valid as a local approximation – the equivalence principle alone does not do this. The principle in 
question is the principle of minimal coupling, according to which no terms of the special-relativistic equations of 
motion contain gravitational variables. (For a more careful account of the principle of minimal coupling, see Brown 
and Read (2016).) 

The equivalence principle, together with the principle of minimal coupling, is known as the strong 
equivalence principle. (So far, my characterizations of the “weak” and “Einstein” principles have accorded with the 
taxonomy of Will (1993). This characterization of the strong principle follows Anderson (1967) and Ehlers (1973); it 
differs from Will’s, which does not assume minimal coupling and which differs from the Einstein principle in its 
inclusion of bodies with gravitational self-energy.) It is noteworthy that Anderson (1967) claims that only the 
equivalence principle is integral to Einsteinian gravitation, not the strong principle. By contrast, Brown (2005) leaves 
it as an open question. The question about the status of minimal coupling is an important one. But my account does 
not require me to pronounce on this either way. 
27 Evidently, this criterion of identity, which incorporates the Trautman-Anderson version of the equivalence 
principle, represents an ideal, with something only approximate actually holding. For one thing, it is assumed, in the 
case of the freely falling frame, that the size of the experiment is sufficiently small in relation to the distance scales 
picked out by the Riemann curvature tensor; in this way, tidal forces can be ignored. 
28 Note that Weinberg (1972, Chapter 3, Section 2) offers a now-familiar derivation of the geodesic equation of 
motion from the equivalence principle. 
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form, only proper time cannot be used as a parameter along the path of a light ray since the 

proper time interval between any points on it is zero. The corresponding principle for light rays is 

as follows: “light rays traverse light-like geodesics.” The geodesic equation gives an account of 

the behaviour of the most basic entities in Einsteinian gravitation, the motions of free particles 

and light rays. Hence, the criterion of identity, with its incorporation of the affine connection, 

picks out the geodesics with respect to the connection on which matter and light propagate. In 

this way – one that will be explained in greater detail in the next paragraph – the criterion 

controls the application of a pseudo-Riemannian geometry in Einsteinian gravitation. Note, 

furthermore, that because the criterion of identity is empirically constrained – it is based on the 

local indistinguishability of the motions of frames – the geometry is transformed into a part of 

physics. 

It is worth elaborating on the criterion’s “controlling the application” of the space-time 

geometry of Einsteinian gravitation. To apply the space-time geometry, we need to explain the 

notion of the inertial motion or inertiality of a frame. For Einstein, this notion is explained when 

we have a criterion for judging that the motions of Lorentz frames and freely falling frames are 

the same motion – and in this case the criterion appeals to an equivalence relation between the 

motions of frames (local indistinguishability). The explanation provided by the criterion consists 

in its explication of when the motions of Lorentz frames and freely falling frames are locally 

indistinguishable, and so, in the space-time geometry of Einsteinian gravitation, when the non-

gravitational interactions pick out the same affine connection and thereby the same local inertial 

structure. (Here the geodesics associated with the connection are interpreted, according to the 

usual coordinating principles, as the paths of free particles and light rays.) 

There are two objections to the foregoing that I wish to address – they both serve to 

clarify my account. One might object that the criteria of identity for times and motions are 

different from those for numbers and lengths. The identity is established at a second level in the 

cases of times and motions: “these concepts have the same number of objects falling under them” 

and “these tracts are the same length” are established by a single direct comparison, whereas 

“these events occur at the same time” and “the motions of these frames are the same” are arrived 

at on the basis of the systematic agreement of several measurements or kinds of measurements. 

But the fact that the identity at issue in the latter two cases is a higher-order property is not an 

objection but a clarification. What matters is that in all of these cases – however the identity is 
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established and at whatever level – the criteria of identity express the conditions under which we 

can judge that the same thing has been presented to us in two different ways. 

One might also object that the criterion of identity for motions is different from the other 

criteria of identity considered. Criteria of identity tell us when two objects are of the same kind 

and, in the first three cases, like objects are compared, but not in the last. In more detail, the 

objection runs as follows: the criterion of identity for numbers identifies when two sets are of the 

same kind, i.e., when they are equinumerous; the criterion of identity for lengths identifies when 

two tracts are of the same kind, i.e., when they are congruent; the criterion of identity for times 

identifies when the times of two events are of the same kind, i.e., when they are simultaneous. 

But the criterion of identity for motions does not compare like and like: the motions of Lorentz 

frames and the motions of freely falling frames. Now, the criterion may collapse the distinction 

and show that these motions are of the same kind in the new theoretical framework that Einstein 

is defending, but that still distinguishes it from the others. Let me make two observations. First, 

the objection appeals to our pre-analytic conceptions of numbers, lengths, and times, and to the 

idea that they can be compared unproblematically; motions are set apart. This reflects a lack of 

caution about our presuppositions regarding what is demanded for, e.g., an event to have a time 

of occurrence. This neglects that the explications of number, length, time, and inertia are 

informed by their respective criteria of identity. Second, it is assumed that the role of a criterion 

of identity is to establish when two objects are of the same kind (concept). But Frege is very clear 

that on his use of the notion, the criterion of identity tells us when the same object has been 

presented to us in two different ways. For Frege, criteria of identity deal specifically with objects, 

not kinds (concepts). The analysis of the concepts at issue – number, length, time, inertial motion 

– is informed by the criteria of identity, but the criteria of identity themselves deal with objects 

not concepts. In the same way as the other criteria of identity, therefore, the criterion of identity 

for motions tells us when the same thing, the inertial motion or inertiality of a frame, has been 

presented to us in two different ways.29 

																																																								
29 In a similar vein to this last objection, one might say that the criteria of identity for numbers, lengths, and times are 
more straightforward than the criterion of identity for motions. One might argue that “the motions of these frames are 
the same” rests on more physical assumptions than, e.g., “these events occur at the same time.” For example, one 
might argue that a frame falling in a weak gravitational field, far removed from the nearest large mass, has the same 
motion as a Lorentz frame, but not the frame of a particle falling into a black hole. But in each of the three cases 
where the criteria of identity are empirically constrained, various assumptions must be made: that the tracts are 
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In overview, the interest of the criteria of identity that underlie Frege’s and Einstein’s 

analyses resides in the equivalence relations they express. As Demopoulos has stressed, both 

Frege and Einstein take the equivalence relations – found on the right-hand side of the criteria of 

identity – as primary and then proceed to explain the relevant recognition judgements – found on 

the left-hand side – in terms of the holding of the appropriate relation. In each analysis, the 

criterion of identity emerges from the attempt to reveal the presuppositions on which the use, 

misuse, and limitations of the concepts at issue – number, length, time, and inertial frame – 

depend. Frege shows that the analysis of number is informed by a criterion of identity for 

numbers and that this criterion is not empirically constrained. By contrast, Einstein’s analyses of 

length, time, and inertial motion turn on criteria of identity that are founded on a host of empirical 

hypotheses; in this way, they are empirically constrained and the applied mathematical theories 

they control are transformed into a part of physics. But in spite of the difference between criteria 

of identity that are and are not empirically constrained, it should be clear that none of those just 

considered – for numbers, for lengths, for times, for motions – are mere stipulations or 

conventions. And while the latter three are empirically constrained, they are not founded on 

simple induction either, but reflect an interplay of mathematical and interpretive considerations: 

they enable us to define and interpret concepts such as length, time, simultaneity, and inertia – 

and so all those that are related to them. 

Each criterion of identity is an answer to the question, by virtue of what principle are 

objects x and y identified? In each case, the claim that the principle in question is a criterion of 

identity is not intended as a novel interpretive claim about a significant proposition in the exact 

sciences, but as a natural reconstruction, from a standpoint of greater conceptual clarity, of what 

underlies Frege’s and Einstein’s analyses. In each case, it is argued, the analysis turns on the 

provision of a criterion of identity. The foregoing discussion is summarized in the following 

table: 

 

 

 

																																																								
(practically) rigid in the case of the criterion of identity for lengths; that space is isotropic in that of the criterion of 
identity for times; that strong gravitational fields are excluded in that of the criterion of identity for motions. 
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 Concept 

analyzed 

Criterion of 
identity 

Equivalence 

relation 

Criterion of identity 
empirically constrained 

Mathematical theory 
applied 

 

Frege 

 

number 

 

for numbers 

 

equinumerosity 

 

no 

 

theory of the natural 
numbers 

 

Einstein 

 

length 

 

for lengths 

 

congruence 

 

yes 

 

geometries of 
constant curvature 

 

Einstein 

 

time 

 

for times 

 

simultaneity 

 

yes 

 

Minkowskian 
geometry 

 

Einstein 

 

inertial 

motion 

 

for motions 

 

local 
indistinguishability 

 

yes 

 

theory of pseudo-
Riemannian 
manifolds 

 

6. Significance 

I have argued that Einstein’s 1907 analysis of the Lorentz frame turns on his provision of a 

criterion for recognizing the motions of freely falling frames and Lorentz frames as the same 

motion. This new account illuminates the methodological role of the equivalence principle; it also 

clarifies the account of the application of a pseudo-Riemannian geometry in Einsteinian 

gravitation. But there is a further implication: this account isolates what is distinctive about 

Einstein’s contribution to our understanding of the gravitational interaction. Isolating what is 

distinctive is important because it is sometimes claimed that the equivalence principle was 

already there in the Principia – in Corollary VI to the Laws of Motion. For example, Saunders 

(1998, p. 148; 2013, p. 37) has claimed that Corollary VI is the equivalence principle; Knox 

expresses essentially the same view (2014, p. 11). 

It is worth recalling the context in which Corollary VI appears and what it is used to 

establish. Corollary VI is part of the argument running the length of the Principia for a solution 

to the “Two Chief World Systems” problem. It is an argument that begins with the laws of 

motion, the corollaries to the laws, and all of the propositions proved in Book 1 of Principia; that 

considers the extension of this framework to the celestial realm; that proceeds to an estimation of 

the masses of the Solar System bodies and the calculation of the system’s centre of mass; and 
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whose conclusion is both a solution and a transformation of the original problem. What follows is 

only a schematic account of the role of Corollary VI in this argument. 

The laws of motion express criteria for the application of the conceptual framework of 

Newtonian mechanics. With this framework in hand and with the assurance that it applies to 

cases of mechanical interaction (impact), Newton asks whether it can be extended to the long-

range centripetal forces holding the planets and satellites in their orbits. He postulates that the 

third law of motion holds between all bodies in the universe. Now supposing that it does hold and 

that every body attracts every other reciprocally according to some yet-to-be-determined force 

law, Newton asks the following question: how, using the framework of the laws of motion, can 

we give an account of the motions within a particular subsystem of bodies when the system is 

acted upon by every other body? How, given the complexity of these interactions, is the analysis 

of orbital motion possible? This would seem to pose an intractable problem. 

But Newton uses Corollary VI to show that certain subsystems, namely planetary systems 

such as that of Jupiter and its satellites, that are far enough away from large gravitating bodies 

suffer a gravitational attraction, but the lines of force can be treated as very nearly equal and 

parallel and the systems behave as though they suffered no gravitational attraction at all. Newton 

expresses this in Corollary VI as follows: 

If bodies are moving in any way whatsoever with respect to one another and are urged by 
equal accelerative forces along parallel lines, they will all continue to move with respect 
to one another in the same way as they would if they were not acted on by those forces. 

The corollary implies that the influence of distant bodies on certain subsystems can be ignored, 

that is, these systems can be treated as effectively isolated. Newton appeals to the corollary in 

Book 1, Proposition 66, Case 1 and in Corollary 19 of the same proposition.30 

Corollary VI establishes that bodies in centre-of-mass systems that are freely falling 

towards distant stars behave among themselves just as they would if the system were moving 

inertially. That is to say, the outcomes of all mechanical experiments in a freely falling centre-of-

mass system are the same as would be obtained in an inertial frame. 

																																																								
30 But it is worth noting that the role of Corollary VI in Newton’s argument is far more explicit in The System of the 
World, notably in articles 8 and 27. 
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Does Corollary VI have the same empirical content as the equivalence principle? Newton 

“derives” Corollary VI from the laws of motion and it is reasonable to think that he expects it to 

apply to all interactions.31 After all, Corollary VI says nothing about what kinds of forces urge 

the bodies along lines that are very nearly equal and parallel. What is questionable is whether he 

was prepared to make a blanket, exceptionless statement such as the equivalence principle. For 

example, even if Newton assumed that every interaction obeys the third law, he might not have 

been confident that light, which he took to consist of massive corpuscles, must also fall like 

massive particles. What seems clear is that Corollary VI contains no claim so explicit as the 

principle of universal coupling, and therefore cannot be said to have the same empirical content 

as the equivalence principle.32 

Does Corollary VI function as a criterion of identity for the motions of inertial frames and 

freely falling frames? Corollary VI establishes that these motions, at least in the Newtonian 

framework, cannot be distinguished by experiment, but it does not undermine the theoretical 

distinction: inertial motion and freely falling motion are distinct in the Principia. That is to say, 

Corollary VI does not function as a criterion of identity. Newton is concerned to show that a 

“Corollary VI frame” can be treated as a near-enough approximation to an inertial frame. 

It is important to understand why the distinction between inertial and non-inertial 

motions, inertial and non-inertial frames, is maintained. In the Principia and at the end of the 

Opticks Newton outlines a program of empirical investigation on the basis of his dynamical 

theory. Both the program and the dynamical theory are based on the notion of a “force of nature,” 

and so on the laws of motion as a (partial) explication of that notion. The dynamics does not 

require the notion of absolute velocity, nor that of absolute space, but it does require (“absolute”) 

acceleration – and this presupposes a distinction between inertial and non-inertial motions. 

Without this distinction, the Newtonian conception of a moving force cannot be articulated. 

Therefore, in spite of Corollary VI, it is difficult to see how the dynamical theory can be 

weakened without changing it essentially. 

																																																								
31 It is central to Newton’s argument that gravitation is proportional to mass, without regard to the kind of matter or, 
e.g., charge. This is evident in his discussion of his pendulum experiments in Book 3, Proposition 6 of the Principia. 
32 One might say that, within the Newtonian framework, it is yet-unknown (regardless of what Newton expected) 
whether the outcomes of all non-gravitational experiments will be the same in freely falling frames as would be 
obtained in inertial frames, and so will determine the same affine connection in a given region of space-time. 
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Now, going beyond the conceptual framework of Principia, we can of course identify 

freely falling frames and inertial frames; this is what is done in Newton-Cartan theory. The 

identification is integral to Cartan’s reconstruction of Newtonian gravitation, a reconstruction that 

is in many respects natural and instructive, but it is an identification that Newton could not 

countenance and that is alien to the structure implicit in Principia. 

I have argued, in sum, that a careful study of the equivalence principle clarifies two 

things: Corollary VI has neither the same empirical content as the equivalence principle nor the 

same role. In this way this new account of the principle isolates what is distinctive about its 

contribution to gravitation theory, and so it benefits our understanding of the foundations of both 

Einstein’s and Newton’s theories. 

There are two further implications of this account that I wish to draw out. First, this 

account substantiates the idea that the notion of a criterion of identity has something to offer the 

analysis of physics. The criterion of identity, though originating in the foundations of 

mathematics and taken up by philosophers working in general metaphysics, has not previously 

been employed in the service of the foundations of physics. It is worth noting that this 

employment of the criterion of identity is part of a methodological – and therefore 

epistemological – analysis and not a metaphysical project. It has nothing to do with individuation, 

objects, kinds or sortals in the usual senses of these terms; still less anything to do with 

identifying “surplus structure” or playing an otherwise eliminative role. The criterion of identity, 

while it does identify two previously distinct motions, has a “synthetic” or constructive role: it 

motivates a reinterpretation of free fall and with it a new framework of empirical investigation, 

one in which the distinction between inertial and non-inertial frames is replaced by a new 

distinction between freely-falling and non-freely-falling frames. 

Second, the account is also of more general importance to the history and philosophy of 

science. It offers an alternative to two prominent accounts of theory change, namely Kuhn’s 

(1962) and the conventionalists’ (e.g., Reichenbach, 1928 [1958]; Carnap, 1934 [1951]; 

Grünbaum, 1963). Kuhn held defenders of different paradigms to be inhabitants of different 

worlds who cannot argue with one another because there are no paradigm-transcendent criteria of 

rationality that could make such argument possible. The transition from one paradigm to another 

therefore is the result of an extra-rational process. For the conventionalists, the transition from 
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one theoretical framework to a new one is a matter of expediency. These accounts have no better 

means of explaining the transition from the special-relativistic framework to a new framework 

than by way of the problematic notions of a Kuhnian paradigm shift and a change of conventions. 

In neither account is there any appreciation of the considerations in the context of theory 

development that motivate the transition. 

In contrast with Kuhn and the conventionalists, I have shown that in the case of 

Einsteinian gravitation this transition was the result of a conceptual analysis. The key step in this 

analysis was showing that the Lorentz frame is not uniquely determined by its empirical criteria, 

and it was Einstein’s recognition of a particular equivalence relation – what is expressed in the 

equivalence principle – that establishes this. I have argued that the principle functions as a 

criterion of identity and that the principle has a substantive and manifestly constructive role: it 

motivates a new concept of natural motion. To regard the principle, then, as a mere heuristic at 

best diminishes, at worst obscures, its role. This account, though a development of Demopoulos’ 

novel employment of the notion of a criterion of identity, is not intended as a radical 

interpretation of the principle, but as an altogether natural way of understanding its 

methodological role in the conceptual framework of gravitation theory. In several respects it is 

surprising that it has not already been proposed. 
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