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Abstract

A regularity theory of causation analyses type-level causation in terms of Boolean

difference-making. The essential ingredient that helps this theoretical framework over-

come the well-known problems of Hume’s and Mill’s classical regularity theoretic pro-

posals is a principle of non-redundancy: only redundancy-free Boolean dependency

structures track causation. The first part of this paper argues that the recent regularity

theoretic literature has not consistently implemented this principle, for it disregarded

two important types of redundancies: componential and structural redundancies. The

second part then develops a new variant of a regularity theory that does justice to all

types of redundancies and, thereby, provides the first all-inclusive notion of Boolean

difference-making.
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1 Introduction

Theories of causation come in many variants. Some take causation on the type level, viz. gen-

eral causation or causal relevance, to be the primary analysandum, others focus on causation

on the token level, viz. singular or actual causation. Some take some form of difference-

making to be the primary analysans, others draw on the causes’ powers or dispositions,

yet others aim to spell out causation in terms of energy transfer or other features of the

mechanism connecting causes and effects (for introductions to the different frameworks see
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Beebee, Hitchcock, and Menzies 2009). Depending on these analytical choices, resulting

theories ascribe different properties to causation. According to some theories, causation is

a deterministic dependence relation, while according to others it is not; some stipulate that

the relata of causation are spatiotemporally located entities, whereas for others absences of

such entities may also be causally related; some theories presuppose or entail that causation

is transitive, others entail that it is non-transitive; some yield that causation is a property that

is extrinsic to causes and effects, according to others it is an intrinsic property; etc.

Although many of the available theories of causation are incompatible, philosophical

research over the past decades has not led to the disappearance of any of them—arguably

because they all track various stubborn pre-theoretic intuitions (e.g. Lombrozo 2010). No

single consistent theory can possibly capture all the properties we pre-theoretically ascribe

to causation. This insight, in turn, has induced a growing popularity of causal pluralism,

viz. the view that there exist multiple concepts or variants of causation (e.g. Psillos 2010).

A corollary of this view is that theories of causation should not be benchmarked against the

whole range of popular pre-theoretic intuitions but only against maximally large consistent

proper subsets of them. The selection of these subsets, of course, can vary from theory to

theory and there is no fact of the matter as to what is the true or even best selection. Rather,

the selection of features of causation a particular theory aims to capture must be justified on

the basis of pragmatic considerations concerning the theoretical or methodological purposes

a particular theory is intended to serve.

Accordingly, without claiming to be presenting the only and ultimate truth about cau-

sation, this paper develops a modern regularity theory of causation by correcting important

shortcomings of the most recent regularity theoretical proposals. The resulting theory’s pur-

pose is to provide a conceptual fundament for the currently spreading configurational com-

parative methods (CCMs) of causal data analysis: Qualitative Comparative Analysis (QCA)

(Rihoux and Ragin 2009; Thiem 2014), Necessary Condition Analysis (NCA) (Dul 2016),

and Coincidence Analysis (CNA) (Baumgartner 2009a, 2009b).1 CCMs differ from other

techniques as regression analytical methods (RAMs) (e.g. Gelman and Hill 2007) or Bayes-

nets methods (BNMs) (e.g. Spirtes, Glymour, and Scheines 2000) in a number of respects

(for a discussion of some of these differences see Thiem et al. 2016). Most importantly for

our current purposes, while RAMs and BNMs search for causal dependencies among vari-

ables by exploiting their statistical (in-)dependencies, CCMs search for causal dependencies

1CCMs have been applied in hundreds of studies in disciplines as diverse as business and economics, polit-
ical science, international relations, sociology, management and organization, public health and health policy,
education, environmental science, evaluation, legal studies, or media and communication. An overview over
the literature is provided on the website of the COMPASSS network: www.compasss.org.
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among concrete values of variables by exploiting Boolean dependencies as “A=αi is (non-

redundantly) sufficient/necessary for B=βi” (where αi and βi are concrete values of A and

B). To this end, CCMs must be underwritten by a theory of causation that provides a link

between Boolean dependency structures and causation. This is exactly the field of expertise

of regularity theories.

Metaphysically, regularity theories are embedded in the tradition of Humean actualist

anti-necessitarianism (Hume 1748, sect. 7),2 according to which there is no causal oomph

enforcing the regularities obtaining in the world we live in; rather, causation, possibility, and

lawhood supervene on the actual distribution of matters of fact, which itself is a brute fact of

our world. Causal laws are convenient summaries of the regularities that happen to emerge

from that distribution. Correspondingly, being in accordance with those laws, that is, being

empirically possible is a matter of existing (in an atemporal sense) in the actual world (from

its beginning to its end).

Analytically, regularity theories make the following choices. Their primary analysandum

is causation on the type level, more specifically, causal relevance relations between variables

or factors taking on specific values: “A=αi is causally relevant to B=βi”, where A=αi, for

instance, stands for malfunctioning traffic lights and B=βi for rear-end collisions.3 (We will

use the terms “variable” and “factor” interchangeably in this paper.) They adopt a classical

difference-making approach that builds on the intuition that for each cause there must exist

at least one fixed setting of context factors F in which it makes a difference to the effect,

meaning that, in F , a change in the cause is systematically associated with a change in the

effect. In consequence, a causal relation between A=αi and B=βi is not taken to supervene

on intrinsic properties of the (sets of) entities represented byA=αi andB=βi, rather it obtains

in virtue of the factors’ location and function in a whole network of other relevant factors.

Moreover, causation is assumed to be a deterministic dependence relation, that is, the in-

determinism in ordinary data is due our epistemic limitations and our resulting inability to

control for all background noise. The primary analysans of regularity theories, then, consists

in structures of Boolean dependencies of sufficiency and necessity that are rigorously freed

of redundancies (Graßhoff and May 2001; Baumgartner 2008, 2013).

2As all metaphysical frameworks, actualist anti-necessitarianism, of course, is controversial. This paper,
however, is not the place to enter that controversy. For its pragmatic scope, adopting the framework is suffi-
ciently justified if that allows for developing a regularity theory that conceptually underwrites CCMs.

3There are some regularity theoretic proposals that consider token-level causation to be primary (e.g.
Mackie 1965), but the criticism raised against these accounts (e.g. Kim 1971), in our view, shows that these
accounts are beyond repair.
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The principle, originally due to Broad (1930) and famously shaped in Mackie’s (1974)

INUS-theory, that only redundancy-free Boolean dependencies track causation, is the es-

sential theoretical ingredient that helped overcome the well-known problems incurred by

the classical regularity theoretic proposals (e.g. Hume 1748 and Mill 1843). To render this

non-redundancy principle formally precise, Graßhoff and May (2001) determined that only

Boolean dependencies in the form of minimal biconditionals track causation, where a min-

imal biconditional Π ↔ B=βi features an outcome B=βi on one side and a minimally nec-

essary disjunction (in disjunctive normal form) of minimally sufficient conditions of B=βi

on the other. Baumgartner (2013) suggested that this idea could be generalised for the anal-

ysis of structures with multiple outcomes by simply conjunctively concatenating minimal

biconditionals. It was an (implicit) assumption of all these proposals that the only elements

of Boolean dependency structures that can feature redundancies are sufficient and neces-

sary conditions and that, accordingly, all that is required to do justice to the non-redundancy

principle is to eliminate redundancies from relationships of sufficiency and necessity.

The first part of this paper, however, will show that this assumption is false. It is not

true that minimizing sufficient and necessary conditions ensures the redundancy-freeness of

Boolean dependency structures. There are two additional types of redundancies the regular-

ity theoretic literature so far has disregarded: componential and structural redundancies. An

outcome B=βi may have multiple minimal biconditionals, say, Π1 ↔ B=βi and Π2 ↔ B=βi

such that Π1 accounts for B=βi in terms of a proper subset of the factor values in Π2. We

shall say that Π2 ↔ B=βi contains a componential redundancy, and we will show that a

causal interpretation of minimal biconditionals with componential redundancies is not war-

ranted because for componentially redundant factor values there cannot exist a fixed setting

of context factors F in which they make a difference to the outcome. In return, the factor

values contained in minimal biconditionals without componential redundancies are exactly

those factor values for which difference-making contexts are possible, meaning that these

biconditionals—which we shall label RDN-biconditionals—indeed are redundancy-free.

However, when RDN-biconditionals for single outcomes are conjunctively combined to

multi-outcome RDN-biconditionals yet another form of redundancy may arise. An RDN-

biconditional Φ1, while internally free of redundancies, may be redundant in a conjunctive

sequence Φ1 ∗Φ2 ∗ . . . ∗Φn of RDN-biconditionals because Φ1 ∗Φ2 ∗ . . . ∗Φn is logically

equivalent to a proper part of itself: Φ2 ∗ . . . ∗Φn. As Φ1, hence, makes no difference to

the overall structure, we shall say that Φ1 is structurally redundant. In sum, what counts as a

redundancy-free Boolean dependency structure that tracks causation does not only depend on

the minimality of sufficient and necessary conditions but also on componential redundancy-
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freeness and on the redundancy-freeness of the conjunctive concatenation constituting the

structure as a whole.

The second part of the paper then develops a new regularity theory that does justice

to all types of redundancies and, thereby, provides the first all-inclusive notion of Boolean

difference-making. Appendix 2 provides an R script that allows for easily replicating all

analytical and calculative steps undertaken in this paper.

2 Background

A regularity theory assumes that its analysandum, viz. type-level causation, is not a funda-

mental property but that it supervenes on actual distributions of matters of fact, that is, on

Humean mosaics (e.g. Lewis 1986, xi-x), which amount to sets of configurations of nat-

ural properties coincidently instantiated by units of observation—events, states of affairs,

situations, cases, or whatever other entities the preferred ontology happens to furnish. The

problem of rendering the notion of a natural property precise is notoriously difficult. For

the purposes of this paper, we bracket that problem and simply assume that all henceforth

analysed properties are natural. Moreover, as is common in the causal modelling literature,

we want to remain as non-committal as possible with respect to the ontology of causation.

We thus refer to the causal relata simply as “factors taking values”.

Factors represent categorical properties that partition sets of units of observation either

into two sets, in case of binary properties, or into more than two (but finitely many) sets, in

case of multi-value properties. In the context of CCMs (e.g. Thiem 2014), factors represent-

ing binary properties are referred to as crisp-set or fuzzy-set factors; the former can take on

the Boolean identity elements 0 and 1 as possible values, whereas the latter can take on any

(continuous) values from the unit interval [0, 1]. Factors representing multi-value properties

are called multi-value factors; they can take on any of an open (but finite) number of possible

values {0, 1, 2, . . . , n}. For simplicity of exposition, we confine ourselves to crisp-set factors

in the context of this paper.

The focus on the crisp-set case allows us, for instance, to conveniently abbreviate the

explicit “Variable=value” notation, which generates convoluted syntactic expressions with

increasing model complexity. As is conventional in Boolean algebra, we shall write “A”

for A=1 and “a” for A=0. While this shorthand significantly simplifies the syntax of causal

models, it introduces a risk of misinterpretation, for it yields that the factor A and its taking

on the value 1 are both expressed by “A”. Disambiguation must hence be facilitated by

the concrete context in which “A” appears. Accordingly, whenever we do not explicitly
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A

E

D

C

B

(a)

# A B C D E
σ1 0 0 0 0 0
σ2 0 1 1 0 0
σ3 0 0 0 1 0
σ4 1 0 1 1 0
σ5 1 0 1 0 1
σ6 1 1 1 0 1
σ7 0 1 1 1 1
σ8 1 1 1 1 1

(b)

Figure/Table 1: An exemplary causal structure (a) (where “•” symbolises conjunction and
“�” expresses negation) with a corresponding complete Humean mosaic (b).

characterise italicized Roman letters as “factors”, we use them in terms of the shorthand

notation. Moreover, we shall write “A∗B” for the conjunction of A and B, “A + B” for the

disjunction of A and B, “A→ B” for the conditional “If A then B” (a+B), and “A↔ B”

for the biconditional “A iff B” (A∗B + a∗b).

To have a concrete context for our ensuing discussion of the analytical tools needed

by a regularity theory, consider the causal structure over the set of crisp-set factors F1 =

{A,B,C,D,E} in Figure 1a, which has two non-standard graphical elements that require

introduction: arrows merged by “•” symbolise conjunctive relevance, and “�” expresses that

the negation of the factor at the tail of the arrow is relevant. That is, Figure 1a depicts a

causal structure such that A and B are two alternative causes of C and A∗d and B∗D are two

alternative causes of E. Factors C and E can, for instance, be thought of as representing

the on/off states of two lights, while factors A, B, and D represent the on/off states of three

switches. Light C is on iff at least one of the switches A or B is on, and light E is on iff A

is on and D is off or B and D are both on.

We assume that the structure is deterministic and, for simplicity, that there are no hid-

den/unmeasured causal paths to C and E (meaning that the causal paths through A, B, and

D are the only paths leading to C and E). It then follows that the elements of F1 can be

instantiated in exactly the 8 types of configurations σ1 to σ8 listed in Table 1b. Type σ1, for

instance, represents a configuration where all factors take the value 0, type σ2 a configuration

where all but B and C take value 0, etc. Most logically possible configurations of the factors

in F1 are determined to be inexistent by the structure in 1a. For example, A and B cannot be

combined with c, for they causally determine C. Overall, if the behaviour of the factors in

F1 is underwritten by the structure in Figure 1a, Table 1b lists all and only their empirically
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possible configurations. As there are no hidden causal paths, Table 1b contains a complete

distribution of possible matters of fact. We shall say that Table 1b is the complete Humean

mosaic (i.e. the complete set of configurations) for the structure in Figure 1a. By the lights

of a regularity theory, that the causal dependencies in Figure 1a obtain means nothing over

and above Table 1b being a complete Humean mosaic.

A regularity theory defines causation in terms of sufficiency and necessity relations

among factors representing different natural properties that are modally independent, mean-

ing logically and conceptually independent and not related in terms of metaphysical depen-

dencies such as supervenience, constitution, grounding, etc. Subject to the nature of the

involved factors, sufficiency and necessity relations can be given a classical or a fuzzy-logic

rendering (cf. Baumgartner and Ambühl ming). In the context of this paper, we can confine

ourselves to the classical rendering in terms of material implication: A is sufficient for B iff

A → B, and A is necessary for B iff B → A. Plainly, most of these Boolean dependencies

have nothing to do with causation. To illustrate, the configuration A∗B∗D∗E is sufficient

for C in Table 1b, for this table does not feature the combination of A∗B∗D∗E and c. The

same holds for a∗B∗D∗E, A∗B∗d∗E, etc. Moreover, the disjunctive concatenation of all suf-

ficient conditions of C is necessary for C; that is, the following relations of sufficiency and

necessity obtain among C and the other factors in F1:

A∗B∗D∗E + a∗B∗D∗E + A∗B∗d∗E + A∗b∗d∗E + A∗b∗D∗e+ a∗B∗d∗e ↔ C (1)

(1) obviously does not track causation, as the factor E, for example, is part of every

sufficient condition of C, but neither E nor e is causally relevant for C in the structure

in Figure 1a. Still, some relations of sufficiency and necessity in fact reflect underlying

causal dependencies: in Table 1b, for example, A and B are individually sufficient and their

disjunction is necessary for C and they are the two alternative causes of E. Accordingly, the

crucial problem to be solved by a regularity theory is to filter out those Boolean dependencies

that track causation.

The main reason why most structures of Boolean dependencies do not reflect causation

is that they tend to contain different types of redundancies—redundancies in sufficiency and

necessity relations but also, as we shall see, componential and structural redundancies—,

whereas structures of causal dependencies do not feature redundant elements. Every part of

a causal structure makes a difference to the behaviour of that structure in at least one context.

Accordingly, the regularity theoretic analysans must be required to be redundancy-free.
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Non-redundancy (NR). Only Boolean dependency structures that do not contain any redun-

dant elements track causation.

When applied to sufficient and necessary conditions, (NR) entails that whatever can

be removed from such conditions without affecting their sufficiency and necessity is not a

difference-maker and, hence, not causally relevant. Only minimally sufficient and minimally

necessary conditions possibly track causation (Graßhoff and May 2001).

Minimal sufficiency. Let Σ be a conjunction of factor values Z1∗ . . . ∗Zn with 1 ≤ n. Σ is a

minimally sufficient condition of B, iff

(a) The factors in Σ and B represent different natural and modally independent properties,

(b) Σ→ B, and

(c) for no proper part Σ′ of Σ: Σ′ → B (where a proper part of a conjunction is that

conjunction reduced by at least one conjunct).

Minimal necessity. Let Π be a disjunction (in disjunctive normal form) of factor values

Z1∗ . . . ∗Zg + . . . + Zm∗ . . . ∗Zn with 1 ≤ n. Π is a minimally necessary condition of B iff

(a) The factors in Π and B represent different natural and modally independent properties,

(b) B → Π, and

(c) for no proper part Π′ of Π: B → Π′ (where a proper part of a disjunction is that disjunc-

tion reduced by at least on disjunct).

To illustrate, the first disjunct of (1), A∗B∗D∗E, is not a minimally sufficient condition

of C because it contains sufficient proper parts, for instance, B∗D∗E is itself sufficient for

C in Table 1b. But B∗D∗E is likewise not minimally sufficient, as it also contains sufficient

proper parts. Overall, C has three minimally sufficient conditions in Table 1b: A, B, and E.4

Their disjunction is necessary for C, that is, C → A + B + E. That necessary condition,

however, still contains the spurious dependency between E and C.5 The reason is that it

does not amount to a minimally necessary condition, as it contains a necessary proper part,

viz. A + B. Whenever factor C takes the value 1 in Table 1b, so do the factors A or B. The

same does not hold for B+E nor for A+E. Or differently, E is redundant to account for C

because, whenever E is given, so is A+B. But the reverse does not hold: in configurations

σ2 and σ4, A+B is given but E is not.
4All calculations can be replicated using the R script available in Appendix 2.
5E is (at least) an INUS condition of C as defined by Mackie (1974, 62), whose INUS-theory is therefore

forced to interpret E as a cause of C. This is an instance of the so-called Manchester Factory Hooters problem
that ultimately induced Mackie to abandon the INUS-theory.
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Minimally sufficient and necessary conditions are expressed in minimal biconditionals:6

Minimal biconditional. A biconditional Π ↔ B is a minimal biconditional for B iff Π

is a minimally necessary disjunction, in disjunctive normal form, of minimally sufficient

conditions of B. (Π is the antecedent and B the consequent of the minimal biconditional.)

The following is a minimal biconditional for C entailed by Table 1b:

A + B ↔ C (2)

(2) is the only minimal biconditional for C entailed by Table 1b and it correctly identifies the

causes of C in Figure 1a. However, removing redundancies from sufficient and necessary

conditions alone, albeit sufficient to pinpoint the causes of C, does not generally suffice to

do justice to (NR). Boolean dependency structures can feature two further types of redun-

dancies. We discuss the first of them in the next section and the second in section 4.

3 Componential redundancies

Zhang and Zhang (ms) have recently shown that a factor Z contained in the antecedent of a

minimal biconditional forB is not guaranteed to be a difference-maker ofB because factorZ

may be functionally redundant to account for factorB. We agree, but contend that in order to

ensure that minimal biconditionals track causation (as defined by regularity theories) it is not

sufficient to only eliminate functionally redundant factors, rather, componentially redundant

factor values need to be discarded. What a regularity theory is ultimately concerned about

are not difference-making relations between factors but between specific values of factors.

To introduce the problem of componential redundancies, reconsider the set of configura-

tions in Table 1b. That table does not only entail one but four minimal biconditionals for E:

A∗d + B∗D ↔ E (3)

A∗B + A∗d + a∗C∗D ↔ E (4)

A∗B + B∗D + b∗C∗d ↔ E (5)

A∗B + a∗C∗D + b∗C∗d ↔ E (6)

6In the literature (e.g. Graßhoff and May 2001; Baumgartner 2013), minimal biconditionals are typically
referred to as minimal theories. We prefer to reserve that label for biconditionals that do justice to (NR), which
minimal biconditionals do not (see section 7 below).

9



(3) correctly reflects the causes of E in Figure 1a, whereas (4) to (6) do not. Prima facie,

this might seem to be a case of mere empirical underdetermination resulting in a model

ambiguity (cf. section 6 below). However, on closer inspection, (4) to (6) turn out to contain

redundancies that (3) is free of. (3) accounts for E in terms of the four factor values in the

set M(3) = {A,B,D, d}, while (4) to (6) account for E in terms proper supersets of M(3):

M(4) = {A, a,B,C,D, d}, M(5) = {A,B, b, C,D, d}, M(6) = {A, a,B, b, C,D, d}. When

causally interpreted (3) identifies the elements of M(3) to be causally relevant for E, whereas

(4) to (6) claim that the elements M(3) plus additional factor values are causally relevant

for E. Table 1b, however, does not comprise difference-making contexts underwriting these

additional relevancies. To make this precise, we introduce the notion of a difference-making

pair:7

Difference-making pair. Let Π ↔ B be a minimal biconditional entailed by a set of con-

figurations δ, let A (resp. a) be contained in Π, and let G be the set of all factors featured in

Π. A difference-making pair for the relevance of A (resp. a) for B is a pair of configurations

{σi, σj} in δ such that A (resp. a) and B are given in σi and a (resp. A) and b are given in σj
and all factors in G\{A} are constant in both σi and σj .

A difference-making pair for the relevance of A constitutes a context in which A is indis-

pensable to account for a change in the outcome. Table 1b contains difference-making pairs

for the relevance of all elements of M(3). For instance, all factors in (3) except A and E are

constant in {σ2, σ6} while A and E both take the value 0 in σ2 and the value 1 in σ6. Or

{σ4, σ5} is a difference-making pair for the relevance of d, as D changes from 1 to 0 and E

from 0 to 1 while all other factors in (3) are constant. By contrast, Table 1b does not contain

difference-making pairs for the relevance of any of the additional elements of M(4) to M(6).

As we prove in Appendix 1, the existence of difference-making pairs and the sets of

factor values accounting for outcomes in minimal biconditionals are very tightly connected.

Theorem 1. Let Π ↔ B be a minimal biconditional entailed by a set of configurations δ.

Every factor value in Π has a difference-making pair in δ iff there does not exist a minimal

biconditional Π′ ↔ B entailed by δ such that the factor values in Π′ are a proper subset of

the factor values in Π.

That is, the reason why not all factor values contained in (4) to (6) have difference-making

pairs in Table 1b is that Table 1b entails a minimal biconditional, viz. (3), that accounts for
7That notion is related to (and inspired by) Zhang and Zhang’s (ms) notion of a witnessing pair, whose

purpose however it is to underwrite the functional non-redundancy of factors and not—as the notion of a
difference-making pair—the componential non-redundancy of concrete values of factors.
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E in terms of a proper subset of the components of (4) to (6). The latter, hence, contain

redundancies, which we refer to as componential redundancies. Minimal biconditionals

without componential redundancies are componentially minimal:

Componential minimality. A minimal biconditional Π↔ B entailed by a set of configura-

tions δ is componentially minimal relative to δ iff there does not exist a minimal biconditional

Π′ ↔ B entailed by δ such that the factor values in Π′ are a proper subset of the factor values

in Π.

It follows from Theorem 1 that every factor value in the antecedent of a minimal bicondi-

tional that is componentially minimal has a corresponding difference-making pair. Having

a difference-making pair is necessary for being causally relevant (although not, as section 4

will show, sufficient).

Minimal biconditionals that are free of componential redundancies are internally

redundancy-free. To facilitate our ensuing discussion we furnish them with a label: RDN-

biconditionals (redundancy-free disjunctive normal form biconditionals).

RDN-biconditional. A biconditional Π↔ B entailed by a set of configurations δ is an RDN-

biconditional for B iff Π ↔ B is a minimal biconditional that is componentially minimal

relative to δ. (Π is the antecedent and B the consequent of the RDN-biconditional).

Table 1b entails exactly two RDN-biconditionals: (2) and (3). The behaviour of the other

factors in the set F1 from Figure 1a cannot be expressed in terms of an RDN-biconditional,

as neither A, B, nor D have minimally necessary conditions in F1. To see this, compare, for

example, configurations σ7 and σ8 in Table 1b. In both of these configurations, the factors in

F1\{A} take constant values, but the value of A changes. Hence, A cannot be expressed as a

function of F1\{A}. The same holds for B and D. In sum, Table 1b entails the conjunction

of RDN-biconditionals in expression (7), and the value assignments to the factors in F1 that

render (7) true are exactly the configurations listed in Table 1b.

(A + B ↔ C) ∗ (A∗d + B∗D ↔ E) (7)

The causal interpretation of RDN-biconditionals is straightforward: their antecedents are

to be interpreted in terms of causes of their consequents; conjunctions stand for complex

causes, disjunctions for alternative causal paths. Hence, (7) amounts to a correct Boolean

representation of the common cause structure in Figure 1a. However, as the next section

will show, minimising sufficiency and necessity relations and eliminating componential re-
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dundancies does not yet suffice to successfully capture all causal structures in regularity

theoretic terms.

4 Structural redundancies

Apart from componential redundancies, Boolean dependency structures can feature yet an-

other type of redundancy that the regularity theoretic literature has disregarded so far. RDN-

biconditionals, although internally redundancy free, can themselves—as a whole—be re-

dundant in superordinate structures and, hence, fail to track causation due to a higher-order

violation of (NR). We shall speak of structural redundancies in that context. A case in point

is the structure in Figure 2a, again over the set of crisp-set factors F1 = {A,B,C,D,E},
which is assumed to feature all causal paths leading to D and E. Table 2b is the complete

Humean mosaic corresponding to that structure.

That mosaic not only entails the two RDN-biconditionals conforming to the causal struc-

ture in Figure 2a, viz. (8) and (9), but also an RDN-biconditional for C, viz. (10):

A∗B + C ↔ D (8)

a + c ↔ E (9)

a∗D + e ↔ C (10)

That is, the behaviour of the factor C, which is exogenous in Figure 2a, can be expressed

as an internally redundancy-free Boolean function of the two endogenous factors D and

E. (10), hence, expresses a backtracking (or upstream) dependency. A regularity theory

that only requires minimal sufficiency/necessity and componential minimality is forced to

causally interpret that backtracking dependency, which, in turn, entails that the theory cannot

always distinguish between causes and effects, thus vindicating a standard objection against

regularity theories.

That consequence can be avoided by not only applying (NR) to sufficient and neces-

sary conditions and their componential makeup but also to RDN-biconditionals as a whole.

The backtracking dependency (10) is structurally redundant in the superordinate dependency

structure (11) that results from a conjunctive concatenation of all the RDN-biconditionals

that follow from Table 2b. The reason is that (11) has a proper part which is logically equiv-

alent to (11), viz. (12).
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(a)

# A B C D E
σ1 1 0 1 1 0
σ2 1 1 1 1 0
σ3 0 0 0 0 1
σ4 1 0 0 0 1
σ5 0 1 0 0 1
σ6 1 1 0 1 1
σ7 0 0 1 1 1
σ8 0 1 1 1 1

(b)

# A C D E
σ1 1 1 1 0
σ2 1 1 1 0
σ3 0 0 0 1
σ4 1 0 0 1
σ5 0 0 0 1
σ6 1 0 1 1
σ7 0 1 1 1
σ8 0 1 1 1

(c)

Figure/Table 2: A complex causal structure (a) with a corresponding complete Humean mo-
saic (b) and an incomplete one (c).

(A∗B + C ↔ D) ∗ (a + c ↔ E) ∗ (a∗D + e ↔ C) (11)

(A∗B + C ↔ D) ∗ (a + c ↔ E) (12)

Conjunctively adding (10) to (12) states nothing over and above what is already stated by

(12), for (12) logically entails (10). (12) generates exactly the Humean mosaic in Table 2b,

meaning that (10) is not required to account for that mosaic. At the same time, neither (8)

nor (9) are redundant in (11), for neither the conjunction of (8) and (10) nor the conjunction

of (9) and (10) is logically equivalent to (11)—neither of these conjunctions generates the

configurations in Table 2b. Overall, the backtracking dependency (10) makes no difference

to the generation of the Humean mosaic in Table 2b. It violates (NR); it is a structural

redundancy in the context of the foretracking dependencies (8) and (9).

Thus, conjunctions of RDN-biconditionals only track causation if they are structurally

minimal:

Structural minimality. A conjunction of RDN-biconditionals Ψ = Φ1∗ . . . ∗Φn, 1 ≤ n, is

structurally minimal iff there does not exist a Ψ′ that results from Ψ by eliminating at least

one conjunct such that Ψ and Ψ′ are logically equivalent.

Every RDN-biconditional contained in a structurally minimal conjunction is structurally in-

dispensable.
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5 Permanence

Before assembling the analytical tools developed above in a new regularity theory, this sec-

tion complements the minimality conditions by a permanence requirement and the next in-

troduces an important metaphysical background assumption.

Real-life causal structures commonly are not as simple as the ones in Figures 1a and

2a. Single factors tend not to cause their effects in isolation. Rather, causes amount to very

complex conjunctions of co-instantiated factors, which only jointly determine their effects.

Moreover, on the type level, there typically exist more than two alternative paths to one

effect. That is, regularities entailed by real-life structures tend to be much more complex

than the ones expressed in (7) and (12). To adequately represent the complexity of real-

life regularities, Mackie (1974, 66-71) uses X1, X2, etc. as placeholders for conjunctions

of unmeasured (contextual) factor values and Y1, Y2, etc. as placeholders for disjunctions

X1 + X2 + . . . + Xn. Furthermore, to ensure that the complexity of Boolean dependency

structures remains manageable, he (1974, 34-35, 63) relativizes regularities to what he calls

a causal field, that is, to a fixed configuration of context factors. A more realistic scenario

than the one in (12), thus, is that A, a, B, C, and c are mere parts of alternative causes of D

and E within a field F :

in F : (A∗B∗X1 + C∗X2 + Y1 ↔ D) ∗ (a∗X3 + c∗X4 + Y2 ↔ E) (13)

In scientific discovery contexts, the constancy of the field, of course, is difficult to en-

sure, which is why real-life data will often not be as noise-free as Tables 1b and 2b. Hence,

when causally analysing real-life data, strict Boolean dependencies can typically only be

approximated. To this end, CCMs provide various parameters of model fit—the two most

prominent ones being consistency and coverage (Ragin 2006). Roughly, consistency mea-

sures the degree to which a condition is sufficient for an effect, and coverage the degree to

which a condition is necessary. By imposing consistency and coverage thresholds, it then

becomes possible to treat conditions as sufficient or necessary even if, as in noisy data,

Boolean dependencies are imperfect. However, since the focus of this paper is conceptual

and not epistemological, we will not further discuss these issues here. Likewise, we abstain

from making the field-relativity of regularities explicit and dispense with the explicit use of

placeholders for open conjunctions and disjunctions. Instead, we do justice to the complex-

ity of ordinary causal structures by assuming all Boolean dependency structures to be open

for expansions, that is, for the integration of further factors.
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The remainder of this section will show that expanding Boolean dependency structures

provides an additional handle to constrain their causal interpretability—a handle that is

needed because even Boolean dependency structures that satisfy all the minimality condi-

tions introduced above may fail to actually track causation. The reason, in a nutshell, is

that what counts as an RDN-biconditional is relative the analysed set of configurations and

factors, and such sets may not faithfully reflect causation. For example, suppose that two fac-

tors A and B are instantiated in two configurations: in the first, A and B both take the value

1, and in the second, they both take the value 0. The corresponding set of configurations

δ1 = {〈1, 1〉, 〈0, 0〉} entails the RDN-biconditional A ↔ B, which, if causally interpreted,

suggests that A and B are causally related. If δ1, however, does not contain all empirically

possible configurations of A and B, A↔ B may fail to track causation. If, say, the set of all

empirically possible configurations in fact is δ2 = {〈1, 1〉, 〈0, 0〉, 〈1, 0〉, 〈0, 1〉}, A and B are

causally independent, in which case a causal interpretation of A↔ B is false.

As anticipated in section 1, the anti-necessitarian tradition in which regularity theories

are embedded provides an actualist rendering of the notion of an empirically possible con-

figuration. That means the empirically possible configurations of the factors in a set Fδ are

all of their configurations that exist (in an atemporal sense) in the actual world (from its be-

ginning to its end). Causation then supervenes on the actual distribution of matters of fact,

which, in turn, is a brute fact of the world we live in. If a set of configurations δ contains all

and only the empirically possible configurations of the factors in Fδ, we shall say that δ is an

exhaustive set of configurations over Fδ. The above example thus shows that non-exhaustive

sets may entail RDN-biconditionals that do not track causation. Still, when δ1 is expanded

to the exhaustive set δ2, the spurious dependence between A and B disappears.

But exhaustiveness alone does not guarantee faithfulness to causation, as even struc-

turally indispensable RDN-biconditionals entailed by exhaustive sets may fail to reflect cau-

sation. To see this, reconsider the structure in Figure 2a and assume that it is analysed without

taking the factor B into account, that is, relative to F2 = {A,C,D,E}. Table 2c lists all

empirically possible configurations of F2’s elements and, hence, amounts to an exhaustive

set of configurations over F2. That table does not allow for expressing the behaviour of D

as a function of F2\{D}, because in the configurations σ4 and σ6 all factors in F2\{D} are

constant whileD changes. Table 2c only entails the RDN-biconditionals (9) and (10), whose

conjunctive concatenation is

(a + c ↔ E) ∗ (a∗D + e ↔ C) (14)
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(14) does not contain a logically equivalent proper part, meaning that it structurally minimal

and, accordingly, that its second conjunct (10) cannot be discarded based on F2.

Despite its structural minimality, (14) does not track causation, for C is not actually

endogenous in the underlying structure of Figure 2a. The reason why (10) is not identified as

a spurious upstream regularity is that F2 is underspecified, meaning that a causally relevant

factor, which is not constant in the corresponding causal field, is left out of the analysis. In

consequence, the Boolean dependencies among the elements of F2 cannot be completely

freed of redundancies, even based on an exhaustive set of configurations.

Plainly, whether a factor set Fδ is underspecified depends on what the causal structure is

that underwrites the behaviour of Fδ’s elements. Accordingly, in the conceptual context of

analysing causation or in the epistemic context of searching for the causal structure behind

Fδ, Fδ cannot be assumed to be free of underspecification (for this would presuppose clarity

on causation and on the causal structure behind Fδ, respectively). Fortunately, neither the

conceptual nor the epistemic context require such an assumption. The reason is that by

gradually expanding factor sets spurious dependencies are identified in exhaustive sets of

configurations. As soon as F2 is expanded to F1, D becomes expressible as a function of

F1\{D}, meaning that (8) follows, which, as we have seen in the previous section, correctly

reveals the redundancy of (10). Generally, dependencies that appear to be of the difference-

making type relative to a set Fδ, but in fact are spurious, are identified as such in the course

of gradual expansions of Fδ.

But in order to reliably reveal the spuriousness of Boolean dependencies, expansions of

factor sets must be suitable for causal modelling. A suitable expansion F′δ′ of a factor set

Fδ is a superset of Fδ, which is the result of introducing factors into Fδ representing natural

properties that are modally independent of one another and of the properties represented

by the elements of Fδ. A suitable expansion F′δ′ of Fδ reveals that an RDN-biconditional

Πi ↔ B over Fδ features redundancies if there does not exist a structurally indispensable

RDN-biconditional Πj ↔ B entailed by an exhaustive set of configurations δ′ over F′δ′ such

that all components of Πi are also components of Πj . If there does not exist a suitable

expansion F′δ′ revealing redundancies in Πi ↔ B, Πi ↔ B is permanently redundancy-free.

A structurally indispensable RDN-biconditional tracks causation only if it is permanently

redundancy-free.
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# A B C D
σ1 0 0 0 0
σ2 0 0 1 0
σ3 1 1 1 0
σ4 1 0 0 1
σ5 0 1 0 1
σ6 1 1 0 1
σ7 1 0 1 1
σ8 0 1 1 1

(a)

# A B C D E
σ1 0 0 0 0 0
σ2 1 0 0 0 0
σ3 0 0 1 0 0
σ4 1 0 1 0 0
σ5 1 1 1 0 0
σ6 0 1 0 1 0
σ7 1 1 0 1 0
σ8 0 1 1 1 0
σ9 0 0 0 0 1
σ10 0 0 1 0 1
σ11 1 1 1 0 1
σ12 1 0 0 1 1
σ13 0 1 0 1 1
σ14 1 1 0 1 1
σ15 1 0 1 1 1
σ16 0 1 1 1 1

(b)

A∗b+ a∗B + A∗c↔ D (15)
A∗b+ a∗B +B∗c↔ D (16)

A∗b∗E + a∗B +B∗c↔ D (17)

Table 3: (a) features a set of configurations that entails two RDN-biconditionals, viz. (15)
and (16), whereas (b) results from (a) by expansion and entails only one RDN-biconditional,
viz. (17).

6 Uniqueness

Apart from the metaphysical background assumptions concerning the nature of causation,

most theories of causation additionally rely on auxiliary background assumptions in order to

supply their analytical machineries with maximal traction. Just to mention one well-known

example, an interventionist theory assumes that for all causally modelled variables there exist

possible ideal interventions, which are surgical causes of those variables (Woodward 2003).

A successful regularity theory also requires an auxiliary assumption.

To introduce it, consider the set of configurations in Table 3a over the factor set F3 =

{A,B,C,D}. Table 3a entails two logically equivalent RDN-biconditionals for D, viz. (15)

and (16), meaning that the behaviour of D cannot be unambiguously modelled on the basis

of Table 3a. While both RDN-biconditionals—if causally interpreted—identifyA∗b and a∗B

as complex causes of D, it is indeterminate whether A∗c or B∗c are causally relevant to D.

Plainly, ambiguities are a very widespread phenomenon in causal modelling within all mod-

elling frameworks (e.g. Spirtes et al. 2000, 59-72; Baumgartner and Thiem 2015). Every

so often, data do not unambiguously reflect causal structures. Such empirical underdeter-
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mination is normally taken to have epistemic sources, for instance, insufficient control over

background factors or lacking surgicality of experimental manipulations. In principle, how-

ever, ambiguities can also originate from ideal data. If we assume Table 3a to be a complete

Humean mosaic, that table is a case in point. Under this completeness assumption, Table

3a furnishes a perfectly noise-free and exhaustive set of configurations. That is, no further

or cleaner empirical information could exist that would discriminate between (15) and (16),

meaning there is no fact of the matter which of these RDN-biconditionals reflects the causal

structure behind the behaviour of D. In other words, if causation is understood in regularity

theoretic terms and Table 3a is a complete mosaic of a causally modelled world, that world

does not have a determinate causal structure.

While it is easy to devise artificial toy worlds (e.g. in thought experiments targeting the

adequacy of theories of causation) without determinate causal structures, we take it as a

given that the world we live in is not of this kind. The causal makeup of our world may

be beyond our epistemic reach, but it is ultimately one determinate makeup. Against the

backdrop of this (metaphysical) uniqueness principle, Table 3a cannot amount to a complete

mosaic. Rather, the ambiguity between (15) and (16) must be due to the fact that Table 3a

does not contain all possible configurations of the factors in F3, but only all configurations

within some causal field in which further relevant factors are constant. In fact, relative to

an expanded factor set F4 = F3 ∪ E that results from F3 by integrating the factor E, the

ambiguity can easily be resolved. To see this, consider Table 3b, which contains Table 3a as a

proper part (highlighted with grey shading). Whenever the added factor E takes the value 1,

the factors in F3 are instantiated in the configurations reported in Table 3a; but when E takes

the value 0, further configurations are possible. Table 3b only entails one RDN-biconditional

for D, viz. (17). That is, while it is impossible to determine whether D is caused by A∗c or

B∗c relative to Table 3a, Table 3b resolves that ambiguity in favour of B∗c.

As an auxiliary assumption we thus stipulate that model ambiguities are due to data defi-

ciencies, rather than to an ultimate indeterminateness of the causal structure of the world we

live in. In principle, thus, model ambiguities can always be resolved by expanding analysed

factor sets. In other words, we assume causal uniqueness for complete Humean mosaics:

Causal Uniqueness (CU). Every complete Humean mosaic corresponds to one determinate

causal structure.
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7 A new regularity theory

We have now collected all ingredients for a new regularity theory of causation. To present

that theory, we will proceed in two steps. First, we introduce the notions of a minimal theory

and of an atomic minimal theory, and second, we define the notion of causal relevance in

terms of membership in permanently redundancy-free atomic minimal theories.

Roughly, a minimal theory is a conjunction of (one or more) RDN-biconditionals that is

structurally minimal. Subject to Causal Uniqueness (CU), every complete Humean mosaic,

that is, every exhaustive set of configurations δ over a set of factors Fδ without underspecifi-

cation corresponds to exactly one causal structure ∆. Complete mosaics allow for complete

redundancy elimination. Hence, a minimal theory entailed by a complete δ is free of all types

of redundancies and, therefore, is guaranteed to truthfully reflect that ∆.

However, causal relevance cannot simply be defined in terms of minimal theories en-

tailed by complete Humean mosaics. The reason was anticipated in section 5: clarity on the

completeness of Humean mosaics presupposes clarity on the underlying causal structures,

which is exactly what a theory of causal relevance is supposed to supply and thus, on pain

of circularity, cannot presuppose. Accordingly, we shall not confine our notion of a minimal

theory to complete mosaics. That, in turn, yields that minimal theories are not guaranteed

to track causation. Nonetheless, the notion of a minimal theory shall be defined in such way

that minimal theories amount to representations of the causal evidence contained in the set

of configurations δ from which they follow. If δ is complete, that evidence is faithful to ∆,

but if δ is incomplete, the evidence expressed by a minimal theory may misleadingly suggest

the causal nature of some dependencies which in fact are spurious. Factor set expansions

gradually rectify minimal theories entailed by a misleading δ by eliminating spurious depen-

dencies and, thereby, ‘zooming in’ on the true ∆—thus the aforementioned second step in

our analysis.

Here, then, is our definition of the notion of a minimal theory (simpliciter).

Minimal Theory. Let δ be a set of configurations over a factor set Fδ and let Γ = Φ1∗ . . . ∗Φn,

n ≥ 1, be the conjunction of all RDN-biconditionals entailed by δ. A minimal theory for δ

over Fδ is a conjunction Ψ = Φk∗ . . . ∗Φm, 1 ≤ k ≤ m ≤ n, of RDN-biconditionals from Γ

such that the following conditions hold:

(a) Ψ is logically equivalent to Γ,

(b) Ψ is structurally minimal,

(c) any two Φi and Φj in Ψ have different consequents.
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While the purpose of condition (b) is clear (see section 4), conditions (a) and (c) require

explication. We begin with condition (a). A minimal theory shall express all the causal

evidence contained in δ; Γ is the conjunction of all the RDN-biconditionals entailed by δ;

the only RDN-biconditionals in Γ that do not express causal evidence are the structurally

redundant ones filtered out in condition (b); but the elimination of structurally redundant

RDN-biconditionals is an equivalence transformation; therefore, a minimal theory for δ must

have the same truth conditions as Γ, meaning it must be logically equivalent to Γ.

To understand condition (c), recall from the previous section that sets of configurations

sometimes entail multiple RDN-biconditionals with identical consequents. In order for a

minimal theory Ψ to exhibit the causal evidence contained in a set δ, Ψ must be a candidate

representation of the complete causal structure behind δ, that is, it must conjunctively con-

catenate as many RDN-biconditionals entailed by δ as can be interpreted as an integrated

causal structure. To this end, it must be ensured that none of the RDN-biconditionals in Ψ

have identical consequents, for RDN-biconditionals with an identical consequent B do not

represent one causal structure but an ambiguity with respect to the causal structure behind

B.8 Condition (c) thus determines that a minimal theory contains maximally one RDN-

biconditional for every endogenous factor. As a result, a Γ for a given δ may be broken

down into multiple minimal theories. Table 3a is a case in point, as it entails two RDN-

biconditionals, viz. (15) and (16), whose conjunctive concatenation does not amount to one

minimal theory due to a violation of condition (c). Table 3a entails two different minimal

theories: (15) and (16). The overall causal inference to be drawn from a δ entailing multiple

minimal theories Ψ1 to Ψn is disjunctive: the evidence in δ is such that Ψ1 or Ψ2 or . . . or

Ψn corresponds to the underlying causal structure ∆.9

A minimal theory entailed by a set δ comprehensively and rigorously implements the

non-redundancy principle (NR) relative to δ, which, since Mackie (1974), counts as the core

analytical tool on the way towards a successful regularity theory of causation. But as defined

above, the tool is still too coarse-grained. To identify relations of Boolean difference-making

we need the more fine-grained notion of an atomic minimal theory. To see why, consider the

switching structure in Figure 4a with the corresponding exhaustive set of configurations in

Table 4b. The ultimate effect of that structure, G, has two alternative causes, D + E, which
8Two RDN-biconditionals of B cannot be integrated into the same causal structure because each individu-

ally exhibits a minimally necessary disjunction of minimally sufficient conditions of B. Causally interpreting
both at the same time would hence induce a redundancy, in violation of (NR).

9Note that the conjunction of (15) and (16) also violates condition (b), for (15) and (16) are logically equiv-
alent. It does not hold generally, however, that RDN-biconditionals with identical consequents are logically
equivalent.
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(a)

# A B C D E F G
σ1 0 0 0 0 0 0 0
σ2 0 0 0 0 0 1 0
σ3 1 0 0 1 0 0 1
σ4 0 1 0 0 1 0 1
σ5 0 0 1 0 1 0 1
σ6 0 1 1 0 1 0 1
σ7 1 1 0 1 1 0 1
σ8 1 0 1 1 1 0 1
σ9 1 1 1 1 1 0 1
σ10 1 0 0 1 0 1 1
σ11 0 1 0 1 0 1 1
σ12 1 1 0 1 0 1 1
σ13 0 0 1 0 1 1 1
σ14 1 0 1 1 1 1 1
σ15 0 1 1 1 1 1 1
σ16 1 1 1 1 1 1 1

(b)

Figure/Table 4: A switching structure with switch F (a) and corresponding exhaustive set of
configurations (b).

themselves have two alternative causes each, A + B∗F for D and C + B∗f for E. The

crucial feature of this structure is that factor F functions as a switch for the causal impact

of B on D and E. The combination of B and F causes D, and the combination of B and

f causes E. But independently of whether F is instantiated, B is sufficient to bring about

G—via D in case of F and via E in case of f . Hence, the factor F only makes a difference

to whether the causal influence of B on G is mediated by D or by E but not to G itself.

Nonetheless, F and f appear in minimal theories representing causal structures with G as

ultimate outcome. In total, Table 4b entails four minimal theories:

(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (D + E ↔ G) (18)

(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (A+B + C ↔ G) (19)

(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (A+B + E ↔ G) (20)

(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (B + C +D ↔ G) (21)

That the factor F is contained in these minimal theories apparently must not be taken to

entail that F is a difference-maker of G. The reason is that, even though F is contained in

minimally sufficient conditions of D and E, it is not part of a minimally sufficient condition
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of G—as B alone is sufficient for G. Correspondingly, F does not appear in an RDN-

biconditional for G in any of the theories (18) to (21). That, in turn, shows that it is not

membership in minimal theories (simpliciter) that tracks difference-making relations, but

membership in RDN-biconditionals contained in minimal theories, which, for simplicity, we

label atomic minimal theories:

Atomic Minimal Theory. An atomic minimal theory Φ of B entailed by a set of configura-

tions δ over the set of factors Fδ is an RDN-biconditional for B contained (as a conjunct) in

a minimal theory Ψ for δ over Fδ.

To illustrate, the atomic minimal theories entailed by Table 4b are all the conjuncts of (18)

to (21).

Against that background, we submit the following regularity theoretic definition of causal

relevance (type-level causation):

Causal Relevance (CR). A is causally relevant for B iff there exists a set of (modally inde-

pendent) factors Fδ, A,B ∈ Fδ, such that δ is the exhaustive set of configurations over Fδ,

and the following conditions hold:

(a) A is part of the antecedent of an atomic minimal theory of B for δ over Fδ,

(b) for every suitable expansion F′δ′ ⊃ Fδ and corresponding exhaustive set δ′: A is con-

tained in an atomic minimal theory of B for δ′ over F′δ′ .

The core of (CR) can be less formally expressed as follows: A is causally relevant for B iff

A is part of a permanently redundancy-free atomic minimal theory of B.

Before discussing the relevant implications of (CR) in the next section, let us highlight

one important feature of (CR). Causal relevance as defined in (CR) is non-transitive. That

is, it is possible for Z1 to be causally relevant for Z2, which itself is causally relevant for

Z3, without Z1 being causally relevant for Z3. The switching structure in Figure 4a is a case

in point. Presuming that the minimal theory (18) is permanently redundancy-free, it follows

that F is causally relevant for both D and E, which are relevant for G, but F is not causally

relevant for G.

8 Discussion

While (CR) draws on analytical tools from previous regularity theoretic proposals (Mackie

1974, Graßhoff and May 2001; Baumgartner 2008, 2013), it assembles these tools in a way
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that implicates a departure from an implicit consensus underlying preceding regularity theo-

ries. All of its predecessors entail (or presuppose) that multi-outcome structures can be mod-

ularly built up from single-outcome structures, meaning that, in order to determine what the

causes are of some effect B, it suffices to identify members of permanently redundancy-free

sufficient and necessary conditions of B. In light of the arguments presented in this paper,

that modularity principle can no longer be sustained. According to (CR), the redundancy-

freeness of Boolean dependency structures and, thus, their causal interpretability cannot be

assessed for single-outcome structures individually but only for complete multi-outcome

structures taken together. As a result, (CR) entails a form of causal holism according to

which causation is a holistic property that supervenes on complete Humean mosaics and not

on proper parts thereof.

That holism has a number of notable ramifications. For instance, it yields that (CR) is

more restrictive in sanctioning the causal interpretability of Boolean dependency structures

than its predecessor theories: all dependencies that can be causally interpreted according to

(CR) can also be causally interpreted according to its predecessors but not vice versa. This

is particularly important in light of the fact that most of the classical objections levelled

against regularity theories of type causation since the times of Hume and Mill contend that

these theories overgenerate, meaning they stipulate the causal interpretability of Boolean

dependencies which in fact are spurious. It follows that those overgeneration problems that

have already been solved by (CR)’s predecessors are solved correspondingly by (CR); this

concerns in particular the problems of empty and single-case regularities (cf. e.g. Armstrong

1983) as well as the notorious ‘Manchester Factory Hooters’ problem (Mackie 1974, 83-87).

For detailed discussions of these issues the reader is hence referred to Graßhoff and May

(2001) and Baumgartner (2008, 2013).

Sections 3 and 4 have shown, however, that two overgeneration problems have not been

addressed by (CR)’s predecessors. First, Boolean dependency structures with only min-

imised sufficiency and necessity relations may contain factor values for which no difference-

making contexts exist, that is, they may contain redundant components. In consequence,

the theory developed in this paper introduces the notion of an RDN-biconditional which ad-

ditionally requires Boolean dependency structures to be componentially minimal. Second,

it can happen that the behaviour of factors, which are exogenous in the underlying causal

structure, are expressible in terms of RDN-biconditionals featuring their own effects, which

can be seen as a sophisticated version of the classical problem of distinguishing between

upstream and downstream regularities. (CR) addresses this issue by prohibiting the causal
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interpretation of RDN-biconditionals that are structurally redundant, which eliminates up-

stream RDN-biconditionals.

Of course, regularity theories have also been objected to on the ground that they un-

dergenerate in case of irreducible indeterminism, which does not result from our epistemic

and practical limitations but is inherent in the underlying physical reality (cf. e.g. Dowe and

Noordhof 2004). While standard interpretations of quantum mechanics advocate the exis-

tence of irreducibly indeterministic processes, non-standard interpretations disagree. Hence,

there is no consensus on whether our universe is deterministic or not. Moreover, even if

irreducibly indeterministic processes exist, there are many open questions—as for instance

raised by phenomena of the EPR type—with respect to the causal interpretability of these

processes (cf. e.g. Healey 2010). In the present context, we can sidestep these foundational

questions, for, as indicated in the introduction, regularity theories aim to capture the intuition

that causation is a deterministic form of dependence, that is, they analyse deterministic vari-

ants of causation (only). That means the notion of causal relevance spelled out in (CR) must

be understood in terms of deterministic causal relevance. If there should turn out to exist

irreducibly indeterministic causal relevance relations, other theoretical frameworks would

have to be called upon.

Another upshot of the causal holism entailed by (CR) is that unmistakable inferences on

causal relevance relations can only be drawn from complete (i.e. fully expanded) Humean

mosaics, that is, from sets of configurations featuring factors on all paths involved in an

analysed causal structure and comprising all empirically possible configurations of these

factors. It is, of course, questionable whether complete Humean mosaics for other than arti-

ficial causal structures are ever available to human reasoners. Still, atomic minimal theories

inferred from exhaustive sets of configurations amount to transparent representations of the

causal evidence contained in those sets. Even though, in the absence of complete mosaics,

causal inferences always run a risk of being refuted in the light of factor set expansions, such

inferences become increasingly warranted the longer memberships in minimal theories are

stable throughout a series of factor set expansions. That is, the inference to causal relevance

as defined by (CR) is inherently inductive, which—we contend—nicely captures the nature

of causal inference in scientific practice.

Finally, as (CR) is the first regularity theory that eliminates componential and struc-

tural redundancies and, thus, provides the first notion of Boolean difference-making that

rigorously implements the non-redundancy principle, configurational comparative methods

of causal data analysis, as QCA or CNA, which output Boolean dependency structures, are

well-advised to understand causal relevance relations in terms of (CR). This, however, de-

24



mands methodological adaptations from both of these methods. To date, neither QCA nor

CNA eliminate componential redundancies from their Boolean causal models. Moreover,

QCA focuses on single-outcome structures only and considers embedding single-outcome

structures in superordinate multi-outcome structures as being optional. (CR) calls for a re-

vision of that approach. Reliable Boolean causal inference not only requires expanding and

improving the evidence base on the causes of single outcomes, but necessitates also aggre-

gating single- to multi-outcome structures. While such an aggregation has always been an

essential element in the procedural protocol of CNA, CNA has, so far, conceived of this

aggregation in too simplistic a manner: it solely conjunctively concatenates minimal bicon-

ditionals inferred from processed data. According to (CR), however, an additional iteration

of redundancy elimination is required: complex Boolean dependency structures must them-

selves be freed of redundant elements before they are amenable to a causal interpretation.

We end with three caveats. First, note that (CR) does not distinguish between direct and

indirect causal relevance. In light of the non-transitivity of causal relevance as defined by

(CR), indirect relevance cannot simply be spelled out in terms of the transitive closure of

direct relevance, which, in turn, is accounted for in terms of membership in permanently

redundancy-free atomic minimal theories. Discriminating between direct and indirect rele-

vance presupposes a notion of a causal chain, which, for reasons of space, we cannot properly

introduce here. Second, and on a related note, (CR) does not distinguish between conjunctive

and disjunctive relevance relations, meaning it does not group causally relevant factor values

into complex and alternative causes. To this end, a notion of a permanent minimal theory

would be required, which—we reckon—should be easily obtainable by generalising the no-

tion of a permanently redundancy-free minimal theory, but which we nonetheless have to

leave for later. Third, note again that (CR) provides a notion of type-level causation. Token-

level causation or actual causation must be cashed out in terms of a suitable spatiotemporal

instantiation of a type-level structure. Building a corresponding token-level account on the

basis of (CR) must also await another occasion.

Appendix 1

In this appendix, we prove Theorem 1, p. 10. To this end, let Π ↔ B be a minimal bicon-

ditional entailed by a set of configurations δ. Let G be the set of factors, (at least) one of

whose values is contained in Π, and let M be the set of those factor values in Π. Theorem 1

states the following equivalence:

(i) Every factor value in Π has a difference-making pair in δ.
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↔

(ii) There does not exist a minimal biconditional Π′ ↔ B entailed by δ such that the factor

values in Π′ are a proper subset of the factor values in Π.

(i)→ (ii):

(i) entails that for every factor value Z ∈ M there is a pair of configurations {σi, σj} in δ

such that Z and B are given in σi while z and b are given in σj , and all factors in G\{Z}
are constant in {σi, σj}. Now, assume for reductio that (ii) is false. It follows that δ entails a

minimal biconditional Π′ ↔ B such that Π′ contains the factor values M\{Z} and such that

Π′ is true in σi and false in σj . As all factors in G\{Z} are constant in {σi, σj}, Π′ can only

have different truth values in σi and σj if it contains the factor value z. But as Z is given in

σi, every disjunct in Π′ containing z is false in σi. Either Π′ is true in σi nonetheless, because

a disjunct not containing z is true in σi, or Π′ as a whole is false in σi. In the first case,

however, the truth of Π′ is due to a disjunct containing only factors from G\{Z}, which—in

light of the constancy of G\{Z}—will also render Π′ true in σj . It follows that Π′ cannot be

true in σi and false in σj , which contradicts the assumption that (ii) is false. It follows that if

(i) is true, (ii) must be true as well.

(ii)→ (i):

We prove the contraposition ¬(i)→¬(ii). If there does not exist a difference-making pair for

at least one factor value Z in Π, it follows that there is no pair of configurations {σi, σj} in δ

such that Z and B are given in σi while z and b are given in σj , and all factors in G\{Z} are

constant in {σi, σj}. {σi, σj} can fail to be such a difference-making pair in four different

ways:

(1) G\{Z} is not constant in {σi, σj};

(2) Z is constant in {σi, σj};

(3) B is constant in {σi, σj};

(4) z andB are given in σi while Z and b are given in σj and G\{Z} is constant in {σi, σj}.

(1) If G\{Z} is not constant in {σi, σj}, any variation of B in {σi, σj} can be accounted

for by a corresponding variation in G\{Z}, meaning that factor Z is not needed to account

for that variation of B. (2) If Z is constant in {σi, σj}, Z cannot account for a variation B

in {σi, σj}, which accordingly must be accounted for by a variation in G\{Z}. (3) If B is

constant in {σi, σj}, there is no variation of B to be accounted for, for which Z might be

needed. (4) describes a difference-making pair for the relevance of z for B, meaning—as we
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have seen above—that z is needed to account for the variation in B. In all cases (1) to (4), it

holds that the factor value Z is not needed to account for a variation inB. As these four cases

cover all possible types of pairs of configurations violating (i), the negation of (i) entails that

the behavior of B can be expressed in terms of a biconditional not featuring the factor value

Z. Since any such biconditional can be brought into a minimised disjunctive normal form,

it follows that if (i) is false, there exists a minimal biconditional Π′ ↔ B entailed by δ such

that the factor values in Π′ are M\{Z}, meaning that the factor values in Π′ are a proper

subset of Π. Overall, if (i) is false, (ii) must be false as well, which, by contraposition, proves

(ii)→ (i).

Appendix 2

# R replication script

# ####################

# Required R package

library(cna)

# Table 1b

# --------

dat1 <- allCombs(c(2,2,2,2,2)) -1

(tab1b <- selectCases("(A + B <-> C)*(A*d + B*D <-> E)", dat1))

# minimally sufficient conditions for C

ana1 <- cna(tab1b, what="mac")

subset(msc(ana1), outcome=="C")

# one minimal biconditional for C

subset(asf(ana1), outcome=="C")

# four minimal biconditionals for E

subset(asf(ana1), outcome=="E")

# Table 2b

# --------

(tab2b <- selectCases("(A*B + C <-> D)*(c + a <-> E)", dat1))

# three RDN-biconditionals entailed by tab2b

ana2 <- cna(tab2b)

asf(ana2)

# conjunction of RDN-biconditionals with structural redundancy

csf(ana2)

# structurally minimal conjunction of RDN-biconditionals

minimalizeCsf(csf(ana2)$condition, dat1)
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# Table 2c

# --------

(tab2c <- tt2df(tab2b[,-2]))

ana3 <- cna(tab2c)

# structurally minimal conjunction of RDN-biconditionals

minimalizeCsf(csf(ana3)$condition, dat1)

# Tables 3a/b

# -----------

dat2 <- allCombs(c(2,2,2,2)) -1

(tab3a <- selectCases("A*b + a*B + A*c <-> D", dat2))

# two structurally minimal RDN-biconditionals

cna(tab3a)

# ambiguity resolution through factor set expansion

dat3 <- allCombs(c(2,2,2,2,2)) -1

(tab3b <- selectCases("A*b*E + a*B + B*c <-> D", dat3))

cna(tab3b)

# Table 4b

# --------

dat4 <- allCombs(c(2,2,2,2,2,2,2)) -1

(tab4b <- selectCases("(A + B*F <-> D)*(C + B*f <-> E)*(D + E <-> G)",

dat4))

cna(tab4b)
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