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Abstract  
 
Microbial model systems have a long history of fruitful use in fields that include evolution 
and ecology. In order to develop further insight into modelling practice, we examine how 
the competitive exclusion and coexistence of competing species have been modelled 
mathematically and materially over the course of a long research history. In particular, we 
investigate how microbial models of these dynamics interact with mathematical or 
computational models of the same phenomena. Our cases illuminate the ways in which 
microbial systems and equations work as models, and what happens when they generate 
inconsistent findings about shared targets. We reveal an iterative strategy of comparative 
modelling in different media, and suggest reasons why microbial models have a special 
degree of epistemic tractability in multimodel inquiry. 
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1. Introduction 
 
Understanding what models are and how they work is central to philosophical work on a 
variety of sciences. A special feature of the life sciences is that they use organisms as 
material models of target phenomena, which include evolutionary, ecological, genetic, and 
physiological processes. Groups of organisms are constructed in order to function as 
experimental systems that allow the control and manipulation of represented phenomena. 
Because of the importance of tractability in such systems, microorganisms – prokaryotic 
and eukaryotic microbes, plus their viruses – have been favoured biological models for 
many research programmes. Microbial model systems have deep historical roots and their 
use has generated many major findings (Buckling et al., 2009; Garland and Rose, 2009; 
Jessup et al., 2004). 
 
Philosophers have examined several aspects of the experimental evolutionary research 
done with bacterial microorganisms. These analyses have focused primarily on what these 
experiments say about evolutionary processes and theories (for example, Beatty, 2006; 
Plutynksi, 2001; Desjardins, 2011; Parke, 2014). However, there are other avenues of 
philosophical insight afforded by experimental evolutionary research, and one of them is 
about the nature of modelling itself (Weber, 2014). Analysing the ways in which microbial 
systems generate knowledge sheds light on how material or concrete models function 
more generally, and on how they work together with other sorts of models. These are 
aspects of philosophy of modelling that are not yet fully developed. 
 
There now exists a considerable philosophical literature on model organisms that is 
concerned with what defines them and how they are used (e.g., Rheinberger 2010; 
Ankeny and Leonelli, 2011; Levy and Currie, 2015). There is a tendency in both 
philosophical and scientific circles to think of organismal models as closer to scientists’ 
target phenomena than mathematical or computational models of the same target. Such a 
view is on display, for example, in Levy and Currie’s (2015) discussion of model 
organisms. They contrast organismal models to other kinds of theoretical models, and 
suggest the former are specimens of broader classes in nature. Anecdotally, we have 
been told that organisms are “just too complex” to turn into full-blown models, and that 
organismal model systems really function as tests of mathematical models. At the very 
least, this position asserts that there is a hierarchy of models in terms of degree of 
closeness to target phenomena. Biological models—if not plucked directly from nature—
are regarded as samples of, or on a par with, scientists’ targets in the natural world in a 
way that other material models typically are not, and mathematical and computational 
models even less so.  
 
We will argue against this broad intuition and suggest that microbial modelling practice 
offers particularly clear evidence against it. To do so, we offer illustrations from a lineage 
rich in multimodel comparison. These examples strengthen the case for the practical and 
epistemic interchangeability of model media, whether mathematical or organismal. We are 
not saying they are always so interchangeable, but that our cases illustrate they can be, 
and that this finding tells against a hierarchical view of model types. 
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In what follows, we focus on how microbial model systems are used in evolutionary biology 
and ecology, and specifically, on models of competitive exclusion and its opposite state, 
coexistence. Competitive exclusion is the process by which one population comes to 
dominate the use of a shared resource, at the expense of other populations. Coexistence 
refers to species that manage to live together in the same environment, despite competing 
for the same resources. We will show how this research area offers a particularly fruitful 
lens through which to examine how microbial and mathematical models work together. To 
do this, we sketch a historical trajectory of model-based research into these dynamics, 
then examine it within the framework provided by philosophy of modelling and its 
distinctions between different types of models. In particular, we elaborate on the different 
ways in which microbial model systems have been put to work in conjunction with 
mathematical and computational models to explain unexpected coexistence rather than 
predicted competitive exclusion. Our analysis clarifies how microorganisms function as 
model systems, and how they interact with classic mathematical models as well as 
computational simulations. We discuss how dependent model comparisons contribute to 
robustness analysis. Finally, we address why microbes are particularly epistemically 
tractable as material representations of biological phenomena. 
 
 
2. Philosophy of Modelling 
 
Philosophy of modelling commonly distinguishes between mathematical or computational 
models and material (or concrete or physical) models. Equations serve as the structural 
basis of mathematical models, algorithms form computational models, and physical 
structures of various sorts are used to construct material models (Weisberg, 2013; 
Downes, 1992; Griesemer, 1990). In our discussion, differences between mathematical 
and computational models are not important because we are primarily concerned with how 
material models are compared to models constructed from non-material mathematical 
media.1 We focus on how organisms, and particularly microorganisms, function as a 
special kind of material model.  
 
It might seem at first glance that physical systems, whether living or non-living, just cannot 
model in the same way that abstract equations and algorithms can. There has been a 
great deal of discussion about how models – especially computer simulations – are like 
and unlike experiments (see Guala, 2002; Mäki, 2005; Morgan, 2005; Parker, 2009; 
Winsberg, 2009; Parke, 2014). An associated point of contention is whether laboratory 
constructions, such as the microorganismal ones we discuss, should be categorized as 
experimental systems or material models. These terms are often used interchangeably in 
the biological literature discussing these systems and their use in evolution and ecology 
(see, for example, Garland and Rose, 2009; Prosser et al., 2007). In philosophical 

                                            
1 Mathematical and computational models are not always recognized as fully distinct from 
one another because they are both fundamentally mathematical operations. Nevertheless, 
says philosopher of modelling Michael Weisberg, “they function differently in practice and 
have different representational capacities”, so are well worth distinguishing (Weisberg, 
2013, p. 20). Tarja Knuuttila (2016, p. 269), on the other hand, objects to strong 
distinctions being made between abstract (mathematical) models and material systems 
because they serve similar epistemic functions. 
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discussions, however, including those just cited, categorization as an experimental system 
rather than as a model often implies different treatment, in terms of ontology, methodology, 
or epistemic value. The crucial epistemic point in these debates is whether biological and 
other physical model systems are merely components of experiments. Experiments in this 
view are procedures carried out with experimental objects, meaning that experimental 
constructs are not models. This is not our view. 
 
From a general perspective, experimental objects of study share many similarities with 
material models because of the ways in which scientists use them (Rheinberger, 2010; 
Frigg and Nguyen, 2017). Both involve studying a physical system that stands in for a 
scientist’s ultimate target of investigation in the natural world. Both experimental systems 
and models (material and otherwise) simplify complex target phenomena; both idealize; 
both are forced into tradeoffs between realism, precision and generality (Levins, 1966; 
Rainey et al. 2000; Jessup et al., 2005; Matthewson, 2011; Inkpen, 2016). Rachel Ankeny 
and Sabina Leonelli (2011) suggest that experimental organisms (the larger class of 
surrogates to which model organisms belong) have less representational scope than 
genuine model organisms, largely in virtue of the communities that drive the use of ‘official’ 
model organisms. The history of microorganismal modelling that we examine, however, 
does not make this distinction even when it enters the current era of institutionally 
designated model organisms.  
 
Section 3 illustrates how microorganismal experiments play over several decades what 
appear to be genuine modelling roles in ecological and evolutionary population biology. 
Because of the experimental-modelling overlap in how organismal systems are used and 
referred to in scientific practice, we too use ‘experimental model system’ interchangeably 
with ‘material model’ or ‘organismal model’ to mean the systems constructed and studied 
by scientists in the laboratory with the aim of understanding biological systems and 
phenomena more generally. But as we will make clear, we do not think (micro)organismal 
models are closer to the target system: they are epistemically tractable material surrogates 
for those systems. We also bite the bullet about whether many experimental constructions 
should properly be regarded as models. We say they can be, on many understandings of 
what constitutes a model, in virtue of how they abstract, simplify and idealize the target 
systems they are surrogates for. 
 
Even when there is agreement on organisms being able to play the role of material models 
in specified circumstances, there are still a number of questions about how these 
(micro)organismal models carry out their surrogacy role, and what the relationship is 
between the different modes of representation enabled by distinct modelling strategies. 
Many recent philosophical discussions of modelling have tended to emphasize the 
relationship between models and targets in the natural world (Figure 1, right-hand arrows). 
When different modelling media (for example, mathematical and material) are used to gain 
insight into the same targets, one model is typically treated as ‘remodelling’ the target in a 
different medium from the other model, or even more simply as just another independent 
instance of the back-and-forth movement between model and target. The series of 
mathematical and material models of the dynamics of competitive exclusion and 
coexistence we discuss in Section 3 do not fit this description. We show instead how 
modelling practice often involves moving between at least two kinds of models, with the 
aim of evaluating and refining each of them in light of insights gleaned from studying the 
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other. Material models, as much as any other model type, are assessed against other 
models built in different media. We label this dependent interaction ‘comparative 
modelling’ (Figure 1, left-hand side).2 
 
 

Figure 1: Relationships Between Models  
Much philosophy of modelling focuses on model-target relationships, and 
holds that models indirectly represent target systems, as shown by the right-
hand arrows (for example, Giere, 1988; Godfrey-Smith, 2006; Weisberg, 
2013; for alternative views see Knuuttila and Loettgers, 2016; Levy, 
forthcoming).3 Our case study emphasizes the importance of model-model 
relationships (left-hand arrows) in the practice of modelling, and 
demonstrates a variety of ways in which one type of model is used to assess 
and develop another over the course of a research program.  

 

 
 
Sometimes, researchers state that mathematical or computational models are properly 
validated by testing their predictions in experimental model systems. Such statements 
might indicate that organismal systems are the target phenomena themselves. We will 
discuss some claims about this practice in Section 4. But material models are not merely 
sources of empirical data that allow the evaluation of how well mathematical or 
computational models fit the target system. The performance of material models is directly 
compared to mathematical or computational models, and vice-versa (Figure 1, left-hand 
arrows). Our cases show how these dynamics have played out over several decades of 
                                            
2 We are grateful to Brett Calcott for suggesting this term. 
3 The models-as-mediators approach (Morrison and Morgan, 1999) also fits this diagram, 
although it would emphasize an additional layer of theory above any model, with the model 
navigating ‘independently’ between theory and target (‘world’). Because this three-level 
scheme does not fit how microbial modellers describe their activities, we focus on the two-
layer approach to models and target phenomena. 
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microbial modelling of competitive exclusion and coexistence, and how modellers 
themselves have conceptualized this interaction. These dependent interactions between 
models add new practical dimensions to how robustness analysis can be understood 
across multiple modelling media. By taking a longer view of how these microbial model 
systems work, we learn more about how organismal models themselves function and why 
microbial model systems are particularly valuable material models in the contexts we 
examine. 
 
 
3. Competitive Exclusion Versus Coexistence: Historical and Contemporary 

Strategies 
 
Although there is a great deal of modelling work done with large organisms, some of the 
most prolific and effective modelling with living populations is done with microorganisms. 
This is especially the case for ecological and evolutionary modelling, where microbial 
systems offer particularly tractable means for studying dynamical processes at the 
population level over many generations (a point to which we return in Section 6). In 
evolutionary biology and ecology, mathematical and material modelling have frequently 
been combined. In order to gain closer insight into how these modelling strategies work 
together, we track a trajectory of comparative modelling of the phenomena of competitive 
exclusion and coexistence. We have chosen this historical lineage of modelling focus and 
activity because it shows not only how different models have been adjusted in relation to 
one another, but also how the researchers involved have conceptualized this interaction 
and adjustment. 
 
3.1. Gause’s Model Comparisons 
Our story begins with Georgii Gause (1910-1986), a mathematically competent 
experimental biologist who set up microbial model systems of paramecia (bacteria-
gobbling ciliate protists) to model interspecies competitive dynamics (Gause, 1932; 
1934a). These dynamics – the ‘struggle for existence’ – are central to both evolutionary 
and ecological theory, and had already been captured abstractly by the Lotka-Volterra 
mathematical competition model. Gause argued it was imperative to see how well these 
equations applied to empirical systems: “No mathematical theories can be accepted by 
biologists without a most careful experimental verification” (Gause, 1934a, p. 59). 
 
Animals, thought Gause, are “too complex” to observe in the wild and impossible to control 
in the laboratory (Gause, 1934, p. 26). He wanted to “eliminate the complicating influence 
of numerous secondary factors” in order to “understand the mechanism of the elementary 
process of the struggle for existence” (Gause, 1934a, p. 92, p.6). To achieve this, he used 
an experimental system of populations of paramecia species, Paramecium caudatum and 
P. aurelia.4 When fed separately on a single species of bacterial prey, each attained a 
growth equilibrium. But once both paramecia were put together and made to compete for 
the same bacterial resources, one species became extinct. This demonstration eventually 
became known as the competitive exclusion principle (Hardin, 1960). The material model 
system of paramecia demonstrates the same basic mechanisms represented by the Lotka-

                                            
4 These organisms were already well-established microbial experimental systems (e.g., 
Woodruff, 1911; 1926). Gause used competing species of yeast as well. 
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Volterra equations of “indirect” species interactions, which refer to non-predatory 
competitive relationships or “the struggle for the means of livelihood” (Gause, 1934a, p. 6, 
p. 3).  
 
However, when Gause introduced into his model system a third level of organism, 
Didinium, a ciliate predator of the paramecia (thus bringing about a “direct” struggle for 
existence), he was forced to question the classic Lotka-Volterra formulation of predator-
prey relationships and their oscillations (Gause, 1934a, Chapter 6). Why? Because in 
almost every run of the experimental system, both predator and prey (just a single species 
of paramecium) went to extinction, “owing to the particular biological adaptations of our 
predators, which have not been foreseen in the theoretical equations” (Gause, 1934b, p. 
17).5 The very nature of the equations (deterministic differential equations) was, he 
thought, inadequate for the relevant system dynamics. Probabilistic equations might be 
necessary, concluded Gause, in order to capture chance events and the “multiplicity of 
causes” (Gause, 1934a, p. 124).  
 
Gause then tweaked the experimental conditions of the material model system until a 
semblance of oscillation occurred. He also made some mathematically remarkable 
revisions to the Lotka-Volterra model by constructing a limit cycle to predator-prey 
dynamics with discontinuous differential equations (see Křivan, 2011).6 These revisions 
were not, however, greatly noticed.  
 
3.2 Explaining coexistence 
In the decades following Gause’s pioneering work, many other modellers found 
coexistence of supposedly competing species, both experimentally (Hutchinson, 1961; 
Ayala, 1969) and mathematically or computationally (Koch, 1974; McGehee and 
Armstrong, 1980).7 Coexistence violates the very idea of competitive exclusion, which 
stipulates that different species dependent on identical limiting resources (broadly 
interpreted as occupying exactly the same niche) cannot coexist indefinitely (unless 
adaptive change happens, which would mean the niche for the newly adapted organism 
was different).8 
 
One proposal for how periodic equilibria might be achieved is to add predation to standard 
resource limitation as a second independent limiting factor (Hutchinson, 1961; Levin, 
1970). To establish this suggestion more rigorously, population microbiologists Bruce 

                                            
5 However, Gause did carry out other experimental work with paramecia preying on yeast, 
and for those model systems did find classic Lotka-Volterra oscillations (Gause, 1935; see 
Pritchard et al., 2016 for worries about confounding factors that probably produced this 
result). 
6 Vlastimil Křivan (2011) explains how Gause anticipated more sophisticated predator-prey 
models of the 1960s (e.g., Rosenzweig and MacArthur, 1963), despite not having the 
appropriate mathematical tools.  
7 Other researchers extensively remodelled the experimental system and the mathematical 
model (e.g., Luckinbill, 1973; Rosenzweig and MacArthur, 1963). 
8 See Cole (1960) for a scathing critique of the testability and utility of competitive 
exclusion thus formulated. Hutchinson (1961) sees the same untestability, but does not 
see this as a problem, merely a property of formal models. 
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Levin, Frank Stewart and Lin Chao first constructed mathematical models and then their 
material counterparts (Levin et al., 1977; Chao et al., 1977). They implemented their 
material model as a chemostat, which is a continuous microbial culturing device that 
closely regulates the input of nutrients and output of waste (as opposed to non-continuous 
batch culturing). Chemostats model population growth rates, the dynamics of which are 
also captured by kinetic growth equations. These equations were initially devised by 
Jacques Monod (one of the inventors of the physical chemostat) and later elaborated to 
capture competitive exclusion dynamics in chemostat conditions (see Hsu et al., 1977 for 
details). However, Monod-based models also failed to predict some experimental system 
outcomes (Dent et al., 1976), which meant further revisions were needed.  
 
In one of these extensions of the basic model, Levin et al. (1977) used a single nutritional 
resource for two bacterial populations of Escherichia coli, strain K12 and strain B, plus a 
virus of E. coli, bacteriophage T2. In this system, the bacteriophage plays the role of a 
predator. The K12 strain of E. coli is resistant to the phage, but the B strain is sensitive or 
vulnerable to its attack. Levin and colleagues first found a stable state for a one-resource, 
one-consumer (resistant), one-predator situation (unlike Gause). They then extended this 
finding to the larger system with two consumers, and – in follow-up experimental work – to 
more complex combinations of populations and trophic levels (Chao et al., 1977). Their 
amended version of chemostat-based competitive exclusion predicted the equilibrium of all 
the entities in the model system – both bacteria and the phage.9 If there had been no such 
predator but still two consumers living off a limiting resource, one consumer would have 
had to become extinct, just as Gause had discovered. The experimental demonstration in 
the chemostat agreed with the mathematical model, except for one important difference: 
the material system was stable outside the range predicted by the extended mathematical 
model (Levin et al., 1977).  
 
The aim of constructing these experimental model systems was to specify the factors that 
brought about coexistence. In earlier revisions, these equilibria were often “described 
primarily in terms of the properties of the equation rather than in terms of the biology” 
(Levin et al., 1977, p. 3). Even though such models were nicely general, they were too 
nonspecific to predict exactly when coexistence could and should occur, or to explain why 
it did not. The advantages of the material models were not only that they could specify 
particular biological conditions, but they were also able to fine-tune the mathematical 
equations. In addition, experimental data were used to parameterize the equilibria 
calculations, so the interactions between mathematical and material modelling became 
even more entangled.  
 
3.3 Mechanisms of coexistence 
A great deal of other modelling work on these phenomena shuttles similarly back and forth 
between the equations and the material modelling. Often, it does so to try and explain how 
coexistence occurs (given that competitive exclusion is the default assumption). One such 
example is found in an experimental chemostat model of specialist and generalist E. coli. 
In this material model, Daniel Dykhuizen and Maxine Davies (1980) repeatedly found 

                                            
9 The authors described these equilibria as similar to commensalism, in that even though 
the virus harms the host, it also attacks competitors of the host and thus brings it benefits 
(Levin et al., 1977). 
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coexistence of competing strains of E. coli. This coexistence had been predicted 
mathematically by elaborations of Monod’s chemostat equations, but the exact biological 
circumstances in which it would occur were not clear. The experimental system largely 
agreed with the mathematical predictions but refined them by producing fewer generalists 
than predicted. To explain this, a new biological mechanism of “resource interference” had 
to be formulated. It posited that organisms are simply not as effective at multi-resource 
exploitation as they are at mono-resource utilization (Dykhuizen and Davies, 1980, p. 
1213).  
 
Subsequent research efforts worked with systems designed to illuminate the evolutionary 
dynamics of these ecological phenomena. Organismal model systems were run for longer 
time periods, and genetic analyses added in order to scrutinize the mechanisms of 
coexistence. A key series of chemostat experiments in the 1980s found that after several 
hundred generations, all clonal microbial populations produced polymorphisms (alternative 
genotypes) and that these polymorphisms were stable: the competing genotype was not 
able to wipe out the new one (Helling et al., 1987; Rosenzweig et al., 1994).  
 
An even longer analysis was made possible by the model system devised by Richard 
Lenski’s group. This system, a series of bacterial populations maintained as ongoing batch 
cultures for over 65,000 generations, has modelled numerous evolutionary processes 
(e.g., Lenski et al., 1991; Lenski, 2011). But as well as this long-running experimental 
system, Lenski and colleagues have constructed both theoretical and material models in 
which various manipulations have been carried out specifically to explain coexistence. An 
early instance of this occurred when Lenski and Susan Hattingh (1986) designed a 
mathematical model that found an equilibrium between resource-competitive species that 
were sensitive and insensitive to a particular toxin (i.e., an antibiotic). The modellers 
showed mathematically the conditions under which such an equilibrium could be realized, 
and then adduced evidence from chemostat models (some of it in separate work by 
Hattingh) that supported their conclusions. 
 
In a very different modelling approach 10 years later, Lenski and two other colleagues 
implemented a material model of coexistence to clarify the mechanisms by which this state 
was achieved (Turner et al. 1996). They used bacteria from the long-term evolutionary 
experiment, sampled after the 7000th generation and allowed to diverge for another 1000 
generations via recombination. Initially, the researchers had thought the ongoing 
coexistence of these genotypes would be explained by trade-offs in feeding strategies, 
with frequency-dependent selection being the mechanism. But this turned out to be an 
insufficient explanation of the equilibrium, and numerical simulations confirmed the 
limitations of this explanation. A cross-feeding interaction, whereby each species was 
better off together than alone during resource limitation, led to the organisms “through their 
own biological activities, chang[ing] a simple environment into one that is more complex. 
And this environmental complexity, in turn, allowed for diversity to be stably maintained 
where it could not otherwise exist” (Turner et al., 1996, p. 2127).  
 
Even when extremely long-term modelling work is carried out (20,000+ generations), 
coexistence persists (Rozen and Lenski, 2000). This persistence makes clear that 
coexistence is not an artificial by-product of ‘unnatural’ ecological and evolutionary 
conditions in the model. By continuing the model system for even more generations 
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(30,000), Lenski and different colleagues (Le Gac et al., 2012) were able to introduce more 
realistic considerations into evolutionary theorizations of the ecological dynamics of 
coexistence. Once again, bacterial systems were the key to being able to study these 
interacting dynamics and timescales. Despite starting with the simplest model possible – a 
constant environment, one initial genotype, no recombination, and a “focal organism that is 
much simpler than many others” –  complexity in the form of increased diversity still arose 
(Rozen and Lenski, 2000, p. 33; Turner et al., 1996; Rosenzweig et al., 1994). But just as 
occurs mathematically, simplifications allow generalizations beyond the original population. 
Daniel Rozen and Lenski (2000), for example, believed they might be able to generalize 
their results to the evolution of populations of large sexual organisms as did other 
researchers of the era (see Adams and Rosenzweig, 2014). In other work, Lenski has also 
drawn attention to the comparability of numerical simulations (computational models) and 
microbial model systems, in which each member of the population can be treated as an 
individual with simple properties in order to understand complex population-level outcomes 
(e.g., Lenski et al., 2003).  
 
The comparability of these different modelling strategies is highlighted by Ben Kerr and 
colleagues’ (2002) combination of computational models and experimental microbial 
communities to study the effects of community spatial structure and scale on the 
maintenance of biodiversity (i.e., coexistence). The focus of both their models is non-
transitive communities that lack a competitive hierarchy, such as when three species have 
a ‘rock-paper-scissors’ dynamic. This dynamic occurs when each species outcompetes 
one of the others, but no species outcompetes both of the others. Kerr et al. begin the 
investigation with a computer simulation of three species representing the rock-paper-
scissors dynamic. In a lattice-based version of the simulation with minimal dispersal and 
only local interaction, all three species continued to coexist in clumps. In a second version 
of the simulation with maximal dispersal (everyone mixing and interacting with everyone 
else), one species excluded the others. Kerr and colleagues find that localized interactions 
promote stable coexistence of all three species, but that larger spatial scales of interaction 
lead to biodiversity loss (one species outcompeting the others). 
 
The paper then describes how in order “to test this conclusion” (Kerr et al., 2002, p. 172), 
microbial communities were constructed in the laboratory to correspond to exactly the 
same two scenarios. Solid agar plates with three strains of E. coli in a rock-paper-scissors 
relationship were used to examine the mathematical finding about local interactions. One 
strain (C) produced a toxin called colicin that harmed a second colicin-sensitive strain (S); 
S, however, had a growth-rate advantage over a third colicin-resistant strain (R); R in turn 
had a growth-rate advantage over C. The same three strains of E. coli in well-mixed flasks 
of fluid growth media allowed the investigation of dispersal and interaction over (relatively) 
greater spatial scales. Kerr and colleagues conclude that the results are robust across the 
computational model and the experimental microbial populations. They interpret this 
congruence as support for the hypothesis that local interactions – in contrast to dispersal 
over large spaces – promote stable coexistence. 
 
Kerr and colleagues’ sequence of research presents the microbial model system as 
‘validating’ the results from the mathematical model. Their strategy thus echoes the earlier 
prescription from Gause (1934a, p. 59): about starting with predictions from a 
mathematical model and then following them up in an experimental model. But as some of 
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our other examples demonstrate, researchers could just as easily begin with a material 
model that was then compared to a mathematical or computational model, where the latter 
could be seen as ‘validating’ the results of the former (e.g., Turner et al., 1996; Dykhuizen 
and Davies, 1980). To understand better how these different modelling strategies work 
together, we turn to some scientific and philosophical perspectives on model comparison. 
 
4. Mathematical Models Vis-à-Vis Material Model Systems  
 
There are two obvious ways in which laboratory microbial populations and computational 
or mathematical models can work together: 
 

1. Parallel independent modelling: organismal model populations and computational 
or mathematical population models are used as parallel means to study the same 
target. This is the dynamic depicted by the right-hand side of Figure 1, where the 
emphasis is on model-target resemblance assessment.  

2. Combined dependent modelling: predictions from mathematical or computational 
models are evaluated and refined in model organismal populations, and vice versa. 
This is what the left-hand side of Figure 1 emphasizes.  

 
These two modes of interaction are neither mutually exclusive nor sharply distinguished; 
cases of modelling practice will sometimes be doing both at once. However, highlighting 
the difference between the two helps draw out some important points about model-model 
interactions. The first mode, parallel independent modelling, is most easily understood as 
the classic strategy of comparing two independent models to the target. Bacterial 
experimental systems and computational models, for example, are parallel means to gain 
broad insights into evolutionary processes. This is the standard way to think about multiple 
kinds of models working together, in which each is studied in order to gain independent 
insights into the target of evolving populations in the natural world (e.g., Weisberg, 2013). 
It is usual to describe this procedure as robustness analysis, whereby different models are 
assessed independently for how well they capture basic phenomena or principles (Levins, 
1966; Weisberg, 2006; see Section 5). 
 
Our case study of competitive exclusion and coexistence, however, indicates there are 
more interactive model-model relationships when model comparison is carried out, and we 
call this ‘combined dependent modelling’. In these situations of strong iterative interplay 
between models in different media, what exactly is going on? Are the material, 
computational, and mathematical models of equivalent epistemic status, or are some types 
of model more fundamental in this interplay? How is the interaction actually assessed? To 
answer these questions we first look at how modellers themselves discuss these 
interactions, and then how philosophical accounts of modelling might help make sense of 
these comparisons. 
 
4.2. How Modellers Conceptualize Model Interplay 
 
Amongst the modellers we have been discussing – namely researchers who construct 
model microorganismal systems in addition to computational and mathematical models to 
study evolutionary and ecological processes – the general view seems to be that there are 
some clear differences between mathematical, computational, and material models, and 
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that these very differences allow various types of model to work together. Experimental 
material modelling in multimodel research can motivate modifications to mathematical and 
computational models; furthermore, it is often strongly expected to do so.  
 
In some discussions, the epistemic equivalence of comparable mathematical and material 
models is explicitly assumed (e.g., Dykhuizen and Davies, 1980). The chemostat, for 
example, is sometimes celebrated as “the best laboratory idealization of nature for 
population studies” because its material processes are “formally equivalent” to natural 
biological processes (Hsu et al., 1977, p. 366). This claim is made on the basis of the 
chemostat’s inflow-outflow mechanism, which models in a physical medium the same 
dynamics as the relevant differential equations.10 However, there are many other 
modelling instances, such as Kerr and colleagues’ 2002 rock-paper-scissors study, that 
are framed as ‘tests’ of the mathematical model by the experimental system. This would 
seem to indicate that the findings of the experimental models have greater epistemic 
weight.  
 
Gause, for example, was a strong advocate of the epistemic superiority of material 
modelling: 
 

There is no doubt that the struggle for existence is a biological problem, and that it 
ought to be solved by experimentation and not at the desk of a mathematician. But in 
order to penetrate deeper into the nature of these phenomena, we must combine the 
experimental method with the mathematical theory (Gause, 1934a, p. 10). 
 

He argued that analysis of the experimental system should come first, methodologically 
and temporally, and that experiments should be quantitative so that mathematical laws 
could be built on those quantitative results. However, it is also obvious that his 
experimental systems were constructed with reference to the equations, with the aim of 
testing their empirical accuracy.  
 
And as some of our other coexistence examples show, mathematical or computational 
models are also used for cross-validation and elaboration. For example, numerical 
simulations in Lenski and Hattingh’s (1986) analysis of coexistence showed how the 
explanation of the coexistence observed in organismal model systems was inadequate. 
Many modellers suggest that multimedia modelling is needed because the interaction 
between models turns out to be more complex than can be captured by the language of 
testing and validation. G. Evelyn Hutchinson (1903-1991) was an influential and widely 
famed ecologist who worked mostly on multicellular organisms. Some of his research, 
however, was greatly concerned with explaining why competitive exclusion did not seem to 
capture the biodiversity of phytoplankton (free-living photosynthesizing marine organisms 
– usually unicellular). He suggested that: 
 

[mathematical modelling of] competitive exclusion can be used to examine a situation 
where its main conclusions seem to be empirically false. Just because the theory is 

                                            
10 Other commentators are more conservative: “A less controversial view of the chemostat 
… is that it is the best tool available for studying population interactions under controlled 
conditions” (Fredrickson, 1977, p. 65). 
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analytically true and in a certain sense tautological, we can trust in the work of trying 
to find out what has happened to cause its empirical falsification (Hutchinson, 1961, 
p. 143). 

 
Levin and colleagues echo this when they argue that by “merely specify[ing] equations 
[that] do not describe the nature of the interaction[s] … stability might be merely an artefact 
of the equations” (Levin et al. 1977, p. 20). This is an issue raised with considerable force 
by Richard Levins, in his famous 1966 paper motivating robustness analysis. His solution 
is to “attempt to treat the same problem with several alternative models each with different 
simplifications but with a common biological assumption” (1966, p. 423). Usually, however, 
Levins’ analysis is thought to apply to model-target relationships rather than the model-
model relationships we are emphasizing (see Section 5 for further discussion). 
 
Arnie Friederickson, a mathematical modeller of microbial processes, emphasizes the 
need for a two-way interaction between material and mathematical models but makes it 
very clear that it is model-model relationships being assessed, and not only model-target 
resemblances:  
 

Qualitative speculation about [populations] should be checked by the construction 
and analysis of suitable [mathematical] models, and the models should, in turn, be 
checked by experiment. [Plus] interesting phenomena predicted by plausible 
mathematical models of interactions should be searched for experimentally. [And for 
phenomena for which no experimental work yet exists, m]athematical models of 
different mechanisms of interaction should be constructed and analysed, and 
appropriate experimental systems should be set up to test the application of the 
models (Fredrickson, 1977, p. 84). 
 

Because both material and mathematical models are abstracted and idealized, they 
indicate to researchers “what is possible” over the course of a research programme 
(Dykhuizen and Davies, 1980, p. 1213; see also Slobodkin, 1961). This theme of 
models delineating the possible is also noted by Brendon Bohannan’s group of 
microbial ecologists. They argue that different modelling strategies are not epistemically 
fixed in the explanatory roles they can play: 
 

The role of theory is to define what is logically possible (given a set of assumptions), 
the role of the laboratory experiment is to determine what is biologically plausible and 
the role of the field study is to delineate what is ecologically relevant. Microbial model 
systems have played all three of these roles: in support of field studies, in support of 
theory [i.e., equations], and as a bridge between theory and the field (Jessup et al., 
2005, pp. 283-284). 

 
Jessup and colleagues go on to suggest that experimental models are particularly 
useful for ‘exploring’ mathematical models and determining whether their basic 
assumptions are right (or plausible). They conclude that microbial model systems are 
often able to show why a certain mathematical model is not working and how it might be 
adjusted. For example, spatial structure plays a role in model microbial systems of 
coexistence (e.g., Kerr et al., 2002), and this recognition has stimulated new 
mathematical approaches to accommodate spatial dynamics (e.g., Bohannan et al., 
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2001; Rainey et al., 2000). We already described how Gause made mathematical 
innovations on the basis of his experimental system results. These insights into model-
model comparison and modification also have implications for philosophy of modelling. 
 
4.2. How Philosophers Conceptualize Model Interplay 
 
We noted above that philosophy of modelling has not given a great deal of attention to 
model-model relationships that involve material model systems. However, this may be 
because there is no such comparison going on in modelling practice. Philosophers might 
argue that doing an experiment to ‘validate’ or ‘test’ a model, as Gause, Kerr and 
colleagues, and many other researchers have suggested they are doing, means that what 
we have called ‘material model systems’ are just real-world phenomena – the target 
phenomena, in fact (Figure 1). But we have seen repeatedly how simplified, idealized and 
abstracted these systems are. The laboratory environments usually bear limited 
resemblance to environments in nature; the microbes themselves are often distant 
relatives of their non-lab-dwelling ancestors; they are not identical to any populations 
outside the laboratory; nor do we think they are even straightforward specimens of any 
such natural populations.  
 
Philosopher of ecology Jay Odenbaugh has likewise emphasized how microcosms (aka 
‘bottle experiments’) are ‘stripped down’ unnatural systems. But beyond their pragmatic 
virtues, microcosms have the capacity to “describe the natures, dispositions, or tendencies 
of objects and how they would behave in simplified circumstances” (Odenbaugh, 2006, p. 
727). Rather than expecting nature in a bottle, scientists expect bottled nature to capture 
key features (but not all features) of their systems of interest. We will suggest in Section 6 
that in such ‘bottles’ (or flasks or plates or chemostats), microbes have some epistemic as 
well as practical advantages over non-microbes, especially when model comparison is 
taken into account. 
 
There could also be reasons to think that material model systems are mere abstractions of 
phenomena in the world. In other words, they might make a necessary step toward 
modelling, by focusing on certain details of the system of interest and leaving out others 
(such as relevant environmental conditions), but are not themselves models. Abstract 
direct representations involve simplified and sometimes generalizable descriptions of 
phenomena in the natural world (Weisberg, 2007). Finding patterns in datasets would be 
an illustration of this sort of representation. James Griesemer’s (1990) groundbreaking 
philosophical discussion of material models suggests that some of them are ‘direct’ but 
that others function in the normal indirect way of modelling.  
 
Arnon Levy and Adrian Currie (2015) argue along these lines when they raise questions 
about whether most broad ‘model organism’ use involves modelling. They define 
“theoretical modelling” as an activity that “involves a mathematical or mechanistic 
construct that serves as an analogue of the target”, which is then analysed and evaluated 
for its similarity to the target (Levy and Currie, 2015, p. 331). From their perspective, many 
discussions of model organisms do not meet these specifications. They argue that model 
organisms are usually treated as “representational specimen[s] of a broader class, thus 
allowing extrapolation on the basis of the specimen[s]” (Levy and Currie, 2015, p. 332; see 
also Katz, 2016 for a similar line of argument).  
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However, the majority of the counterexamples Levy and Currie outline are not very similar 
to the laboratory systems on which we have focused. Levy and Currie’s own ‘paradigmatic 
example’ of a genuine theoretical model is the Lotka-Volterra equations, which, as we 
have shown, certainly seem to have organismal model analogues to the mathematical 
relationships. We believe that Levy and Currie would view Gause’s work and the vast 
amounts of material modelling it has stimulated over many decades as “mechanistic 
constructs that serve as analogues of the target phenomena” and thus as models (Levy 
and Currie, 2015, p. 331). This capacity to function as surrogates for much more general 
target systems is why we do not distinguish in our cases between experimental and model 
organisms (see Ankeny and Leonelli, 2011). 
 
Another option, especially when there are multiple models of the same phenomenon, is to 
think that the material version re-describes the original model in a different medium or 
language. For example, Weisberg discusses a case of the “re-expression” of a 
mathematical model as an individual-based computational model (Weisberg, 2013, p. 
163). Our cases could hypothetically be described in similar terms. Modelling might start 
with a mathematical model, which is then ‘re-described’ in a new medium (such as 
computational algorithms or microbial populations). One might think that the ‘core’ model 
for competitive exclusion or predator-prey relationships is captured by the equations, and 
that the algorithm-based model or microbial model system is simply re-implementing that 
very same model in a computer program or on a laboratory bench (as a ‘mere’ re-
description of the same structures). 
 
We think this is not the best way to understand what is going on in our cases, for two 
reasons. The first is that any putative re-expression shows features that go well beyond 
copying. As our examples show, microbial model systems are just as much constructed to 
represent and simplify natural-world dynamics as any set of equations. Most importantly, 
material models have lives of their own beyond straightforwardly re-describing the same 
mathematical structures (Dykhuizen and Davies, p. 1980). By studying a microbial model, 
a scientist can often reach quite different conclusions from those reached in studying the 
mathematical model. These materially derived conclusions can directly influence the 
mathematical representations. In other words, the equations themselves are reinterpreted 
and restructured in light of the results from the material model. The history of modifications 
to competitive exclusion and coexistence models show this dynamic very clearly.  
 
A second response could be to claim that model re-expression favours mathematics as the 
modelling bedrock. Weisberg, for instance, indicates that comparing different sorts of 
models to a target is ultimately an exercise in comparing them to a mathematical 
representation of the target, rather than the target itself (2013, p. 95). This ordering 
suggests a certain fundamentality to the mathematics. However, many of our examples 
and much of the scientific literature do not show mathematical privileging to be true. 
Numerous ecologists and evolutionists have been more inclined to prioritize what they 
learn from the material model system findings and alter the mathematics accordingly. As 
suggested by several of our quotations in Section 4.1, modellers may see the 
mathematical structures as a flimsy signpost rather than any kind of epistemic bedrock. 
While the details will of course vary according to the nature of research and its subject 
matter, there does not seem to be any principled reason always to favour mathematical 
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models. Equations are useful descriptions of structural elements; material models 
including microbes can represent those structures just as effectively or more effectively in 
certain circumstances. 
 
In all modelling activities, whatever the medium, anything new that is learned concerns the 
abstracted object of study itself (the particular microbial populations, the computer 
simulation, etc.). There is always additional work required to draw a broader conclusion 
that refers back to a target in the natural world (Sprouffske et al., 2012). This is the central 
activity of all modelling practice and nearly all experimental practice, apart from a rare 
subset of field experiments. Sometimes this learning occurs linearly, from model to target, 
but often enough – as our cases show – there are model-model comparisons being made 
as well. Different models are designed in light of other ‘target models’ in order to interact 
with them, and not as mere re-expressions of the original model. Importantly, therefore, 
the introduction of other model media is not just to represent target phenomena 
independently but to provide a means of assessing the initial model (dependently). But 
how is this comparison actually done? To begin to answer this question, we turn to an 
additional aspect of philosophy of modelling, robustness analysis. 
 
 
5. Robustness Analysis and Comparative Modelling  
 
Philosophical discussions of how models relate to other models have focused on a 
particular account of robustness analysis. As we noted in Section 4, this procedure is 
based on multiple models independently homing in on common or core principles to 
explain target phenomena in the natural world (Levins, 1966; Weisberg, 2006; Weisberg 
and Reisman, 2008; Lloyd, 2010; see Parker, 2015 for critical questions about how such 
assessments are implemented). Robustness analysis captures important features of how 
models relate to their targets, but its operation relies on assumptions of strict model 
independence that in reality are rarely met (Parker, 2011). Instead of viewing model 
dependence as a problem, however, our cases of competitive exclusion and coexistence 
studies highlight how iterations of dependent model comparison can improve and extend 
model performance.  
 
Robustness analysis has primarily been discussed in relation to mathematical and 
computational models. Weisberg (2013, pp. 162-163) mentions a failure to implement a 
concrete model mathematically (the San Francisco Bay model), and notes that 
mathematical-computational model combinations are the most common. His main example 
of this more common relationship is the same computational ‘re-expression’ we already 
mentioned of the Lotka-Volterra predator-prey model (see also Weisberg and Reisman, 
2008). Robustness analysis examines supposedly independent models that because of 
their ‘common structures’ are able to represent specified properties of the same target 
system. Even when perturbed, these structures still produce the same or very similar 
results and are thus deemed robust.  
 
Because robustness analysis involves comparing models in relation to the target system, it 
indicates that common structures can be realized equally in different media, whether 
equations, algorithms, or biological populations. It is easy to see how common structures 
can be found in different mathematical or computational models. One reason that material 
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systems are seldom included in discussions of robustness analysis is because their 
comparability with mathematical or algorithmic structures is not as easily formalized. Our 
examples show how structural comparisons can also be made between mathematical and 
material models, even when these are not based on explicitly quantifying and formalizing 
any structure shared by the two. In particular, many of our cases highlight that the focus of 
model-model comparison is less about how multiple models agree on their predictions 
about a target than about how different models fail to agree. This search for disagreement 
becomes a means of identifying the modifications required in one or the other model. In 
addition, this ‘comparative modelling’ occurs without explicit comparison to the relevant 
targets in the natural world and sidesteps the requirements for independence that come 
with formal robustness analyses. 
 
Gause’s studies of interspecies competition clearly exemplify the comparative modelling 
process. By studying microbial systems he learned that material representations of the 
‘direct’ struggle for existence did not replicate the findings of the Lotka-Volterra equations, 
indicating to him that the mathematical model required reformulation. Gause based his 
mathematical revisions on insights gleaned from microbial systems in the laboratory, and 
yet had already constructed those microbial systems with reference to the equations. His 
aim was not only to see where these models agreed, but also to specify how one could be 
improved in light of its disagreements with the other. 
 
Comparative modelling can thus make an important contribution to assessments of model 
robustness. As in all robustness analyses, models are compared and their common (and 
uncommon) parameters, structures, or other features assessed. The key feature of 
comparative modeling is that it shifts the focus away from model-target comparison to 
focus instead on model-model relationships, and emphasizes key differences as opposed 
to commonalities between models. Our cases show us how dependent model 
comparisons, rather than being an inherent vice of robustness analyses (Parker, 2011), 
become a virtue that permits iterative model modification. From an analytic point of view, 
independent models may be highly desirable but difficult to realize, whereas from a 
practical and historical perspective, the dependent comparison of models is very prevalent 
and apparently effective.  
 
Another virtue that is apparent from the cases we examine above is that comparative 
modelling is often qualitative rather than quantitative, whereas discussions of robustness 
analysis have focused on formalized quantitative comparisons (e.g., Weisberg, 2013). The 
qualitative comparative modelling we highlight facilitates ready comparisons between 
material and mathematical models. For example, the same basic dynamical processes of 
predator-prey interactions are present in both the mathematical models and the microbial 
systems that feature in Gause’s competitive exclusion and Levin and colleagues’ 
chemostat research. The two types of model are compared in virtue of general 
assumptions about properties, patterns, and processes, and how different media capture 
these abstract phenomena. Modifications are then carried out to material and 
mathematical systems, after which fresh inferences can be made about the target system. 
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6. Microbial Model Systems as Special Material Models 
 
By highlighting these particular features of model-model interplay, we think it is possible 
to understand better why microbial model systems might be epistemically favoured over 
non-microbial organismal systems. Microbial models are not the only organisms that 
function as model systems. Why have we focused on microbial systems rather than, for 
example, the beetles Odenbaugh (2006) mentions in competitive exclusion and 
coexistence investigations?  
 
Any general discussion of microbial models first takes into account the tractability of 
such populations. Small size, rapid generational turnover, limited sexuality, and 
preservability are the main claims made for microbial tractability (e.g., Lenski et al., 
1991; Rainey et al., 2000; Adams and Rosenzweig, 2014). But in addition to the 
practical tractability associated with small size and short generation time in microbes, 
our historical narrative also reveals epistemic tractability. Philosophers who have 
investigated organismal models, both macrobial and microbial, have suggested 
“representational scope” as the key to how organisms function as models (e.g., Ankeny 
and Leonelli, 2011, p. 315; Love and Travisano, 2013). We agree with this general 
point, and want to emphasize how our examples show how this scope is achieved in 
concert with models in other media. Our cases show many instances in which the 
structures that make up the microbial model can be compared very effectively to other 
more abstract structures. For microorganisms, these structures are less obscured, and 
this simple but crucial point gives a special edge to their representational scope in 
concert with other models. In larger organisms, many allowances have to be made both 
to accommodate obfuscating complexity in the model and then rule out its effects.  
 
When Gause said he wanted to “eliminate the complicating influence of numerous 
secondary factors” in order to get at “the mechanism of the elementary process” 
(Gause, 1934a, p. 92), he meant this not just for standard practical reasons but also for 
being able to home in comparatively on structures that could be realized mathematically 
and materially. The ‘eliminations’ possible in microbial model systems include removing 
sex, the complexity of multicellular bodies, environmental variability (including nutritional 
resources), behavioural complications, and initial genetic diversity (i.e., clonal 
populations of microbes reproduce from a single genotype, as in Lenski’s experimental 
system). Because such simplifications are possible, the organisms become quantifiable 
structures in a populational form that can be compared directly to equations.  
 
The mathematical models used in evolution and ecology tend to rely on infinite or huge 
population sizes to swamp out the effects of stochasticity and drift. Another major 
advantage of microbial systems is that they allow researchers to study extremely large 
(though not infinite) laboratory populations that are orders of magnitude greater than 
can be achieved with larger organisms. Doing so allows for more effective direct 
comparisons between the microbial models and standard mathematical representations 
of evolving populations. Similar affinities between microbes and mathematics can be 
seen in laboratory setups such as chemostats (see Section 3.2). Their precise inflow-
outflow systems are physical media that capture the same dynamics as systems of 
differential equations. These tightly controlled, low-complexity experimental systems of 
interacting populations are simply unavailable for non-microbial organisms, and their 
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availability enables extreme simplification of the material parameters of the model 
system.  
 
An additional epistemic benefit offered by microbial model systems is that researchers 
can literally back up and rerun lineages. This is a feature that is otherwise possible only 
in computer simulations. Because of being able to freeze and revive cultures (bacteria 
routinely survive storage in minus-80 and minus-130 degree freezers), microbial 
populations can function very similarly to an iterated algorithm or set of equations. 
Larger laboratory organisms, even beetles, cannot be defrosted and revived and ‘rerun’ 
in this way. This ability to rerun the evolutionary trajectories of microbial populations an 
arbitrary number of times in the same way as mathematical or computational models 
confers a special sort of epistemic tractability on microbial model systems. All of these 
epistemic benefits explain why the comparison of material and mathematical models 
has been so frequent amongst microbial population biologists and a little less obvious in 
other fields. 
 
8. Conclusions  
 
Competitive exclusion and coexistence illustrate the epistemic and practical advantages 
of microbial systems very effectively, but by no means exhaust what can be learned 
from microbial model system use and its interplay with mathematical modelling. In the 
historical lineage of examples we describe in Section 3, the microbial model systems 
are not simply laboratory specimens of the target system, nor are they just another 
instance of the same model (the relevant mathematical one) in a different medium. 
Frequently microbial models function to correct the mathematical model’s relationship to 
the target, while also being assessed and refined when compared to the mathematical 
model. These dependent comparisons across different model media are 
complementary to accounts of robustness analysis that relate relevant independent 
models to the ultimate target of inquiry. In many cases, the results of comparative 
modelling indicate in advance how successful target capture is likely to be.  
 
By examining a historical trajectory of models focused on a particular target 
phenomenon, competitive exclusion, we show that there are good reasons to be 
sceptical about distinctions between ‘mere’ experimental organisms and model 
organisms, and between experimental systems and material models more generally. 
Our analysis shows that an epistemic hierarchy of model media does not apply, and 
that iterative model-based investigation relies on shifting back and forth between 
models of the same epistemic status. Although we see many particular practical and 
epistemic advantages to microbial (and especially bacterial) models, none of those 
advantages apply exclusively to microorganisms. Nevertheless, we suggest that further 
philosophical work on the history of microbial models will illuminate more acutely the 
philosophical dimensions of multimodel research.  
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