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The CPT and spin-statistics theorems are two important structural re-
sults concerning the foundations of relativistic quantum field theory. The
first says that any well-behaved relativistic QFT must be invariant under a
combined reflection symmetry that reverses the direction of time (T), flips
spatial orientation (P), and conjugates all fundamental charges (C). The sec-
ond establishes a connection between a particle’s spin and how groups of
indistinguishable particles act under permutation symmetry. Particles with
integer-valued spin must obey symmetric Bose-Einstein statistics, while par-
ticles with half-integer spin must obey antisymmetric Fermi-Dirac statistics.

Both theorems help explain important physical phenomena. The CPT
theorem illuminates why every fundamental particle must have an antiparti-
cle partner with the same mass, spin, and lifetime, while the spin-statistics
theorem underwrites the Pauli exclusion principle and the structure of the
periodic table. On the surface, they appear to be about completely different
things, but the theorems are in fact intimately linked. Foundational assump-
tions about the compatibility of Lorentz invariance, causality, and energy
positivity are key ingredients in both results. In some proofs, CPT invari-
ance is used to prove the spin-statistics connection. In others, the order is
reversed. The lack of analogous theorems for non-relativistic QFTs and clas-
sical field theories strongly suggests that the theorems capture constraints
essential for unifying relativity and quantum mechanics.

In spite of their importance, the theorems have received relatively little
attention from philosophers of physics. Jonathan Bain’s body of work on
the subject is a notable exception, and his recent book, CPT Invariance
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and the Spin-Statistics Connection (Oxford University Press, 2016), repre-
sents an exciting addition to the philosophy of QFT literature. The book
surveys and critiques four different approaches to proving the CPT and spin-
statistics theorems — the textbook Lagrangian method, Weinberg’s S-matrix
approach, axiomatic Wightman QFT, and algebraic QFT. Ultimately, Bain
argues that this plurality of approaches undermines conventional wisdom;
the theorems do not explain why nature obeys CPT invariance and the spin-
statistics connection. A significant obstacle facing interpreters of QFT is the
lack of a unified mathematical framework for the theory, and much work in
the philosophy of QFT simply picks one formulation to work with. All too
often this narrowness of vision obscures important physical insight gained
by looking at relations between different frameworks. Bain’s book is to be
commended for venturing into this underexplored territory, even if some of
its more sweeping conclusions, I believe, are premature. Its careful disentan-
gling of various proof strategies in Chapter 1 and its masterful dissection of
their failure in non-relativistic theories in Chapters 3-4 are reason enough to
pick it up.

Bain has really written two books in one. The first is a detailed foun-
dational study of the CPT and spin-statistics theorems. The second uses
this investigation as a lens to explore topics in general philosophy of sci-
ence including theoretical interpretation, mathematical rigor, intertheoretic
relations, and scientific explanation. These two books are woven together
continuously, and though the patient reader will benefit most from following
both narrative threads, one could choose to focus on just one or the other
and still learn a great deal.

There is a tremendous amount of thought-provoking material packed into
just under two hundred pages. Experts will appreciate having a compact
guide to a convoluted corner of the mathematical physics literature. New-
comers will benefit from succinct discussions of a number of central topics in
the foundations of QFT including the distinction between “pragmatist” and
“purist” formulations of QFT, the physical motivation for various axioms
(including frequently overlooked assumptions like cluster decomposition and
modular covariance), and the many roles played by group representations,
from classifying particle types to characterizing limiting relations between
theories. Perhaps more so than any other recent philosophical monograph
on QFT, CPT Invariance and the Spin-Statistics Connection presents the
reader with a view about how all of these moving parts hang together (or in
many cases, fail to do so), thus revealing exactly what is at stake in some of
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the more arcane foundational debates in the field.
That being said, I do not entirely agree with the synoptic view Bain

sketches. While his analysis is wonderfully attuned to the subtle differences
between proofs in each framework, on balance, I worry that it overstates the
divisions between these approaches and underemphasizes what they have in
common. From an alternative vantage point emphasizing these commonali-
ties, the landscape looks very different. Although it is too soon to tell which
view is right, it is enough to put pressure on two of Bain’s most provocative
conclusions — that Lorentz invariance is not needed to prove either theorem
(Chapter 2) and that existing proofs do not provide explanations of CPT
invariance and the spin-statistics connection (Chapter 5).

Throughout the book, Bain repeatedly emphasizes how the four frame-
works are mathematically and conceptually distinct:

[. . . ] each of these approaches can be associated with a distinct
way of understanding what a relativistic QFT is about, i.e., what
the basic objects of a relativistic QFT are, and what principles
these basic objects are supposed to satisfy (p. 18).

Weinberg’s approach focuses on the S-matrix, which describes the dynamics
of particle scattering, while algebraic QFT gives axioms characterizing the
net of local observable algebras. Although both Lagrangian and Wightman
QFT emphasize field operators, they assign them different properties. As a
result, according to Bain, they all tell different, incompatible stories about
what grounds CPT invariance and the spin-statistics connection.

A striking example of this incompatibility concerns the role of Lorentz in-
variance. In Lagrangian, S-matrix, and Wightman proofs, one of the primary
assumptions (in slightly different forms) is that the dynamics are invariant
under the group of restricted Lorentz transformations, i.e., rotations and
boosts. In contrast, the standard algebraic proof (Guido and Longo, 1995)
relies on a different, apparently weaker assumption, modular covariance.

In algebraic QFT, as a consequence of the Reeh-Schlieder theorem, every
local algebra of observables has a special pair of invariants: an antiunitary
modular conjugation operator, J , and a 1-parameter unitary modular au-
tomorphism group, {∆it}t∈R. Modular covariance requires that the net of
observable algebras must be covariant under the action of the modular auto-
morphism groups associated with unbounded spacelike wedge regions. (Such
regions can be easily visualized in 3-dimensions as infinitely long wedges nes-
tled into the sides of lightcones.) Additionally, it requires that the associated
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modular unitaries, ∆it, act in a geometric manner similar to wedge-preserving
Lorentz boosts.1 According to Bain, modular covariance is therefore tanta-

Figure 1: a spacelike wedge

mount to assuming that the net of observable algebras is covariant under a
proper subset of restricted Lorentz transformations (p. 64). As a result, he
concludes that restricted Lorentz invariance is not necessary for proving the
CPT and spin-statistics theorems. At the end of Chapter 2 he tempers this
conclusion somewhat, noting that Lorentz invariance is derived in the course
of the algebraic proof (p. 77), but this important caveat never receives the
attention it deserves. In fact, we have good reasons to suspect that modular
covariance and Lorentz invariance are more closely linked than Bain lets on.

First, if modular covariance simply amounts to the requirement that the
observable net is covariant under wedge-preserving boosts, then it is not at all
surprising that restricted Lorentz invariance follows. The subgroup of wedge-
preserving boosts generates the restricted Lorentz group.2 Thus covariance
under wedge-preserving boosts is not really a weaker assumption at all.

1Formally, modular covariance requires that for any spacelike wedge, W , and any local
algebra, R(O), in the vacuum GNS representation,

∆it
W R(O)∆−it

W = R(ΛW (t)O) ,

where ΛW (t) is the unique 1-parameter group of W-preserving Lorentz boosts.
2The product of two non-collinear boosts is a mixture of a boost and a rotation. Con-

sequently, the restricted Lorentz group can be generated by infinitesimal boosts in three
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Second, the physical interpretation of modular covariance is not this di-
rect. By itself, the condition does not entail that the wedge modular uni-
taries act as wedge-preserving boosts, only that they map an arbitrary local
algebra onto the algebra of a suitably boosted region. Proving that they
are equivalent to the corresponding boost requires background assumptions
— isotony and microcausality — along with a detailed argument exploiting
the special algebraic and analytic properties of modular invariants.3 Both
isotony and microcausality are standard axioms of algebraic QFT, as well as
crucial ingredients in the algebraic CPT and spin-statsitistics theorems. The
first requires that any observable localized in region O is also localized in
any larger region containing O. The second enforces relativistic causality by
requiring spacelike separated local observables to commute. Together with
these axioms, modular covariance entails the existence of a positive energy
representation of the restricted Lorentz group plus the spacetime transla-
tions, i.e., the connected Poincaré group, acting covariantly on the net. It is
for these reasons that Guido and Longo (1995) characterize modular covari-
ance as “a way to intrinsically encode the Poincaré covariance property in
the net structure” (p. 518).

So modular covariance only indirectly tells us about spacetime symmetries
in conjunction with other axioms, but insofar as it does, it ensures that there
is a canonical positive energy representation of the connected Poincaré group
acting on the net. But it does even more than this. It also tells us that
this representation is implemented by unitary operators that have unique
analytic properties as modular invariants. Indeed, these extra properties are
the key to showing that the representation can be extended to include an

linearly independent spacelike directions. Each such boost is part of the stabilizer sub-
group for some spacelike wedge.

3The modular invariants are part of the unique polar decomposition, S = J∆1/2,
of the Tomita conjugation, S, which implements the canonical C∗-involution when a von
Neumann algebra, R, is concretely represented on a Hilbert space with a cyclic, separating
vector, Ω. In algebraic QFT, the Reeh-Schlieder theorem guarantees that this is always
the case for any local observable algebra in the vacuum representation (or more generally
in any representation associated with a state analytic for the energy). The adjoint action
of J maps the algebra onto its commutant, JRJ = R′, and Ω satisfies the KMS condition
relative to the flow of the modular automorphism group. This entails that the vector-
valued function t → ∆itAΩ, A ∈ R has an analytic continuation into the complex strip
(− 1

2 , 0), while the function t → ∆itBΩ, B ∈ R′ has an analytic continuation into (0, 1
2 ).

For a detailed analysis of how these properties are used in the algebraic CPT theorem, see
Borchers (2000).
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antiunitary CPT operator. From this angle, modular covariance looks much
stronger than restricted Lorentz invariance. It looks more like restricted
Lorentz invariance, plus translation covariance, plus energy positivity, plus
additional analyticity assumptions.4

On top of this, Bain’s discussion of the physical motivation behind modu-
lar covariance (p. 67-69) overlooks one of the most important lines of thought
— that it is not a fundamental property at all, but rather can be derived from
more basic algebraic assumptions. Using only translation covariance and the
spectrum condition, Borchers (1992) proves that the modular automorphism
group must act as wedge-preserving boosts, except possibly in the spatial
direction along the edge of the wedge. One of the fundamental assumptions
common to all four frameworks, the spectrum condition enforces energy pos-
itivity by requiring the generators of the translation subgroup to have sup-
port in the momentum-space forward lightcone. Although counterexamples
to modular covariance exist, none of them satisfy restricted Lorentz invari-
ance, the spectrum condition, and the split property. The latter is a technical
condition ensuring the existence of normal product states across distant re-
gions and is expected to hold in any QFT with reasonable thermodynamic
behavior.5 It is also sufficient to rule out certain counterexamples to the
CPT and spin-statistics theorems constructed using infinite-component field
systems (Streater, 1967; Oksak and Todorov, 1968) and is thus of indepen-
dent interest in the present debate. It remains an open question whether or
not modular covariance can be derived from these three axioms.

To sum up, I think portions of Chapter 2 need to be read with a consider-
able sprinkling of salt. Lorentz invariance, disguised as modular covariance,
is still a central component of the algebraic proofs. Moreover, the spectrum

4This idea is reinforced by considering an alternative modular assumption used in some
algebraic proofs, the condition of geometric modular action (CGMA) (Buchholz et al.,
2000). CGMA is weaker than modular covariance — in conjunction with isotony and
microcausality, modular covariance entails CGMA, but not vice versa. For the class of
generalized free QFTs, Gaier and Yngvason (2000) prove that CGMA is actually equivalent
to restricted Lorentz invariance. Proving the CPT and spin-statistics theorems using
CGMA, however, requires additional assumptions. An intriguing possibility is that these
additional assumptions correspond to the extra analyticity properties that are built into
modular covariance.

5Formally, the split property requires that if spacetime region O1 is strictly contained
in region O2, there is a type I von Neumann algebra N such that R(O1) ⊂ N ⊂ R(O2).
(In general, local algebras must be type III.) For a discussion of the physical motivation,
see Haag (1996), Chapter V.5.
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condition, which is absent from Bain’s executive summary (tables 1.1 and 1.2
on p. 28), also plays an important role. Bain argues that the spectrum con-
dition, like Lorentz invariance, is derived rather than assumed in algebraic
proofs, but if we ultimately want to derive modular covariance from more fun-
damental axioms, the spectrum condition is almost certainly essential. Even
more importantly, in order to frame any geometric assumptions about modu-
lar invariants in the first place, these objects must exist. The physical reason
why they do is given by the Reeh-Schlieder theorem, whose proof crucially
relies on the spectrum condition (along with isotony and microcausality).
Our discussion also brought to the fore two additional ingredients of the al-
gebraic proofs which remain hidden in Bain’s survey, the split property and
analyticity (encoded by modular covariance).

These observations already serve to undermine some of the principal dis-
analogies Bain focuses on, but I think we can go farther. In each version
of the CPT and spin-statistics theorems, the following five assumptions (in
some form) do most of the heavy lifting:

(i) Restricted Lorentz invariance

(ii) Spectrum Condition

(iii) Causality

(iv) Finite Particle Multiplicity

(v) Analyticity

Having just clarified the physical content of modular covariance, restricted
Lorentz invariance (i) and the spectrum condition (ii) now appear in all four
proof types, either explicitly or implicitly. In Wightman, Lagrangian, and
algebraic proofs, causality (iii) is captured by requiring observables to com-
mute and fields to either commute or anticommute at spacelike separation.
In the S-matrix approach it is secured by Weinberg’s cluster decomposition
principle which can be viewed as a kind of asymptotic version of field com-
mutation conditions.6

The finite multiplicity constraint (iv) is needed to exclude the afore-
mentioned counterexamples constructed by Streater (1967) and Oksak and

6Clustering properties of states are dual to asymptotic abelianness conditions for ob-
servables. These were originally introduced as an asymptotic weakening of microcausality
in algebraic QFT. See Bratteli and Robinson (1981) Chapter 4.3 for a detailed discussion.
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Todorov (1968), although it usually only appears explicitly in Wightman
and algebraic proofs. In the former it is secured by requiring QFTs to be
generated by finite-component Wightman fields. In the latter it is typically
motivated by the split property. It is arguably a tacit assumption in both
Lagrangian and S-matrix approaches, where these kinds of counterexamples
do not even appear on the radar.7

Analyticity assumptions (v) are not well understood from a physical per-
spective, and yet they are essential mathematical ingredients of all known
proofs of the CPT and spin-statistics theorems. In the Wightman frame-
work, analytic properties of the n-point correlation functions play a central
role, while in algebraic QFT, functions of the wedge modular invariants dis-
play similar analytic behavior. Lagrangian and S-matrix proofs also rely on
analyticity assumptions, albeit in a less rigorous, more ad hoc manner. For
example, standard formulas for dispersion relations and crossing-symmetry
of the S-matrix contain veiled analyticity assumptions.8

In spite of these structural similarities, assumptions (i)-(v) do appear
in subtly different incarnations in each framework, and the resulting proofs
display mathematically significant variation. Where Bain and I disagree, I
think, is over the extent of this variation and whether or not the residual
mathematical differences reflect a deeper conceptual divide. In a separate
paper (Swanson, 2017), I defend the conceptual compatibility of Lagrangian
and axiomatic frameworks. Here, I will highlight two broad reasons to be
skeptical of Bain’s position.

First, the mathematical assumptions we start out with in a given frame-
work are not always intended to directly characterize its fundamental ontol-
ogy. For example, field operators are not gauge-invariant, so even though
both Lagrangian and Wightman QFT begin with assumptions about fields,
these are usually viewed as tools for constructing nets of gauge-invariant
observables. Similarly, while certain structural features of the S-matrix are

7Since these frameworks typically work with type I algebras exclusively, one might
argue that the split property or the weaker distal split property is presupposed. Both
are sufficient to rule out infinite-multiplet counterexamples. Moreover, as part of the
physical motivation for his S-matrix approach, Weinberg (2005, p. xxi) cites its ability to
reconcile the basic principles of relativity and quantum mechanics with a finite number of
particle types. The confusion here highlights the importance of seeking rigorous proofs of
foundational theorems.

8Such analyticity assumptions were made explicit in the axioms for the S-matrix boot-
strap program during the 1960s (e.g., Eden et al. 1966).
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treated as conceptually central to particle physics in Weinberg’s approach,
they are still viewed as consequences of underlying gauge-invariant properties
of fields.9 So even if our four frameworks disagree about the mathematical
starting points, it is not clear that they actually disagree about what the
basic objects of QFT are. Call this the fundamentality problem.

Second, it is important to distinguish between assumptions that are deemed
essential properties of any relativistic QFT, assumptions that characterize
classes of physically relevant models, and assumptions that are simply math-
ematically expedient. Many of the assumptions made by each framework
arguably fall into these latter two categories.10 In addition, mathematical
physicists treat many assumptions as provisional, open to reinterpretation
and revision. While the frameworks have different classes of mathematical
models at this stage, there is also substantial overlap, and it is not clear
if these differences in modal scope reflect a disagreement about the essen-
tial features of a relativistic QFT or if the frameworks simply characterize
different types of QFTs. Call this the scope problem.

Together, these two problems put significant pressure on Bain’s arguments
concerning explanation in Chapter 5. It is widely believed that the CPT
and spin-statistics theorems explain why the corresponding properties are
essential features of relativistic QFTs. Bain disagrees:

The existence of conceptually distinct alternative formulations
of these theorems indicates that there is no unique derivation
of these properties; and it also puts into question whether the
principles used to derive these properties can be considered fun-
damental (p. 146).

He contends that there is significant conceptual disagreement about what a
relativistic QFT really is, and this in turn undermines the idea that existing

9See Weinberg (2005), especially Ch. 4.1, 5.1, 5.9, and 8.1.
10Lorentz invariance, microcausality, and the spectrum condition are likely essential

properties of anything we would be willing to call a “relativistic QFT” (although there is
still some room for debate). In contrast, being the quantization of a classical Lagrangian
field theory or having an S-matrix formulation are arguably not. (There exist models of
the algebraic and Wightman axioms that lack one or both of these properties.) These con-
straints seem to pick out classes of physically well-behaved models similar to the standard
model. Assumptions like additivity and Haag duality look more like provisional techni-
cal assumptions. The status of other assumptions like the split condition and modular
covariance are still unresolved.
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proofs can provide us with explanations fitting into standard philosophical
accounts of scientific explanation (DN, unificationist, structural, and causal).

In addition, all current frameworks face some version of what Bain calls
the existence problem. One of the central interpretive claims from Chapter
1 is that we can divide frameworks into “purist” and “pragmatist” vari-
eties based on what they require of a model of QFT in order to say that it
exists. Purist frameworks, like algebraic and Wightman QFT, demand exis-
tence in the form of a model of mathematically rigorous axioms. Pragmatist
frameworks, like Lagrangian and S-matrix QFT, adopt “arguably weaker”
conditions like Borel summability of perturbation series, renormalizability,
or the existence of an ultraviolet fixed point (p. 36-38). The problem is that
we do not currently have models of realistic interacting theories satisfying
the stronger purist existence conditions, nor do we think that any of the
weaker pragmatist conditions are general enough to be plausible necessary
constraints on models of QFT.

I agree that our understanding of relativistic QFT is still in flux and that
the existence problem is a pressing concern, but I am inclined towards a
more positive outlook than Bain in this case. Our discussion of core assump-
tions (i)-(v) indicate that proofs couched in different frameworks have a great
deal of structure in common. Moreover, the fundamentality and scope prob-
lems cast doubt on the idea that remaining mathematical differences reflect
disagreement about the fundamental objects and essential properties of rela-
tivistic QFTs.11 Upon closer inspection, the conceptual divisions which sup-
posedly undercut the explanatory credentials of the CPT and spin-statistics
theorems begin to dissolve into the ether.

One of the details that tends to get lost in Bain’s presentation is just how
different the existence problem is for the pragmatist and the purist. The
pragmatist has already succeeded in showing that the standard model exists
according to Bain’s list of weak existence conditions. Quantum electrody-
namics, electro-weak theory, and quantum chromodynamics are all renor-

11This undermines Bain’s prima facie argument for incompatibility and shifts most of the
weight onto a small handful of cases where he argues more directly (e.g., p. 27-29, 72-77,
147-149, and 159). Space constraints prevent me from discussing these systematically, but I
think that the scope and fundamentality problems also significantly undermine these more
direct arguments. For example, Bain contends that purist and pragmatist proofs disagree
about whether CPT invariance entails the spin-statistics connection or vice versa. But
if different frameworks characterize different subclasses of models, such logical variation
comes as no great surprise and does not necessarily indicate conceptual disagreement.
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malizable, and numerous arguments indicate that quantum chromodynamics
also has an ultraviolet fixed point. The challenge for the pragmatist is that
not all relativistic QFTs have these properties. So we do not yet know if the
core ideas from the pragmatist proofs apply in the general case.12 In contrast,
the purist has plausible candidates for rigorous axioms characterizing what
all relativistic QFTs have in common. Her challenge is to show that these
axioms have their intended scope by constructing models of 4-dimensional
local gauge theories like the standard model. We do not yet know if the core
ideas from purist proofs apply to the actual world.

From his vantage point, Bain sees the mathematical differences between
purist and pragmatist proofs and projects a yawning conceptual crevasse
separating them. As a result, the existence problem appears to preclude
even a provisional understanding of CPT invariance and the spin-statistics
connection in realistic interacting QFTs. I have been advocating a different
perspective, one emphasizing the structural and conceptual commonalities
between frameworks. From this vantage point, the crevasse looks far more
navigable. The fact that there is so much in common between purist proofs,
which plausibly aim to capture the modal boundaries of relativistic QFT, and
pragmatist proofs that cover empirically successful theories like the standard
model, gives us good reason to believe that a similar core of ideas will feature
prominently in the eventual explanation of CPT invariance and the spin-
statistics connection.

References

Borchers, H. J. (1992). The CPT-theorem in two-dimensional theories of
local observables. Communications in Mathematical Physics, 143:315–332.

Borchers, H. J. (2000). On revolutionizing quantum field theory with
Tomita’s modular theory. Journal of Mathematical Physics, 41(6):3604–
3673.

Bratteli, O. and Robinson, D. W. (1981). Operator Algebras and Quantum
Statistical Mechanics. Springer-Verlag.

12We might also be justifiably concerned about the mathematical integrity of these
pragmatist proofs, which are often lacking in rigor, but this is a separate concern (and one
that Bain does not dwell on).

11



Buchholz, D., Dreyer, O., Florig, M., and Summers, S. J. (2000). Geomet-
ric modular action and spacetime symmetries. Reviews in Mathematical
Physics, 12:475–560.

Eden, R. J., Landshoff, P. V., Olive, D. I., and Polkinghorne, J. C. (1966).
The Analytic S-Matrix. Cambridge University Press.

Gaier, J. and Yngvason, J. (2000). Geometric modular action, wedge duality,
and Lorentz covariance are equivalent for generalized free fields. Journal
of Mathematical Physics, 41:5910–5919.

Guido, D. and Longo, R. (1995). An algebraic spin statistics theorem. Com-
munications in Mathematical Physics, 172:517–533.

Haag, R. (1996). Local Quantum Physics. Springer-Verlag, Berlin.

Oksak, A. and Todorov, I. (1968). Invalidity of TCP-theorem for infinite-
component fields. Communications in Mathematical Physics, 11:125–130.

Streater, R. F. (1967). Local fields with the wrong connection between spin
and statistics. Communications in Mathematical Physics, 5:88–96.

Swanson, N. (2017). A philosopher’s guide to the foundations of quantum
field theory. Philosophy Compass, 12(5).

Weinberg, S. (2005). The Quantum Theory of Fields, volume I. Cambridge
University Press.

12


