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Abstract

For simplicity, most of the literature introduces the concept of defini-
tional equivalence only to languages with disjoint signatures. In a recent
paper, Barrett and Halvorson introduce a straightforward generalization to
languages with non-disjoint signatures and they show that their general-
ization is not equivalent to intertranslatability in general. In this paper, we
show that their generalization is not transitive and hence it is not an equiv-
alence relation. Then we introduce the Andréka and Németi generalization
as one of the many equivalent formulations for languages with disjoint sig-
natures. We show that the Andréka–Németi generalization is the smallest
equivalence relation containing the Barrett–Halvorson generalization and
it is equivalent to intertranslatability even for languages with non-disjoint
signatures. Finally, we investigate which definitions for definitional equiv-
alences remain equivalent when we generalize them for theories with non-
disjoint signatures.

Keywords: First-Order Logic · Definability Theory · Definitional Equiva-
lence · Logical Translation · Logical Interpretation

1 Introduction

Definitional equivalence1 has been studied and used by both mathematicians
and philosophers of science as a possible criterion to establish the equivalence
between different theories. This concept was first introduced by (Montague
1956), but there are already some traces of the idea in (Tarski et al. 1953). In phi-
losophy of science, it was introduced by (Glymour 1970), (Glymour 1977) and

1Definitional equivalence has also been called logical synonymity or synonymy, e.g., in (de Bouvère
1965), (Friedman and Visser 2014) and (Visser 2015).
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(Glymour 1980). (Corcoran 1980) discusses the history of definitional equiva-
lence. In (Andréka et al. 2002, Section 6.3) and (Madarász 2002, Section 4.3),
definitional equivalence is generalized to many-sorted definability, where even
new entities can be defined and not just new relations between existing entities.
(Barrett and Halvorson 2016a), on which the present paper is partly a commen-
tary, and (Barrett and Halvorson 2016b) contain more references to examples on
the use of definitional equivalence in the context of philosophy of science.

We have also recently started in (Lefever and Székely 2018) to use defini-
tional equivalence to study the exact differences and similarities between the-
ories which are not equivalent, in that case classical and relativistic kinematics.
In that paper, we showed that there exists a translation of relativistic kinemat-
ics into classical kinematics, but not the other way round. We also showed that
special relativity extended with a “primitive ether” is definitionally equivalent
to classical kinematics. Those theories are expressed in the same language, and
hence have non-disjoint signatures2.

(Barrett and Halvorson 2016a, Definition 2) generalizes definitional equiv-
alence from (Hodges 1993, pp. 60-61) for languages having non-disjoint vo-
cabularies in a straightforward way. Then they show that their generalization,
which we call here definitional mergeability to avoid ambiguity, is not equiva-
lent to intertranslatability in general just for theories with disjoint signatures.
In this paper, we show that definitional mergeability is not an equivalence re-
lation because it is not transitive. Then we recall (Andréka and Németi 2014,
Definition 4.2) which is known to be equivalent to definitional mergeability for
languages with disjoint signatures. Then we show that the Andréka–Németi
definitional equivalence is the smallest equivalence relation containing defini-
tional mergeablitiy and that it is equivalent to intertranslatability even for the-
ories with languages with non-disjoint signatures. Acutally, two theories are
definitional equivalent iff there is a theory that is definitionally mergeable to
both of them. Moreover, one of these definitional mergers can be a renaming.

Theorem 4.2 of (Andréka and Németi 2014) claims that (i) definitional equiv-
alence, (ii) definitional mergeability, (iii) intertranslatability and (iv) model merge-
ability (see Definition 13 below) are equivalent in case of disjoint signatures.
Here, we show that the equivalence of (i) and (iii) and that of (ii) and (iv) hold
for arbitrary languages, see Theorems 8 and 7. However, since (i) and (ii) are
not equivalent by Theorems 1 and 3, no other equivalence of extends to arbi-
trary languages. Finally, we introduce a modification of (iv) that is equivalent
to (i) and (iii) for arbitrary languages, see Theorem 9.

2For a variant of this result in which we explicitly made the signatures disjoint, see (Lefever
2017).
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2 Framework and definitions

Definition 1. A signature3 Σ is a set of predicate symbols (relation symbols),
function symbols, and constant symbols.

Definition 2. A first-order language L is a set containing a signature, as well as
the terms and formulas which can be constructed from that signature using
first-order logic.

Remark 1. For every theory T which might contain constants and functions,
there is another theory T ′ which is formulated in a language containing only
relation symbols and connected to T by all the relations (definitional mergeabil-
ity, definitional equivalence and intertranslatability) investigated in this paper,
see (Barrett and Halvorson 2016a, Proposition 2 and Theorem 1) and Theorem 8
below. Therefore, here we only consider languages containing only relation
symbols.

Definition 3. A sentence is a formula without free variables.

Definition 4. A theory T is a set of sentences expressed in language L.

Convention 1. We will use the notations Σx, Σ′, etc. for the signatures, and Lx,
L′, etc. for the languages of respective theories Tx, T ′, etc.

Definition 5. A model M = 〈M, 〈RM : R ∈ Σ〉〉 of signature Σ consists of a
non-empty underlying set4 M , and for all relation symbols R of Σ, a relation
RM ∈Mn with the corresponding arity5.

Definition 6. Let M be a model, let M be the non-empty underlying set of
M, let ϕ be a formula, let V be the set of variables and let e : V → M be an
evaluation of variables, then we inductively define that e satisfies ϕ in M, in
symbols M |= ϕ[e], as:

1. For predicate R, M |= R(x, y, . . . , z)[e] holds if
(
e(x), e(y), . . . , e(z)

)
∈

RM,

2. M |= (x = y)[e] holds if e(x) = e(y) holds,

3. M |= ¬ϕ[e] holds if M |= ϕ[e] does not hold,

4. M |= (ψ ∧ θ)[e] holds if both M |= ψ[e] and M |= θ[e] hold,
3In (Andréka and Németi 2014), a signature is called a vocabulary. Since this paper is partly a

comment on (Barrett and Halvorson 2016a), we will use their terminology, which is also being used
in Hodges (1993) and Hodges (1997).

4The non-empty underlying set M is also called the universe, the carrier or the domain of M.
5The arity n is the number of variables in the relation, it is also called the rank, degree, adicity or

valency of the relation. Mn denotes the Cartesian power of set M .
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5. M |=
(
∃yψ

)
[e] holds if there is an element b ∈ M , such that M |= ψ[e′] if

e′(y) = b and e′(x) = e(x) if x 6= y.

Let x̄ be the list of all free variables of ϕ and let ā be a list of elements ofM with
the same number of elements as x̄. Then M |= ϕ[ā] iff M satsfies6 ϕ for all (or
equivalently some) evaluation e of variables for which e(x̄) = ā, i.e., variables
in x̄ are mapped to elements ofM in ā in order. In case ϕ is a sentence, its truth
does not depend on evaluation of variables. So that ϕ is true in M is denoted
by M |= ϕ. For theory T , M |= T abbreviates that M |= ϕ for all ϕ ∈ T .

Remark 2. We will use ϕ ∨ ψ as an abbreviation for ¬(¬ϕ ∧ ¬ψ), ϕ → ψ for
¬ϕ ∨ ψ, ϕ↔ ψ for (ϕ→ ψ) ∧ (ψ → ϕ) and ∀x(ϕ) for ¬

(
∃x(¬ϕ)

)
.

Definition 7. Mod(T ) is the class of models of theory T ,

Mod(T )
def
= {M : M |= T}.

Definition 8. Two theories T1 and T2 are logically equivalent, in symbols T1 ≡
T2, iff7 they have the same class of models, i.e., Mod(T1) = Mod(T2).

Definition 9. Let L ⊂ L+ be two languages. An explicit definition of an n-ary
relation symbol p ∈ L+ \ L in terms of L is a sentence of the form

∀x1 . . . ∀xn
[
p(x1, . . . , xn)↔ ϕ(x1, . . . , xn)

]
,

where ϕ is a formula of L.

Definition 10. A definitional extension8 of a theory T of language L to language
L+ is a theory T+ ≡ T ∪∆, where ∆ is a set of explicit definitions in terms of
language L for each relation symbol p ∈ L+ \ L. In this paper, T → T+ and
T+ ← T denote that T+ is a definitional extension of T .

We will use ∆xy to denote the set of explicit definitions when the signature
Σy of theory Ty is defined in terms of the signature Σx of theory Tx.

Definition 11. Two theoriesT , T ′ are definitionally equivalent, in symbolsT ∆≡ T ′,
if there is a chain T1, . . . , Tn of theories such that T = T1, T ′ = Tn, and for all
1 ≤ i < n either Ti → Ti+1 or Ti ← Ti+1.

Remark 3. If a theory is consistent, then all theories which are definitionally
equivalent to that theory are also consistent since definitions cannot make con-
sistent theories inconsistent. Similarly, if a theory is inconsistent, then all theo-
ries which are definitionally equivalent to that theory are also inconsistent.

6M |= ϕ[ā] can also be read as ϕ[ā] being true in M.
7iff abbreviates if and only if. It is denoted by ↔ in the object languages (see remark 2 above) and

by ⇐⇒ in the meta-language.
8We follow the definition from (Andréka and Németi 2014, Section 4.1, p.36), (Hodges 1993, p.60)

and (Hodges 1997, p.53). In (Barrett and Halvorson 2016a, Section 3.1, p.3), the logical equivalence
relation is not part of the definition.
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Definition 12. Let T1 and T2 be theories of languages L1 and L2, respectively.
T1 and T2 are definitionally mergeable, in symbols T1 →

← T2, if there is a theory
T+ which is a common definitional extension of T1 and T2, i.e., T1 → T

+ ← T2.

Remark 4. From Definition 11 and Definition 12, it is immediately clear that
being definitionally mergeable is a special case of being definitionally equiva-
lent.

Lemma 1 below establishes that our Definition 12 of definitional mergeabil-
ity is equivalent to the definition for definitional equivalence in (Barrett and
Halvorson 2016a, Definition 2).

Lemma 1. Let T1 and T2 be two arbitrary theories. Then T1 →
← T2 iff there are

sets of explicit definitions ∆12 and ∆21 such that T1 ∪∆12 ≡ T2 ∪∆21.

Proof. Let T1 →
← T2, then there exists a T+ such that T1 → T+ ← T2. By the

definition of definitional extension, there exist sets of explicit definitions ∆12

and ∆21 such that T1 ∪∆12 ≡ T+ and T2 ∪∆21 ≡ T+, and hence by transitivity
of logical equivalence T1 ∪∆12 ≡ T2 ∪∆21.

To prove the other direction: let T1 and T2 be theories such that T1 ∪∆12 ≡
T2 ∪∆21 for some sets ∆12 and ∆21 of explicit definitions. Let T+ = T1 ∪ T2 ∪
∆12 ∪∆21. Hence T1 ∪∆12 ≡ T+ ≡ T2 ∪∆21 and T1 → T

+ ← T2, and therefore
T1 →

← T2. �

Convention 2. If theories T1 and T2 are definitionally mergeable and their sig-

natures are disjoint, i.e., Σ1 ∩ Σ2 = ∅, we write T1

∅
→← T2.

Definition 13. Theories T1 and T2 are model mergeable9, in symbolsMod(T1) →←

Mod(T2), iff there is a bijection β betweenMod(T1) andMod(T2) that is defined
along two sets ∆12 and ∆21 of explicit definitions such that if M ∈ Mod(T1),
then

• the underlying sets of M and β(M) are the same,

• the relations in β(M) are the ones defined in M according to ∆12 and vice
versa, the relations in M are the ones defined in β(M) according to ∆21.

Definition 14. Let T1 and T2 be theories. A translation10 tr of theory T1 to theory
T2 is a map from L1 to L2 which

• maps every n-ary relation symbol p ∈ L1 to a corresponding formula
ϕp ∈ L2 of n with free variables, i.e., tr

(
p(x1, . . . , xn)

)
is ϕp(x1, . . . , xn).

9We use the definition from (Andréka and Németi 2014, p. 40, item iv), which is a variant of the
definition in (Henkin et al. 1971, p. 56, Remark 0.1.6).

10In Andréka and Németi (2014), (Lefever 2017) and (Lefever and Székely 2018), this is called an
interpretation, but we again follow the terminology from (Barrett and Halvorson 2016a) here.
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• preserves the equality, logical connectives, and quantifiers, i.e.,

– tr(x1 = x2) is x1 = x2,

– tr(¬ϕ) is ¬tr(ϕ),

– tr(ϕ ∧ ψ) is tr(ϕ) ∧ tr(ψ), and

– tr(∃xϕ) is ∃x
(
tr(ϕ)

)
.

• maps consequences of T1 into consequences of T2, i.e., T1 |= ϕ implies
T2 |= tr(ϕ) for all sentence ϕ ∈ L1.

Remark 5. From (Andréka et al. 2005), we know that T being translatable into
T ′ and T ′ being translatable into T is not a sufficient condition for T ∆≡ T ′.

Definition 15. Theories T1 and T2 are intertranslatable11, in symbols T1 � T2, if
there are translations tr12 of T1 to T2 and tr21 of T2 to T1 such that

• T1 |= ∀x1 . . . ∀xn
[
ϕ(x1, . . . , xn)↔ tr21

(
tr12

(
ϕ(x1, . . . , xn)

))]
• T2 |= ∀x1 . . . ∀xn

[
ψ(x1, . . . , xn)↔ tr21

(
tr12

(
ψ(x1, . . . , xn)

))]
for every formulasϕ(x1, . . . , xn) and formulaψ(x1, . . . , xn) of languagesL1 and
L2, respectively.

For a direct proof that intertranslatability is an equivalence relation, see e.g.,
(Lefever 2017, Theorem 1, p. 7). This fact also follows from Theorems 3 and 8
below.

Definition 16. The relation defined by formula ϕ in M is12:

‖ϕ‖M def
=
{
ā ∈Mn : M |= ϕ[ā]

}
.

Definition 17. For all translations tr12 : L1 → L2 of theory T1 to theory T2, let
tr∗12 be defined as the map that maps model M = 〈M, . . .〉 of T2 to

tr∗12(M)
def
=
〈
M,
〈
‖tr12(pi)‖M : pi ∈ Σ1

〉 〉
,

that is all predicates pi of Σ1 interpreted in model tr∗12(M) as the relation de-
fined by formula tr12(pi).

Lemma 2. Let M be a model of language L2, let ϕ be a formula of language L1,
and let e : V →M be an evaluation of variables. If tr12 : L1 → L2 is translation
of T1 to T2, then

tr∗12(M) |= ϕ[e] ⇐⇒ M |= tr12(ϕ)[e]

11In (Henkin et al. 1985, p. 167, Definition 4.3.42), definitional equivalence is defined as inter-
translatability.

12‖ϕ‖M is basically the same as the meaning of formula ϕ in model M, see (Andréka et al. 2001,
p. 194 Definition 34 and p. 231 Example 8).
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Proof. We are going to prove Lemma 2 by induction on the complexity of ϕ. So
let us first assume that ϕ is a single predicate p of language L1.

Let ū be the e-image of the free variables of p. Then tr∗12(M) |= p[e] holds
exactly if tr∗12(M) |= p[ū]. By Definition 17, this holds iff〈

M,
〈
‖tr12(pi)‖M : pi ∈ Σ1

〉 〉
|= p[ū]. (1)

By Definition 16, ‖tr12(p)‖M =
{
ā ∈Mn : M |= tr12(p)[ā]

}
. So (1) is equivalent

to M |= tr12(p)[ū].
If ϕ is x = y, then we should show that

tr∗12(M) |= (x = y)[e] ⇐⇒ M |= tr12(x = y)[e].

Since translations preserve mathematical equality by Definition 14, this is equiv-
alent to

tr∗12(M) |= (x = y)[e] ⇐⇒ M |= (x = y)[e],

which holds because the underlying sets of tr∗12(M) and M are the same and
both sides of the equivalence are equivalent to e(x) = e(y) by Definition 6.

Let us now prove the more complex cases by induction on the complexity
of formulas.

• If ϕ is ¬ψ, then we should show that

tr∗12(M) |= ¬ψ[e] ⇐⇒ M |= tr12(¬ψ)[e].

Since tr12 is a translation, it preserves (by Definition 14) the conectives,
and therefore this is equivalent to

tr∗12(M) |= ¬ψ[e] ⇐⇒ M |= ¬tr12(ψ)[e],

which holds by Definition 6 Item 3 since we have

tr∗12(M) |= ψ[e] ⇐⇒ M |= tr12(ψ)[e]

by induction.

• If ϕ is (ψ ∧ θ), then we should show that

tr∗12(M) |= (ψ ∧ θ)[e] ⇐⇒ M |= tr12(ψ ∧ θ)[e].

Since tr12 is a translation, it preserves (by Definition 14) the conectives,
and therefore tr12(ψ ∧ θ) is equivalent to tr12(ψ) ∧ tr12(θ), and hence the
above is equivalent to

tr∗12(M) |= (ψ ∧ θ)[e] ⇐⇒ M |=
(
tr12(ψ) ∧ tr12(θ)

)
[e],

which holds by Definition 6 Item 4 because both tr∗12(M) |= ψ[e] ⇐⇒
M |= tr12(ψ)[e] and tr∗12(M) |= θ[e] ⇐⇒ M |= tr12(θ)[e] hold by induc-
tion.
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• If ϕ is ∃y(ψ), then we should show that

tr∗12(M) |=
(
∃y(ψ)

)
[e] ⇐⇒ M |= tr12

(
∃y(ψ)

)
[e]

holds. Since tr12 is a translation, it preserves (by Definition 14) the quan-
tifiers, and hence this is equivalent to

tr∗12(M) |=
(
∃y(ψ)

)
[e] ⇐⇒ M |=

(
∃y
(
tr12(ψ)

))
[e].

By Definition 6 Item 5, both sides of he equivalence hold exactly if there
exists an element b ∈M such that

tr∗12(M) |= ψ[e′] ⇐⇒ M |= tr12(ψ)[e′],

where e′(y) = b and e′(x) = e(x) if x 6= y, which holds by induction
because the underlying sets of tr∗12(M) and M are the same. �

Corollary 1. If tr12 : L1 → L2 is a translation of T1 to T2, then

tr∗12 : Mod(T2)→Mod(T1),

that is, tr∗12 is a map from Mod(T2) to Mod(T1).

Proof. Let M be a model of T2 and let ϕ ∈ T1. We should prove that tr∗12(M) |=
ϕ. By Lemma 2, we have that

tr∗12(M) |= ϕ ⇐⇒ M |= tr12(ϕ).

Hence tr12(ϕ) is true in every model of T2 as we wanted to prove. �

Remark 6. Note that while tr12 is a translation of T1 to T2, tr∗12 translates models
the other way round fromMod(T2) toMod(T1). For an example illustrating this
for a translation from relativistic kinematics to classical kinematics, see (Lefever
2017, Chapter 7) or (Lefever and Székely 2018, Section 7).

Definition 18. TheoriesT1 andT2 are model intertranslatable, in symbolsMod(T1) �

Mod(T2), iff there are translations tr12 : L1 → L2 of T1 to T2 and tr21 : L2 → L1

of T2 to T1, such that tr∗12 : Mod(T2) → Mod(T1) and tr∗21 : Mod(T1) →
Mod(T2) are bijections which are inverses of each other.

Definition 19. Theories T and T ′ are disjoint renamings of each other, in symbols
T
∅' T ′, if their signatures Σ and Σ′ are disjoint, i.e., Σ ∩ Σ′ = ∅, and there is

a renaming bijection R∅ΣΣ′ from Σ to Σ′ such that the arity of the relations is
preserved and that the formulas inT ′ are defined by renamingR∅ΣΣ′ of formulas
from T .13

Remark 7. Note that disjoint renaming is symmetric but neither reflexive nor

transitive. Also, if T ∅' T ′, then T 6= T ′, T
∅
→← T ′, T →← T ′, T ∆≡ T ′ and T � T ′.

13While bijection R∅
ΣΣ′ is defined on signatures, it can be naturally extended to the languages

using those signatures. We will use the same symbol R∅
ΣΣ′ for that.
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3 Properties

Theorem 1. Relation →← is not transitive. Hence it is not an equivalence rela-
tion.

The proof is based on (Barrett and Halvorson 2016a, Example 5). Note that
the proof relies on the signatures of theories T1 and T2 being non-disjoint.

Proof. Let p and q be unary predicate symbols. Consider the following theories
T1, T2 and T3:

T1 = { ∃!x(x = x), ∀x[p(x)] }

T2 = { ∃!x(x = x), ∀x[¬p(x)] }

T3 = { ∃!x(x = x), ∀x[q(x)] }

T1 and T2 are not definitionally mergeable, since they do not have a common
extension as they contradict each other14.

Let us define T+
1 where q is defined in terms of T1 as p and let us define T+

3

where p is defined in terms of T3 as q, i.e.,

T+
1 = { ∃!x(x = x), ∀x[p(x)], ∀x[q(x)↔ p(x)] }

T+
3 = { ∃!x(x = x), ∀x[q(x)], ∀x[p(x)↔ q(x)] }.

Then T1 and T3 are definitionally mergeable because T1 → T+
1 , T3 → T+

3 ,
and T+

1 ≡ T
+
3 .

Let us now define T+
2 where q is defined in terms of T2 as ¬p and let us

define T×3 where p is defined in terms of T3 as ¬q, i.e.,

T+
2 = { ∃!x(x = x), ∀x[¬p(x)], ∀x[q(x)↔ ¬p(x)] }

T×3 = { ∃!x(x = x), ∀x[q(x)], ∀x[p(x)↔ ¬q(x)] }.

Then T2 and T3 are definitionally mergeable because T2 → T+
2 , T3 → T×3 ,

and T+
2 ≡ T

×
3 .

Therefore, being definitionally mergeable is not transitive and hence not an
equivalence relation as T1 →

← T3 →
← T2 but T1 and T2 are not definitionally

mergeable. �
14∃! is an abbreviation for “there exists exactly one”, i.e.,

∃!x
(
ϕ(x)

)
⇐⇒ ∃x

(
ϕ(x) ∧ ¬∃y

(
ϕ(y) ∧ x 6= y

))
.
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Theorem 2. If theories T1, T2 and T3 are formulated in languages having dis-
joint signatures and T1 →

← T2 and T2 →
← T3, then T1 and T3 are also mergeable,

i.e.,

T1

∅
→← T2

∅
→← T3 and Σ1 ∩ Σ3 = ∅ =⇒ T1

∅
→← T3.

Proof. Let T1, T2 and T3 be theories such that Σ1 ∩Σ3 = ∅ and T1

∅
→← T2

∅
→← T3.

We have from the definitions of definitional equivalence and definitional
extension that there exist sets ∆12, ∆21, ∆23 and ∆32 of explicit definitions,
such that

T1 ∪∆12 ≡ T2 ∪∆21, i.e., Mod(T1 ∪∆12) = Mod(T2 ∪∆21), (2)

and
T2 ∪∆23 ≡ T3 ∪∆32, i.e., Mod(T2 ∪∆23) = Mod(T3 ∪∆32). (3)

We want to prove that T1∪∆12∪∆23 ≡ T3∪∆32∪∆21, i.e.,Mod(T1∪∆12∪
∆23) = Mod(T3 ∪∆32 ∪∆21).

If one of the theories T1, T2 or T3 is inconsistent, then by Remark 3, all of
them are inconsistent. In that case T1 →

← T3 is true because all statements can
be proven ex falso in both theories. Let us for the rest of the proof now assume
that all of them are consistent.

Let M ∈ Mod(T1 ∪ ∆12 ∪ ∆23). Such M exists because Σ1 ∩ Σ2 = ∅ and
hence ∆23 cannot make consistent theory T1 ∪∆12 inconsistent.

Then M |= T1 ∪∆12 ∪∆23. Therefore M |= T2 ∪∆21 by (2) and also M |=
T3 ∪∆32 because of (3) and the fact that M |= ∆23. Hence M |= T3 ∪∆32 ∪∆21.
Consequently, Mod(T1 ∪∆12 ∪∆23) ⊆Mod(T3 ∪∆32 ∪∆21).

An analogous calculation shows that Mod(T1 ∪ ∆12 ∪ ∆23) ⊇ Mod(T3 ∪
∆32 ∪∆21). So Mod(T1 ∪∆12 ∪∆23) = Mod(T3 ∪∆32 ∪∆21) and this is what
we wanted to prove. �

Theorem 3. Definitional equivalence is an equivalence relation.

Proof. To show that definitional equivalence is an equivalence relation, we need
to show that it is reflexive, symmetric and transitive:

• ∆≡ is reflexive because for every theory T → T since the set of explicit
definitions ∆ can be the empty set, and hence T ∆≡ T .

• ∆≡ is symmetric: if T ∆≡ T ′, then there exists a chain T . . . T ′ of theories
connected by ≡, → and ← . The reverse chain T ′ . . . T has the same kinds
of connections, and hence T ′ ∆≡ T .

10



• ∆≡ is transitive: if T1
∆≡ T2 and T2

∆≡ T3, then there exists chains T1 . . . T2

and T2 . . . T3 of theories connected by≡, → and← . The concatenated chain
T1 . . . T2 . . . T3 has the same kinds of connections, and hence T1

∆≡ T3. �

Lemma 3. If T1
∆≡ T2, then there exists a chain of definitional mergers such that

T1 →
← Ta →

← . . . →← Tz →
← T2.

Proof. The finite chain of steps given by Definition 11 for definitional equiva-
lence can be extended by adding extra extension steps → or ← wherever needed
in the chain because definitional extension is reflexive since the set of explicit
definitions ∆ can be the empty set. �

Lemma 4. Let Ta and Tb two theories for which Ta →← Tb. Then

• if Tb
∅' T ′b and Σa ∩ Σ′b = ∅, then Ta

∅
→← T ′b ,

• if Ta
∅' T ′a , Tb

∅' T ′b and Σ′a ∩ Σ′b = ∅, then T ′a
∅
→← T ′b.

Proof. Since Ta →← Tb, there are by Lemma 1 sets ∆ab and ∆ba of explicite defi-
nitions such that Ta ∪∆ab ≡ Tb ∪∆ba:

∆ab = {∀x̄ [p(x̄)↔ ϕp(x̄)] : p ∈ Σb and ϕp ∈ La} ,

i.e., ϕp is the definition of predicate p from Σb in language La.

∆ba = {∀x̄ [q(x̄)↔ ϕq(x̄)] : q ∈ Σa and ϕq ∈ Lb} ,

i.e., ϕq is the definition of predicate q from Σa in language Lb. We can now
define ∆ab′ and ∆b′a in the following way:

∆ab′
def
=
{
∀x̄
[
R∅ΣbΣ′

b

(
p
)
(x̄)↔ ϕp(x̄)

]
: p ∈ Σb and ϕp ∈ La

}
,

i.e., in ∆ab′ the renaming R∅ΣbΣ′
b

(
p
)

of predicate p from Σb is defined with the
same formula ϕp as p was defined in ∆ab.

∆b′a
def
=
{
∀x̄
[
q(x̄)↔ R∅ΣbΣ′

b

(
ϕq

)
(x̄)
]

: q ∈ Σa and ϕq ∈ Lb

}
,

i.e., in ∆b′a predicate q from Σa is defined with the renaming R∅ΣbΣ′
b

(
ϕq) of the

formula ϕq that was used in ∆ba to define q.

Then Ta ∪∆ab′ ≡ T ′b ∪∆b′a , and hence we have proven that Ta
∅
→← T ′b.

Similarly, we can define ∆a′b′ and ∆b′a′ as:

∆a′b′
def
=
{
∀x̄
[
R∅ΣbΣ′

b

(
p
)
(x̄)↔ R∅ΣaΣ′

a

(
ϕp

)
(x̄)
]

: p ∈ Σb and ϕp ∈ La

}
,
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i.e., in ∆a′b′ the renaming R∅ΣbΣ′
b

(
p
)

of predicate p from Σb is defined with the
renaming R∅ΣbΣ′

b

(
ϕp) of the formula ϕp that was used in ∆ab to define p.

∆b′a′
def
=
{
∀x̄
[
R∅ΣaΣ′

a

(
q
)
(x̄)↔ R∅ΣbΣ′

b

(
ϕq

)
(x̄)
]

: q ∈ Σa and ϕq ∈ Lb

}
,

i.e., in ∆b′a′ the renaming R∅ΣbΣ′
b

(
q
)

of predicate q from Σa is defined with the
renaming R∅ΣbΣ′

b

(
ϕq) of the formula ϕq that was used in ∆ba to define q.

Then T ′a ∪∆a′b′ ≡ T ′b ∪∆b′a′ , and hence we have proven that T ′a
∅
→← T ′b. �

Theorem 4. Theories T1 and T2 are definitionally equivalent iff there is a theory
T ′2 which is the disjoint renaming of T2 to a signature which is also disjoint from
the signature of T1 such that T ′2 and T1 are definitionally mergeable, i.e.,

T1
∆≡ T2 ⇐⇒ ∃T ′

[
T1

∅
→← T ′2 and T ′2

∅' T2

]
.

Proof. Let T1 and T2 be definitional equivalent theories. From Lemma 3, we
know that there exists a finite chain of definitonal mergers

T1 →
← Ta →

← . . . →← Tz →
← T2.

For all x in {a, . . . , z, 2}, let T ′x be a renaming of Tx such that Σ1 ∩ Σ′x = ∅
and for all y in {a, . . . z, 2}, if x 6= y then Σ′x ∩ Σ′y = ∅.

By Lemma 4, T ′a, . . . , T ′z, T ′2 is another chain of merges from T1 to T2

T1

∅
→← T ′a

∅
→← . . . T ′z

∅
→← T ′2

∅' T2,

where all theories in the chain have signatures which are disjoint from the sig-
natures of all the other theories in the chain, except for T1 and T2 which may
have signatures which are non-disjoint.

By Theorem 2, the consecutive merges from T1 to T ′2 can be compressed into

one merge. So T1

∅
→← T ′2

∅' T2 and this is what we wanted to prove.
To show the converse direction, let us assume that T1 and T2 are such the-

ories that there is a disjoint renaming theory T ′2 of T2 for which T1 →
← T ′2. As

T ′2 is a disjoint renaming of T2, we have by Remark 7 that T ′2
∅
→← T2. Therefore,

there is a chain T+, T× of theories such that T1 → T
+ ← T ′2 → T

× ← T2. Hence
T1

∆≡ T2. �

Corollary 2. Two theories are definitionally equivalent iff they can be connected
by two definitional merges:

T1
∆≡ T2 ⇐⇒ ∃T (T1

∅
→← T

∅
→← T2).

Consequently, the chain T1, . . . , Tn in Definition 11 can allways be choosed to
be at most length four.
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Proof. This follows immediately from Theorem 4 and Remark 7. �

Theorem 5. Definitional equivalence is the finest equivalence relation contain-
ing definitional mergeability. In fact ∆≡ is the transitive closure of relation →← .

Proof. From Remark 4, we know that ∆≡ is an extension of →← . To prove that ∆≡
is the transitive closure of →← , it is enough to show that T1

∆≡ T2 holds if there
is a chain T ′1, . . . , T ′n of theories such that T1 = T ′1, T2 = T ′n, and T ′i →

← T ′i+1 for

all 1 ≤ i < n. By Theorem 4, there is a theory T ′ such that T1 →
← T ′

∅' T2. By
Remark 7, T1 →

← T ′ →← T2 which proves our statement. �

It is known that, for languages with disjoint signatures, being definitionally
mergeable and intertranslatability are equivalent, see e.g., (Barrett and Halvor-
son 2016a, Theorems 1 and 2). Now we show that, for languages with disjoint
signatures, definitional equivalence also coincides with these concepts, i.e.:

Theorem 6. Let T and T ′ be two theories formulated in languages with disjoint
signatures. Then

T
∆≡ T ′ ⇐⇒ T

∅
→← T ′ ⇐⇒ T � T ′.

Proof. Since T
∅
→← T ′ ⇐⇒ T � T ′ is proven by (Barrett and Halvorson 2016a,

Theorems 1 and 2), we only have to prove that T ∆≡ T ′ ⇐⇒ T
∅
→← T ′.

Let theories T and T ′ be definitionally equivalent theories with disjoint sig-
natures Σ ∩ Σ′ = ∅. Since they are definitionally equivalent, there exists, by
Theorem 4 a chain which consists of a single mergeability and a renaming step
between T and T ′. Since T and T ′ are disjoint, and since renaming by Remark
7 is also a disjoint merger, these two steps can by Theorem 2 be reduced to one

step T
∅
→← T ′, and this is what we wanted to prove.

The converse direction follows straightforwardly from the definitions. �

Theorem 7. Let T1 and T2 be arbitrary theories, then T1 and T2 are mergeable
iff they are model mergeable, i.e.,

T1 →
← T2 ⇐⇒Mod(T1) →← Mod(T2)

Proof. Let T1 and T2 be arbitrary theories.

Let us first assume that T1 →← T2 and prove that Mod(T1) →← Mod(T2).
We know from Lemma 1 that there exist sets of explicit definitions ∆12 and
∆21 such that T1 ∪ ∆12 ≡ T2 ∪ ∆21. Therefore, by Definition 8, Mod(T1 ∪
∆12) = Mod(T2 ∪ ∆21). We construct map β between Mod(T1) and Mod(T2)
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by extending models of T1 with the explicit definitions in ∆12, which since
Mod(T1∪∆12) = Mod(T2∪∆21) will be a model of T1∪∆12, and then by taking
the reduct to the language of T2. The inverse map β−1 can be constructed in a
completely analogous manner. β is a bijection since it has an inverse defined
for every model of T2. Through this construction, the relations in β(M) are the
ones defined in M according to ∆12 and vice versa, the relations in M are the
ones defined in β(M) according to ∆21, and clearly the underlying set of M and
β(M) are the same. Hence Mod(T1) →← Mod(T2).

Let us now assume thatMod(T1) →← Mod(T2) and prove that T1 →
← T2. We

know by Definition 13 that there is a bijection β betweenMod(T1) andMod(T2)

that is defined along two sets ∆12 and ∆21 of explicit definitions such that if
M ∈Mod(T1), then

• the underlying set of M and β(M) are the same,

• the relations in β(M) are the ones defined in M according to ∆12 and vice
versa, the relations in M are the ones defined in β(M) according to ∆21.

Any model of both T1 ∪ ∆12 and T2 ∪ ∆21 can be obtained by listing the rela-
tions of M and β(M) together over the common underlying set M . Therefore,
Mod(T1∪∆12) = Mod(T2∪∆21), and thus by Definition 8, T1∪∆12 ≡ T2∪∆21.
Consequently, T1 →

← T2. �

Theorem 8. Let T1 and T2 be arbitrary theories. Then T1 and T2 are definition-
ally equivalent iff they are intertranslatable, i.e.,

T1
∆≡ T2 ⇐⇒ T1 � T2.

Proof. Let us first assume that T1
∆≡ T2. Let T ′ be a disjoint renaming of T2 to

a signature which is also disjoint from the signature of T1. By Remark 7 and
the transitivity of ∆≡, we have T1

∆≡ T ′
∆≡ T2. By Theorem 6, T1 � T ′ � T2.

Consequently, T1 � T2 because relation � is transitive.

To prove the converse, let us assume that T1 � T2. Let T ′ again be a disjoint
renaming of T2 to a signature which is also disjoint from the signature of T1.
By Remark 7 and the transitivity of �, we have T1 � T ′ � T2. By Theorem 6,
T1

∆≡ T ′ ∆≡ T2. Consequently, T1
∆≡ T2 because relation ∆≡ is transitive. �

Theorem 9. Let T1 and T2 be arbitrary theories, then T1 and T2 are intertrans-
latable iff their models are intertranslatable, i.e.,

T1 � T2 ⇐⇒Mod(T1) �Mod(T2)
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Proof. Let T1 and T2 be arbitrary theories. If T1 or T2 is inconsistent, then they
are by Remark 3 both inconsistent, Mod(T1) and Mod(T2) are empty classes,
and the theorem is trivially true. Let’s now for the rest of the proof assume
that both T1 and T2 are consistent theories and hence that both Mod(T1) and
Mod(T2) are not empty.

Let us first assume that T1 � T2 and prove that Mod(T1) � Mod(T2), i.e.,
that there exist tr∗12 : Mod(T2) → Mod(T1) and tr∗21 : Mod(T1) → Mod(T2)

which are bijections and which are inverses of each other.

Let M be a model of T1, then

M |= ∀x1 . . . ∀xn
[
ϕ(x1, . . . , xn)↔ tr21

(
tr12

(
ϕ(x1, . . . , xn)

))]
.

By Definition 6 and Remark 2, this is equivalent to

M |= ϕ[e] ⇐⇒ M |= tr21(tr12(ϕ))[e]

for all evaluations e : V →M .

By applying Lemma 2 twice,

M |= tr21(tr12(ϕ))[e] ⇐⇒ tr∗21(M) |= tr12(ϕ)[e] ⇐⇒ tr∗12(tr∗21(M)) |= ϕ[e].

Consequently,

M |= ϕ[e] ⇐⇒ tr∗12(tr∗21(M)) |= ϕ[e].

SinceM is the underlying set of both M and tr∗12(tr∗21(M)), this implies that
M = tr∗12(tr∗21(M)).

A completely analogous proof shows that N = tr∗21(tr∗12(N)) for all models
N of T2.

Consequently, tr∗12 and tr∗21 are everywhere defined and they are inverses of
each other because when we combine them we get the identity, and hence they
are bijections, which is what we wanted to prove.

Let us now assume that Mod(T1) � Mod(T2) and prove that T1 � T2. By
Definition 18, we know that there are bijections tr∗12 and tr∗21 which are inverses
of each other, and thus M = tr∗12(tr∗21(M)) for all models M of T1. Since M is
the underlying set of M, and tr∗12(tr∗21(M)), we have that

M |= ϕ[e] ⇐⇒ tr∗12(tr∗21(M)) |= ϕ[e].

From this, by applying Lemma 2 twice, we get

M |= ϕ[e] ⇐⇒ M |= tr21(tr12(ϕ))[e].
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for all evaluations e : V →M . By Definition 6 and Remark 2, this is equivalent
to

M |= ∀x1 . . . ∀xn
[
ϕ(x1, . . . , xn)↔ tr21

(
tr12

(
ϕ(x1, . . . , xn)

))]
.

A completely analogous proof shows that

N |= ∀x1 . . . ∀xn
[
ψ(x1, . . . , xn)↔ tr12

(
tr21

(
ψ(x1, . . . , xn)

))]
,

from which follows by Definition 15 that T1 � T2. �

Remark 8. If we use the notations of this paper, Theorem 4.2 of (Andréka and
Németi 2014) claims, without proof, that (i) definitional equivalence, (ii) def-
initional mergeability, (iii) intertranslatability and (iv) model mergeability are
equivalent in case of disjoint signatures. In this paper, we have not only proven
these statements, but we also showed which parts can be generalized to arbi-
trary languages and which cannot. In detail:

• item (i) is equivalent to item (iii) by Theorem 6, and we have generalized
this equivalence to theories in arbitrary languages by Theorem 8,

• the equivalence of items (ii) and (iv) have been generalized to theories in
arbitrary languages by Theorem 7,

• items (i) and (ii) are indeed equivalent for theories with disjoint signatures
by Theorem 6; however, they are not equivalent for theories with non-
disjoint signatures by the counterexample in Theorem 1,

• in Definition 18, we have introduced a model theoretic counterpart of in-
tertanslatability which, by Theorem 9, is equivalent to it even for arbitrary
languages.

4 Conclusion

Since definitional mergeability is not transitive, by Theorem 1, and thus not an
equivalence relation, the Barrett–Halvorson generalization is not a well-founded
criterion for definitional equivalence when the signatures of theories are not
disjoint. Contrary to this, the Andréka–Németi generalization of definitional
equivalence is an equivalence relation, by Theorem 3. It is also equivalent to in-
tertranslatability, by Theorem 8, and to model-intertranslatability, by Theorem
9, even for languages with non-disjoint signatures. Therefore, the Andréka–
Németi generalization is more suitable to be used as the extension of defini-
tional equivalence between theories of arbitrary languages. It is worth noting,
however, that the two generalizations are really close to each-other since the
Andréka–Németi generalization is the transitive closure of the Barrett-Halvorson
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one, see Theorem 5. Moreover, they only differ in at most one disjoint renaming,
see Theorems 4 and 6, and as long as we restrict ourselves to theories which all
have mutually disjoint signatures, Barrett–Halvorson’s definition is transitive
by Theorem 2.
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Andréka, H., Madarász, J. X., Németi, I., with contributions from: Andai, A.,
Sági, G., Sain, I. and Tőke, C. (2002), On the logical structure of relativity theories,
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PhD thesis, Eötvös Loránd Univ., Budapest.

Montague, R. (1956), Contributions to the axiomatic foundations of set theory,
PhD thesis, Berkeley.

Tarski, A., Mostowski, A. and Robinson, R. (1953), Undecidable Theories, Elsevier.

Visser, A. (2015), ‘Extension & interpretability’, Logic Group preprint series 329.
URL: https://dspace.library.uu.nl/handle/1874/319941

KOEN LEFEVER
Centre for Logic and Philosophy of Science

Vrije Universiteit Brussel
koen.lefever@vub.be

http://homepages.vub.ac.be/~kolefeve/

GERGELY SZÉKELY
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