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Introduction
The Kochen-Specker theorem [1] was originally posed by its authors as a proof
of the non-existence of hidden variable theories. Indeed, it succeeds in ruling
out a major class of these hypothetical theories, namely: non-contextual hidden
variable theories. The theorem is based on earlier work by Gleason [2], and
provides a stronger version of von Neumann’s famous impossibility proof [3].
It also paves the way to the free will theorem that was posed by Conway and
Kochen [4, 5] as an argument against determinism.

In the following sections, we will analyse the two theorems in some detail,
and we will discuss some of the ideas that arise naturally in light of their results.
In section 1, we will introduce the problem of hidden variables with the basic
assumptions about how to construct a hidden variable theory. We will then
provide a proof of the Kochen-Specker theorem; pointing out the core of the
theorem’s result. In section 2, we will investigate the possibility of escaping the
Kochen-Specker theorem (by questioning its assumptions), and how that leads
us to consider different notions of contextuality. Finally, in section 3, we will
review the free will theorem by considering Conway and Kochen’s argument [5],
as well as a more recent formulation due to Cator and Landsman [6, 7]. We will
also look closely at the locality condition that is assumed in the theorem.

1 The Kochen-Specker Theorem
1.1 Description of the Problem of Hidden Variables
The theory of quantum mechanics (QM) has some peculiar features, as opposed
to classical mechanics, that have led to a lot of controversy—since the time
it was first conceived—in its interpretation as a theory that describes physical
reality. The two main features we need to consider here are:

(I) Intrinsic Probabilistic Nature: Outcomes of measurement of an ob-
servable are confined to a set of real numbers (the eigenvalues) and the
best we can do with QM is to predict the probability of each outcome
as opposed to the case of classical mechanics where we can, subject to
measurement precision, predict which outcome will pop up in a certain
experiment.

(II) The Role of Apparatus and Measurement: In (orthodox) QM there
is a split between what we call “apparatus” and the quantum system,
which naturally leads to a distinction between what we call “measure-
ment” and quantum interactions. This distinction is manifested in the
fact that the “measurement” is mentioned explicitly in the postulates of
QM, as opposed to the case of classical mechanics where the measurement
is described (as it should be) as a physical process within the same theory.
For all practical purposes, the postulated view works just fine but it is
unsatisfactory if we want an ontological description of the measurement
process. Treating the measurement as a special case of interactions within
QM leads to the usual measurement problem (a discussion of which is out
of the scope of this essay); nonetheless, the important thing is to keep
in mind the participatory role that the apparatus plays in the physical
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process called “measurement” when searching for an ontological interpret-
ation.

These two features have led to the idea that the formalism of QM does not
give a complete description of reality and it needs to be supplemented by some
additional structure that resolves both (I) and (II).

Thus the problem of hidden variables is the problem of realizing such struc-
ture by postulating the existence of extra dynamical variables that are not
accessible to us (thus the word “hidden”) as well as to provide a physical (on-
tological) interpretation for these hidden variables. This is generally what one
should mean by a hidden variable theory (HVT). It is, however, the act of try-
ing to resolve (I) alone using hidden variables (with no regard to (II)) that
gets called a HVT1. We will work with this description of the problem for now;
however, as we will discuss later, this division of the problem (which might be
regarded as unfair) can lead to severe consequences.

1.2 Constructing a Hidden Variable Theory
To make the idea clear, let us now illustrate how we can formulate a HVT that
resolves (I) in the way done by most no-go theorems, including the Kochen-
Specker theorem under discussion in this section. We assume that the QM state
|ψ〉 is an ensemble of states denoted by |ψ〉λ. In each such state, all observables
have sharp values and outcomes of all measurements can be predicted with
absolute certainty: hence, these states are essentially dispersion-free states. In
this notation, we take λ to denote a configuration of values for the hidden
variables2, they are hidden because we cannot measure (observe) them and also
because we cannot prepare dispersion-free states with desired values for λ at
will. Let us develop this idea in a more formal way:

• λ ∈ Λ are the hidden variables, Λ is a probability space.
• QM states |ψ〉 are associated with a probability distribution ρψ(λ) over

Λ , which extends to a probability distribution over dispersion-free states
denoted by |ψ〉λ .

• Each dispersion-free state |ψ〉λ naturally induces a value assignment map
(over self-adjoint operators)

V|ψ〉λ : Σ −→ R, Σ := {Â : H −→ H | Â = Â†}. (1.1)

• Expectation value of an observable O is given by averaging over the as-
signed values in dispersion-free states, i.e. by

〈O〉ψ =
�

Λ
V|ψ〉λ(Ô) ρψ(λ) dλ. (1.2)

• Probability that a measurement of an observable Q yields a value qi is
given by

Prob
|ψ〉
Q (qi) =

�
Λ
V|ψ〉λ(P̂qi) ρψ(λ) dλ. (1.3)

where P̂qi is the spectral projector of the eigenvalue qi.
1This is usually done by the mathematically inclined investigator.
2Instead, you can take λn to denote a value of the nth hidden variable and denote the

state by |ψ〉{λn}, but we will stick to the simpler notation that we defined.
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Obviously the value assignment map3 V cannot be arbitrary and should satisfy
certain conditions, It is the conditions that we assume V has to satisfy a priori
that lead to the so called no-go theorems against HVTs. Let us proceed by
assuming some reasonable conditions on V :

(i) Value Realism: Each observable corresponds to an element of physical
reality and the values assigned correspond to the set of possible outcomes
(which is the set of eigenvalues for the corresponding operator), i.e. for
any observable Q represented by the self adjoint operator Q̂, we have

V (Q̂) ∈ {qi}, (1.4)

where {qi} are the eigenvalues of operator Q̂. In particular, in order to
reproduce the QM average < Q̂ >|qi〉= qi, value assignment on eigen-
states (or more precisely: on their dispersion-free versions) renders the
corresponding eigenvalue (i.e. V|qi〉λ(Q̂) = qi ∀λ).

(ii) Linearity over commuting operators (Quasi-linearity):

V (a Â+b B̂) = a V (Â)+b V (B̂), for [Â, B̂] = 0, ∀ a, b ∈ R. (1.5)

(iii) Non-contextuality: Value assignment to observables is non-contextual,
meaning that all observables are assigned values simultaneously regardless
of what else is being measured with a given observable (the measurement
context).

Let us briefly discuss each condition.
Condition (i) assumes two things. First it assumes that every observable is

a beable4: an element of reality that exists with a definite value at all times
(for example, the electric and magnetic fields E and B are beables of Maxwell’s
theory). That is the “realism” part. Second, it assumes that these values are
revealed faithfully in a measurement (this gives the “value” part). Since the set
of outcomes of a measurement of a certain observable is the set of eigenvalues
of the corresponding operator, it immediately follows that the values assigned
to observables in the HVT must belong to their respective sets of eigenvalues.

Condition (ii) is a weaker and a more physically plausible version of von
Neumann’s linearity condition [3] that applied to all operators not just the
commuting ones. Bell (1966)[9] refuted von Neumann’s condition by arguing
reasonably that a linear combination of incompatible observables cannot be
measured by a linear combination of their corresponding measurement devices
(since the two devices are incompatible as well) and that we need a new device to
measure that linear combination. While condition (ii) is physically plausible to
assume, it is interesting to note that it can be deduced from condition (i)5. But
we need to assume it explicitly because it can hold independently from condition
(i). There is an important rule that can be deduced from condition (ii), it is

3For convenience we will use V without the subscript when we talk about any value as-
signment map, we will only use the subscript when we want to refer to a state specific value
map.

4The terminology is originally due to Bell [8].
5by arguing that if Ĉ = aÂ + bB̂, where [Â, B̂] = 0, a, b ∈ R, and Â |αi〉 =

αi |αi〉 , B̂ |βi〉 = βi |βi〉, then from QM: Ĉ is an observable satisfying Ĉ (a |αi〉 ⊕ b |βi〉) =
(aαi + b βi) (a |αi〉 ⊕ b |βi〉) and hence condition (ii) follows if we apply condition (i).
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called the Functional Composition Rule (or FUNC for short), which states that
if Â = f(B̂), then V (Â) = f(V (B̂)). FUNC tells us that the value map has to
preserve the algebraic structure of the operators. In other words, the algebraic
relations between values of observables mirror the algebraic relations between
respective operators (see lemma 6.4 in Landsman (2017) [10] for a derivation of
FUNC from the quasi-linearity condition of (ii))6.

Condition (iii), the non-contextuality, can be seen to naturally follow from
condition (i), since value realism implies that all observables possess sharp values
prior to measurement (i.e. elements of reality exist with sharp values regardless
of being observed or not), but here we state it explicitly to emphasize the word
“observable” used in the definition. We will discuss issues related to contextu-
ality in section 2.

As we have discussed, it can be seen that value realism is the core condition
here (a fact that we will return to in section 2), and it seems reasonable enough
(to the extent that it is usually only implicitly assumed!).

1.3 The Kochen-Specker Contradiction
Let us now consider what happens if we assume the innocent-looking conditions
that we discussed. The bottom line is that they lead to a contradiction, and that
gives us the Kochen-Specker Theorem (or KS contradiction) which is usually
stated as follows:

There are no non-contextual, quasi-linear, dispersion-free states.

Let us now proceed with the proof of the contradiction: we will follow a
treatment similar to Redhead (1987)[11] and the original paper of Kochen and
Specker (1967)[1].

From (1.4), it follows that

V (Î) = 1, (1.6)

V (P̂k) ∈ {0, 1}, (1.7)

where Î is the identity operator and P̂k is a projector on some state |k〉.
From QM we know that for a complete orthonormal set of states |k〉 we have∑

k

P̂k = Î . (1.8)

Since orthogonal projectors commute, we can apply the linearity condition eq.
(1.5) to get ∑

k

V (P̂k) = 1, (1.9)

but since the value of projectors is restricted to {0, 1}, therefore only one pro-
jector gets a value of 1 while the rest get values of 0. e.g.

V (P̂i) = 1, V (P̂j) = 0 ∀ j 6= i.

6Equivalently, we could have assumed FUNC and derived the quasi-linearity condition (see
Redhead (1987) [11] p. 121).
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The problem is that for an n dimensional Hilbert space with n > 2 there is no
way to assign values in this manner to all possible complete sets of projectors
without reaching a contradiction.

Following Redhead (1987), this problem of value assignment can be mapped
to a colouring problem where we have two colours: red and blue, correspond-
ing to the values of 1 and 0 respectively. One dimensional projectors can be
represented by rays in the Hilbert space. Since rays intersect a hypersphere
in two antipodal points, the colouring of a ray maps to the colouring of the
corresponding points (that the ray intersects) on the hypersphere. This defines
a colouring map C : S2 → {red, blue}. So our colouring rule (CR hereafter)
should be as follows:

Each point on Sn−1 gets either red or blue such that for points belonging to a
set of orthogonal rays, only one point gets red.

In R2, we can colour S1 as follows:

Figure 1.1: A Possible colouring of S1 that obeys CR.

It is important to note that in R2 each projector (ray) is a part of only one
possible duo of orthogonal projectors (rays), i.e. for a given ray X, the space of
rays orthogonal toX is one dimensional. This is why it is possible to achieve this
colouring scheme in R2. In higher dimensions (i.e. n > 2) this is not possible.
To prove this we only need to prove that it is not possible in R3, and the case for
higher dimensions (n > 3) follows by noting that their 3-dimensional subspaces
will fail the colouring rule (i.e. if we cannot colour S2, then we cannot colour
Sn−1 ∀n > 3 since S2 ⊂ Sn−1 ∀n > 3)7. For our proof, we need the following
important lemma.
Lemma 1. Let p, q ∈ S2 and up, uq are their respective unit vectors. If C(p) 6=
C(q), then ∃ a finite angle (namely sin−1( 1

3 )) between up and uq.
It is interesting to note that Bell (1966) arrived at this result as a corollary

of Gleason’s theorem [2] and deduced (although not rigorously) the same result
of the Kochen-Speker theorem, i.e. the non-existance of non-contextual quasi-
linear dispersion-free states.

We now proceed with the proof of the lemma. We can represent points
on the sphere and the orthogonality relations between their rays by using a
Kochen-Specker diagram (KS diagram hereafter) where:

7This extends to complex spaces as well, since Cn ' R2n.
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• Vertices represent points on the Sphere.
• Lines between vertices represent orthogonality between corresponding rays.

For example, consider the points a, b and c with Cartesian coordinates (1, 0, 0),
(0, 1, 0) and (0, 0, 1) respectively. The three points have corresponding ortho-
gonal rays and thus we get the following KS diagram:

Figure 1.2: Kochen-Specker diagram for points a, b and c with a possible col-
ouring according to CR.

Now let us consider the following diagram for our proof:

Figure 1.3: Kochen-Specker diagram that can only be constructed if 0 ≤
sin θ12 ≤ 1

3 .

We will denote the unit vector of each point i by ui.
We can show that the KS diagram in figure 1.3 cannot be constructed unless

0 ≤ sin θ12 ≤ 1
3 , where θ12 is the angle between u1 and u2

8. The proof is rather
elementary (see Readhead (1987) p. 126), what is more important is using that
fact to prove our lemma. Consider that we now have this diagram constructed
already, so now we must have 0 ≤ θ12 ≤ sin−1( 1

3 ), so θ12 can be arbitrarily small.
Therefore to prove our lemma, we need to show that this diagram cannot be
coloured by the CR such that points 1 and 2 get opposite colours. To show

8Since in principle we care about rays (i.e. we do not care about directions of unit vectors),
we will consider the case where the angle θ12 is acute
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this, let C(1) = red and C(2) = blue. Using the orthogonality relations of the
diagram, we can deduce the colouring of the rest of the points as follows:

∵ C(1) = red ⇒∴ C(3) = C(9) = C(10) = blue,

∵ C(2) = blue = C(3) ⇒∴ C(4) = red ⇒∴ C(5) = C(6) = blue.

Now focusing on the triangle of points 9, 7, 5 we have

C(9) = C(5) = blue ⇒∴ C(7) = red,

and similarly for the triangle of points 10, 6, 8 we get

C(10) = C(6) = blue ⇒∴ C(8) = red,

but 7 is connected to 8 (i.e. u7 ⊥ u8), therefore they should get different
colours, and thus we have a contradiction. Therefore for any two points 1 and 2
with different colours we must have θ12 > sin−1( 1

3 ) , otherwise we can construct
the diagram in fig. 1.3 and achieve a colouring contradiction, and that proves
our lemma.

Now we start employing our lemma to prove our main theorem. Consider
six successive points 1, 2, 3, 4, 5, and 6 on the equator of S2 such that the angle
between each two successive points is θij = 18◦, j = i+1 (i.e. θ12 = θ23 = θ34 =
θ45 = θ56 = 18◦). Let us consider colouring C(1) = red. Since θ12 = 18◦ <
sin−1( 1

3 ), therefore (by using the lemma) we must have C(2) = C(1) = red. By
similar reasoning, we will have all the points coloured by red. So now we have
C(6) = C(1) = red, but θ16 = 5 × 18◦ = 90◦, and hence CR is violated (since
now we have two red points in an orthogonal triplet, while CR allows only one
red member of an orthogonal triplet).

Kochen and Specker illustrated the contradiction in a physically realisable
scenario. They considered the simultaneous measurement of the squared spin
components of a spin one system in three orthogonal directions. The squared
spin components S2

x, S2
y and S2

z (in three orthogonal directions x,y and z ) obey
the relation (in units of ~ = 1)

S2
x + S2

y + S2
z = 2. (1.10)

And since each squared component has eigenvalues ∈ {0, 1}, therefore the value
assignment to each squared component must obey

(V (S2
x), V (S2

y), V (S2
z )) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)} (1.11)

in order to satisfy eqn. (1.10). This is equivalent to our colouring problem in
R3 if we map 0 to red and 1 to blue. For the simultaneous measurement of S2

x,
S2
y and S2

z , Kochen and Specker showed that we can do this by considering an
orthohelium9 atom in a weak electric field with rhombic symmetry. By meas-
uring the energy shift of the lowest orbital state, we can infer (by calculation)
the values of S2

x, S2
y and S2

z by using their algebraic relation to the perturba-
tion Hamiltonian. The perturbation Hamiltonian Hs can be shown to have the
following form

Hs = aS2
x + bS2

y + cS2
z , a, b, c ∈ R, a 6= b 6= c. (1.12)

9An orthohelium atom is a helium atom in which the two electrons are in the triplet total
spin state, and thus this is a spin 1 system.
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It is easy to check explicitly in terms of the matrix representation of spin 1
operators

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Sy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 Sz = 1√
2

 1 0 0
0 0 0
0 0 −1


(1.13)

that the squared components can be written in terms of Hs as

S2
x = (a− b)−1(c− a)−1(Hs − (b+ c))(Hs − 2a),
S2
y = (b− c)−1(a− b)−1(Hs − (c+ a))(Hs − 2b), (1.14)
S2
z = (c− a)−1(b− c)−1(Hs − (a+ b))(Hs − 2c).

1.4 The Core of The Contradiction
It is important to note that the contradiction arises only for what is called
nonmaximal observables (or nonmaximal operators). A nonmaximal operator
is an operator that has degenerate (repeated) eigenvalues, while a maximal
operator is an operator that has non-degenerate eigenvalues. We can show10

that if Â is nonmaximal, then we can write

Â = f(B̂), Â = g(Ĉ), with [B̂, Ĉ] 6= 0, (1.15)

where B̂ and Ĉ are some maximal operators, while f and g are some Borel
functions. By applying FUNC (and equating both sides), we get the condition
that

V (Â) = f(V (B̂)) = g(V (Ĉ)). (1.16)

which is the core of the contradiction.
To see that, recall that the value assignment problem was concerned with

one dimensional projectors which are highly nonmaximal11. The problem was
that we demanded that the projectors get assigned the same value no matter
which set of orthogonal projectors it was considered to be a part of. This is
equivalent to considering a projector as a function of different (non-commuting)
maximal operators.

To illustrate this, consider the example of the squared spin components. Let
us write S2

z in eqn. (1.14) as
S2
z = f(Hs). (1.17)

Now consider the following operator in terms of S2
x′ , S2

y′ and S2
z (corresponding

to orthogonal directions x′, y′ and z, which can be achieved from x, y and z by
a rotation about z axis)

H
′

s = aS2
x′ + bS2

y′ + cS2
z (1.18)

We can write S2
z also as

S2
z = f(H

′

s). (1.19)
10See Redhead (1987) p. 20.
11In a Hilbert space of dimension n, the degeneracy of a one dimensional projector is n− 1

(i.e. a projector has n− 1 repeated eigenvalues, which are equal to 0).
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Clearly [Hs, H
′

s] 6= 0, and both Hs and H
′

s are maximal (since their eigenvalues
are a + b, b + c and a + c, which are distinct because a 6= b 6= c). Getting the
value of the nonmaximal operator S2

z using (1.17) is equivalent to considering
it with S2

y and S2
z , while using (1.19) is equivalent to considering it with S2

x′

and S2
y′ , and the contradiction arises by demanding that the two values are the

same.

2 Escaping the Kochen-Specker Theorem
Now we turn to consider an interesting question that turns up, having discussed
the KS theorem; is the KS theorem an impossibility proof or can we avoid its
contradiction somehow? The short answer is that we can escape it by introdu-
cing some contextuality. But how would this contextuality arise? (and how is
it justified?). To see how different notions of contextuality arise we need to go
back and inspect the assumptions that have led to the contradiction in the first
place. We would expect that denying different assumptions leads to different
notions of contextualities. As we discussed before, value realism was the core
assumption, leading naturally to both FUNC and non-contextuality. We will
see, in fact, that the different notions of contextuality considered here come
from some form of a weakening of value realism (if not denying it altogether!).

2.1 Ontological Contextuality
Recalling that the contradiction manifests in that a non-maximal operator obey-
ing FUNC will be assigned the same value regardless of which maximal operator
it is considered to be a function of (eqn. (1.16)), we see that one way of avoiding
the contradiction while keeping value realism in some sense is to demand that ,
in the context of eqns (1.15) and (1.16),

f(V (B̂)) 6= g(V (Ĉ)). (2.1)

This way, which was first posed by van Fraassen (1973)[12], obviously solves the
problem, but what does it mean? This, in fact, amounts to denying a hidden
assumption (that we have been taking for granted all along) about the one to
one correspondence between observables and self-adjoint operators.

To illustrate this, let O be the set of all observables, and let Σ be the set
of all self-adjoint operators. Our hidden assumption was that φ : O → Σ is
injective. Now let us consider if that was not the case. So let us return to eqn.
(1.15), and let X,Y ∈ O be two (somehow) distinct observables such that

φ(X) = f(B̂), φ(Y ) = g(Ĉ). (2.2)

So from eqn (1.15),
φ(X) = φ(Y ) = Â, (2.3)

i.e. the two distinct observables are mapped to the same self-adjoint operator Â
but they are distinctly defined by their functional relation to operators B̂ and
Ĉ respectively.

But what is the nature of this distinction other than being algebraic, since
if we consider them as related to Â we can just assume that φ is injective (as
we usually do) and say that they are observationally the same? The answer
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is that if they are really two different observables, then the difference must be
ontological. Therefore the value assigned to each one need not be the same,
i.e.12

V (φ(X)) 6= V (φ(Y ))⇒ V (f(B̂)) 6= V (g(Ĉ))⇒ f(V (B̂)) 6= g(V (Ĉ)), (2.4)

and thus this rescues us from the contradiction.
The above result is what Redhead called ontological contextuality. But how

does the measurement context come into play here? To answer this question,
let us elaborate more on what the ontological difference between observables
really means. So far, we have been using the notions of observables and beables
interchangeably, but now we need to note the distinction between the two. Ob-
servables are the things that we, well.., can observe using the physical process
that we call measurement, while beables are the elements of physical reality
attaining definite values at all times. The usual assumption is that a certain
observable tells us direct information about a unique beable. This is one to
one observable realism (i.e. each observable corresponds to a unique element of
physical reality) which we drop13 here to escape the KS contradiction. The on-
tological difference of Â = f(B̂) and Â = g(Ĉ) then means that the observable
A actually corresponds to two different (and also here observationally incompat-
ible) beables behaving observationally similar in different measurement contexts
(i.e. on an observational level, it seems that we are getting information about
the same element of reality that can be measured in two different ways, but in
essence, each way reveals information about different elements of reality).

To illustrate, recall that we can simultaneously measure A with B or A with
C (but not B with C). The two measurement schemes are incompatible and
hence need different incompatible measurement instruments, let us call them
IAB and IAC respectively. We can think about the measurement using IAB
for example as an instrument that measures B (and displays its outcome) then
applies the function f through a physical process14. The two measurements
need not yield the same outcome15; they are physically distinct processes using
different (and incompatible) instruments each of which is designed to reveal a
certain aspect of physical reality (or equivalently, designed to get information
about a different beable), and this leads to the contextual dependence in this
case.

The latter argument—about the unnecessity of equality of the two discussed
measurements—was Bell’s (1966) solution to the KS contradiction. Redhead
regarded ontological contextuality and Bell’s argument as seperate solutions to
the KS contradiction16. We here acknowledge the relation as we have discussed.

12Recall that V is defined over operators not observables. If we wanted to define a value
map for observables, we can simply define it as Ṽ := V ◦ φ.

13Here is where the original value realism is weakened in a sense, since the one to one
correspondence was implicitly assumed in it.

14We usually consider that measuring B and then applying the function f to the result
ourselves suffices as a simultaneous measurement to A and B, but if you insist on a more
integrated way, you can think of an instrument that measures B and transforms the result
into binary and then inputs the result in a digital circuit that simulates the function f (which
is a genuine physical process!).

15We can never know, since we cannot measure B and C simultaneously.
16Perhaps because Bell’s argument, which was motivated by Bohr’s view as well as Bohm’s

pilot wave theory, had the merit of potentiality contextuality that we are going to discuss
later.
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We should note that value assignment to observables is still, strictly speak-
ing, non-contextual (although the value map that we defined for operators is now
contextual). It is just that a nonmaximal observable correspond to ontologic-
ally distinct observables that are assigned different values, and the measurement
context manifests in our ignorance about the ontological distinction.

2.2 Relational (Environmental) Contextuality
Another way to escape the contradiction is to say that the true dispersion-
free state (that we assign values in) is actually a state of the system as well
as its environment. In other words, we can say that even if the QM state
|ψsys.〉 of the system can be described without dependence on the environment
(i.e. |ψtotal〉 = |ψsys.〉 ⊗ |ψenv.〉), the complete (dispersion-free) state |ψsys.〉λ
is described by hidden variables of both the system and its environment. So
how can this save us from the value assignment problem, since it seems that
all we have just done is to expand our list of hidden variables to include the
environment?

The answer is to remember that a measurement is a physical process, so the
measurement instrument will indeed change the environment (and particularly
the hidden variables of the environment) and hence it will change the dispersion
free state before revealing the outcome, which will be the value of the observable
in the new state. For example, consider that we want to measure an observ-
able A, and let the initial state of the system be |ψ〉λ1

with V|ψ〉λ1
(Â) = a1.

When the measurement instrument IA is introduced, the hidden variables of
the environment change to λ2

17. Therefore the state changes to |ψ〉λ2
with

V|ψ〉λ2
(Â) = a2. Now the measurement happens18 and the outcome revealed is

a2. In essence a2 can be the same as a1
19 but this need not be the case. The

idea that the outcome revealed is not the same as the value possessed by the
observable before the act of measurement is not new. After all, the measure-
ment is not instantaneous and one could also argue that the true act of (faithful)
measurement was the final part of the process, where the final value (here a2)
was faithfully revealed.

More importantly, this still does not save us! It seems that we have intro-
duced some contextual dependence, by including the environment in the game20,
so the outcome now is contextual in some sense, but the value map still assigns
values to all observables simultaneously (non-contextually), i.e. the final state
|ψ〉λ2

(just before faithful measurement)21 pre-assigns values to all observables,
17Here we can assume that the measurement instrument has hidden variables that can

interact with the hidden variables of the environment and thus change their values. The
description of the interaction depends on the HVT at hand and thus should not be confused
with the usual QM interaction.

18This is the usual QM measurement (with the collapse of the wavefunction etc.), and here
we are still retaining faithful measurement.

19This should happen, for example, if the initial state was an eigenstate of Â, since even if
the the hidden variables change, the (dispersion-free) state will still be an eigenstate of Â with
the same eigenvalue. The HVT should satisfy this in order to reproduce QM results (about
measurement of observables in eigenstates) and also to ensure that successive measurements
lead to the same revealed outcome regardless of the change of the values of hidden variables.

20You might want to argue that this solves the problem by arguing that observables have
different versions depending on the relational dispersion-free state, but that would just be
ontological contextuality that we discussed before, though in a relational sense.

21Here you might want to argue that we can escape the contradiction by presuming that
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which leads to the contradiction that we know. Kochen and Specker (1967)
commented on this22 saying:

“This is nevertheless no argument against the above proof. For in a clas-
sical interpretation of quantum mechanics observables such as spin will
still be functions on the phase space of the combined apparatus and sys-
tem and as such should be simultaneously predictable.”

So what have we gained by introducing this whole argument? What we have
gained is that thinking in this direction relaxes the restriction that the set of
possible outcomes is the same as the set of possible assigned values (i.e. we
argue that the condition of eqn.(1.4) does not necessarily have to hold). This
prompts the idea that the set of possible outcomes might only be a subset of
the set of possible values that can be assigned to observables (or more correctly:
assigned to the beables corresponding to observables). With this idea in mind,
we can now have more values (colours) to solve the (colouring) problem. These
extra non-eigenvalues are simply not observable in any measurment context. In
other words, the beable underlying an observable has a range of values that
exceeds the range we can observe it to have when being measured. In this
sense, all possible measurements of an observable only provides us with partial
information about the underlying beable23.

This may seem to threaten us with scepticism, but let us remember that not
every aspect of physical reality is directly accessible by measurement, and that
does not undermine its reality; neither does it imply a conspiracy by nature. For
example, we cannot observe the transition of an atom that absorbs a photon
without ruining the whole transition, but the underlying theory (QM in this
case) tells us that this process is happening. In this sense we should replace the
word “measurement” by “observation” which is a physical phenomenon that tells
us information about a certain beable in a certain context. Beables are only
observed in certain situations (measurement contexts), and what we observe is
their behaviour (values) in these circumstances . It is up to a coherent theory
to tell us about the underlying picture of reality when we are not observing.
For this we quote Heisenberg [14]:

“What we observe is not nature itself, but nature exposed to our method
of questioning.”

The notion of contextuality introduced here can be related to Heywood and
Redhead’s (1983)[15] environmental contextuality, where they proposed the ex-
istence of some non-quantum interaction between the system and the environ-
ment that takes place before the measurement and alters the values of observ-
ables. In our case, the notion of non-quantum interaction was realized in the
form of hidden variable interactions. Shimony (1984)[16] also discussed the idea
of environmental contextuality, though in a more general way. We note that

dispersion-free states appearing in a certain context (i.e. for a certain value of λ) are not
dispersion-free in all observables, but that is a different story. Here we are still states that
assigns sharp values to all observables.

22They were actually commenting on Bohm’s interpretation of spin in his hidden variable
theory[13], but their argument is relevant in our case here as well.

23One can deduce here that the beable in question is a special kind of a (semi-)hidden
variable!
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both their analyses were not as explicit as discussed in this section, in particu-
lar, they did not explicitly show how to escape the KS problem in light of the
comment of Kochen and Specker that was mentioned earlier.

2.3 Potentiality Contextuality
The only possibility left to consider is to deny value realism by denying the real-
ism part so that now we can disregard the idea that all observables correspond
to beables; this introduces the concept of potentiality.

A potentiality is a non-intrinsic property of the system that manifests (or is
actualized) during a certain measurement situation (or equivalently, a certain
physical phenomenon). This tells us that before the measurement is performed,
a potentiality would only provide us with a range of possible outcomes (corres-
ponding to different measurement contexts) and thus does not possess a sharp
value prior to a measurement scenario. In other words, if an observable A is a
potentiality, then the mere question of asking about the value that A possesses
prior to a measurement is really meaningless! The value map simply does not
exist for potentialities (by definition). If we needed to define any map at all,
it should be called an outcome map, describing what the outcome will be in
every possible measurement setting. The outcome map is clearly contextual (it
literally depends on each and every possible detail of the measurement context);
in particular, the KS problem is solved by noting that observables that are not
measured in a certain context do not get assigned any values at all.

Another way of looking at the concept of potentiality is to regard it as
a relational attribute of both the system and the measurement instrument.
This can be treated as a case of the relational contextuality that we discussed,
where now we can consider the true dispersion-free state as the state of the
system and apparatus combined. This sheds new light on the notion of the
word “measurement”: which can by now be regarded as a misnomer and should
be really replaced by the word “experiment”. The word “measurement” suggests
that the underlying process simply reveals a pre-existing value of a property of
the system. But we can see now that this need not be the case, the measurement
can be regarded as a physical process that is inseparable from the notion of what
is being measured. This agrees with Bohr’s view that the quantum phenomenon
is an unanalysable whole.

But are all observables potentialities (or relational attributes)? For the sake
of only escaping the KS conundrum, all we need is that nonmaximal observables
satisfy this criterion, but the question at hand is a deep philosophical question,
and the mere thought of addressing it here would be an exaggeration. For
now let us not abandon realism altogether, and consider that we have primary
observables that correspond to beables of the theory and secondary observables
that are potentialities. Measurement of secondary observables, as we discussed,
does not reveal any information about pre-existing properties that correspond to
those secondary observables; instead, it should reveal some information about
beables of the system24, which correspond to primary observables. In other
words, the observation of potentialities is in terms of primary observables.

24It may reveal information about beables of the measurement instrument as well, but if
we know the instrument information before hand (because we prepare the instrument settings
for example), we can infer the information about beables of the system.
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To illustrate this, consider the measurement of a spin component by a Stern-
Gerlach magnet, do we really observe spin directly? What we really observe is
the deflection of the particle, and then we attribute the value of the spin compon-
ent accordingly. So what is essentially observed is the position of the particle.
This is not totally new, one could argue that there are directly and indirectly-
observable beables, and the job of the measurement is to link what we cannot
directly observe to what we can. But in light of our potentiality discussion, we
can think of spin as a potentiality. In fact, this is the case in pilot wave theory
[13], where the only beables of the theory are the wavefunction itself (which here
has an ontological interpretation as a quantum field that “guides” the particle’s
motion) and the position of the particle (and of course its time derivatives).

We can see that the three notions of contextuality discussed in this section
involved (to some extent) treating the measurement as a physical process. We
conclude by quoting Bell, as he commented on forgetting about the role of the
complete physical set up, saying [17]:

“When it is forgotten, it is more easy to expect that the results of the
observations should satisfy some simple algebraic relations and to feel that
these relations should be preserved even by the hypothetical dispersion-
free states of which quantum-mechanical states may be composed.”

3 The Conway-Kochen Theorem
We now turn to discuss the second main theorem of this essay which is due to
Conway and Kochen. Conway and Kochen argued that, subject to a seemingly
plausible locality condition: if the experimenters have free will, then so do fun-
damental particles. They initially proposed this as “The Free Will Theorem”
(2006)[4] and then strengthened their argument in (2009)[5] restating their the-
orem as “The Strong Free Will Theorem”. We will consider the latter version,
as well as Cator and Landsman’s version of the theorem [6, 7, 10].

3.1 The Strong Free Will Theorem
Consider a two-wing, EPR-like [18, 19], experiment with an entangled pair of
(massive) spin 1 particles a and b, where the two wings are spacelike separated.
On one wing, we have Alice performing simultaneous measurements of squared
spin components S2

x, S2
y and S2

z of particle a , corresponding to three orthogonal
directions25 x, y and z. On the other wing, we have Bob performing measure-
ments of the squared spin component S2

w of particle b, corresponding to some
direction w.

Let us denote the result of one squared component of Alice’s measurements
in x direction as RA(x), so that we can denote the result of Alice’s measurement
in three orthogonal directions x, y and z as

R̃A(x, y, z) = (RA(x), RA(y), RA(z)). (3.1)

Similarly, we can denote Bob’s result in direction w as RB(w).
Conway and Kochen used three axioms for their free will theorem; they

called them: SPIN, TWIN and MIN. The axioms can be stated as follows:
25To be more precise, by direction here we mean a ray in R3.
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• SPIN:
RA(x), RB(w) ∈ {1, 0},

R̃A(x, y, z) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)}.
• TWIN: If the direction w chosen by Bob happens to be the same as one
of Alice’s choices of x, y and z, then both Alice and Bob get the same
results of that particular direction; i.e.

If w ∈ {x, y, z}, then RB(w) = RA(w). (3.2)

• MIN: IF the two wings of the experiment are spacelike separated, then
Alice is free to choose any orthogonal triplet of directions without affect-
ing Bob’s outcome, and Bob is also free to choose any direction without
affecting Alice’s outcome.

The SPIN and TWIN axioms follow directly from QM, but Conway and Kochen
wanted to emphasize this particular result without involving the whole form-
alism of QM. Although this entangled experiment has not been done yet, the
extreme success of QM gives us a lot of faith about these axioms. The MIN
axiom can be split into two assumptions:

(i) Alice and Bob are free to choose their measurement settings: this is the free
will or the freedom assumption. We can see that this ambiguous notion of
freedom is just an assumption about the indeterminism of the parameters
of measurements. Therefore we will call it Parameter Indeterminism.

(ii) The outcome of one wing is independent of the choice of settings (para-
meters) in the opposite wing. This assumption is a locality condition26

that is usually known in the literature as Parameter Independence, but
we can see that the assumption is about the dependence of an outcome
on the local context of the experiment not the global: in other words,
the context dependence of the outcome is local; hence we will call this
condition Context Locality27.

The bottom line of Conway and Kochen’s free will theorem is that if SPIN,
TWIN and MIN hold, then we have to give up (outcome) determinism. This
would mean that the outcome of the measurement is not fully determined by
past events in the universe. Equivalently, in terms of our new definitions of the
axioms, we can say

QM + Parameter Indeterminism+
Context Locality + Outcome Determinism −→ Contradiction,

so that when we decide to give up outcome determinism we get

QM+Parameter Indeterminism+Context Locality −→ Outcome Indeterminism.
(3.3)

26Or more precisely: a probabilistic version of it.
27We should note that Landsman[7] used the name “context locality” (which he states that

he learned from M. Seevinck) to distinguish this locality condition from other conditions like:
Einstein locality[20] (of the commutation of spacelike separated operators), and Bell’s notion
of local causality[8]. But as we discussed, we have used that terminology here to emphasize
the locality of the measurement context; we could have otherwise called it “the principle of
local contextuality” for all that matters.
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When the argument is cast in this way, it looks like we assume some form of
indeterminism (namely: the agents’ free choice of measurement settings) and
conclude another (namely: the outcomes of the measurements).

Let us now proceed with the Conway and Kochen version of the free will
theorem, but using a reformulation of the assumptions similar to Cator and
Landsman’s treatment, which will make it easier to show their version of the
theorem later on. Let us start by the following definitions:

• Define ΓZ as the state space of the universe (excluding free agents), where
Z ∈ ΓZ represents the state of the universe.

• Denote Alice’s choice of settings by A and Bob’s choice by B.
• Define ΓA as the range of A (space of possible Alice’s settings) which here

will be the space of all possible orthogonal triplets of directions in R3.
• Define ΓB as the range of B (space of possible Bob’s settings) which here

will be the space of all possible rays in R3.
• Denote Alice’s outcome function by F and Bob’s by G.
• Define

ΓF := {(1, 1, 0), (0, 1, 1), (1, 0, 1)}, ΓG := {1, 0}.

From QM (SPIN part) we have

F ∈ ΓF , G ∈ ΓG.

In general we would have

F = F (A,B,Z), G = G(A,B,Z),

but from context locality, we get

F = F (A,Z), G = G(B,Z).

From parameter indeterminism, A and B are free variables that are independent
of Z, therefore F and G are not fully determined for a given choice of Z.
Outcome determinism implies that if we consider a certain state Z0, then the
outcome functions are defined for all parameter choices by Alice and Bob, i.e.

F0(A) ≡ F (A,Z0) : ΓA −→ ΓF, (3.4)
G0(A) ≡ G(B,Z0) : ΓB −→ ΓG. (3.5)

We should recall that A is a choice of orthogonal triplet (x, y, z), while B is a
choice of ray w in R3, so we can write F0 and G0 in a more convenient way as
functions of choices of directions (rays) as

F0(x, y, z) ∈ ΓF , G0(w) ∈ ΓG.

Notice that here each wing’s outcome is contextual (locally), so Alice and Bob
independently would have no problem with the Kochen-Specker theorem. How-
ever, due to the entanglement (or twinning) between the two wings’ particles,
Alice and Bob’s outcomes are not independent anymore and have to obey the
TWIN part of QM result. From TWIN eq. (3.2) and Alice’s result eq. (3.1),
we get

R̃A(x, y, z) = (RB(x), RB(y), RB(z)). (3.6)
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By demanding that the outcome maps must coincide with the results, i.e. F0 ≡
R̃A and G0 ≡ RB , we get

F0(x, y, z) = (G0(x), G0(y), G0(z)). (3.7)

Now the problem is that

F0(x, y, z) = (G0(x), G0(y), G0(z)) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)}; (3.8)

therefore G0 assigns values to a triplet (x, y, z) obeying a version of the colouring
rule (CR) that we discussed in section 1. And since x, y and z are free variables
(i.e. Alice can choose any possible triplet), G0 must follow the colouring rule for
all possible triplets—and this is not permitted by the Kochen-Specker theorem
as was shown in section 1.

Conway and Kochen conclude that the outcome must then be indetermin-
istic (eq. (3.3)), and that if we regard the outcome as the particle’s response
to our questions (measurements), then the particles have their own share of
the property that we call free will28. Furthermore, one might argue that the
particle’s free will is prior to ours, since after all, we are made out of particles.

The argument of the conclusion seems almost circular, since the proof seems
to imply “indeterminism in, indeterminism out” as we have pointed out earlier
in (3.3). This led to some objections (e.g. [21, 22]), since we are not really in
a position to judge determinism if we initially assume an ambiguous source of
indeterminism. Nonetheless, we can conclude that their proof shows that the
following is consistent:

QM + Context Locality + (Parameter + Outcome) Indeterminism.

Though this only shows that indeterminism is just a viable option of escaping the
(global) KS contradiction here, and is not to be seen as a necessary conclusion.

3.2 Landsman’s Free Will Theorem
Cator and Landsman [6] resolved the criticism to Conway and Kochen’s proof
by explicitly defining a notion for the freedom of choice in a deterministic world.
According to Landsman [7], the thrust of the free will theorem is “Determinism
in, Constraints on determinism out”. In philosophy, the view of incorporating
freedom in a deterministic world is called Compatibilism. Landsman [7, 10]
adopts a compatibilist notion of free will, based on a detailed philosophical dis-
cussion by David Lewis (1981)[23]: which is called “local miracle compatibilism”.
We will not discuss this philosophical notion here in detail, but we will show its
mathematical formulation, following Landsman, and try to briefly elaborate on
this notion of freedom.

We use the same definitions as before, but now we have a super-deterministic
view of the world (that still allows some sort of free agents). So additionally we
have the following definitions:

28They have to be (massive) spin 1 particles though; so in this sense, among the fundamental
particles in the standard model, only the weak-interaction gauge bosons enjoy that luxury! But
in principle, similar proofs can be done for more complicated quantum systems with Hilbert
spaces of dimension > 2. Heywood and Redhead (1983) constructed a general abstract proof,
although they were not concerned with abandoning determinism.
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• Define Γ as a super-state space of the universe as well as free agents.
• Determinism is defined by demanding that there are maps

A : Γ −→ ΓA, B : Γ −→ ΓB , Z : Γ −→ ΓZ ,

i.e.
A = A(γ), B = B(γ), Z = Z(γ), ∀ γ ∈ Γ.

• Freedom is defined here by demanding that A, B and Z are surjective: i.e.

∀ (a, b, z) ∈ ΓA×ΓB×ΓZ , ∃ γ ∈ Γ, with A(γ) = a, B(γ) = b, Z(γ) = z.

In other words, if we denote the Cartesian product by

ΓABZ := ΓA × ΓB × ΓZ ,

then we demand that the map

G : Γ −→ ΓABZ
is surjective.

The above condition ensures that all measurement settings (every pos-
sible combination) can be, in principle, chosen by Alice and Bob. So
for each measurement setting on Alice’s wing, there is a state29 in which
Alice chooses that setting, and thus Alice is allowed to choose any possible
measurement choice, otherwise, it would not be much of a freedom.

The choices that do happen in the actual world, depending on the ac-
tual super-state that happens, are a matter of a different story. Alice could
have done otherwise only if the super-state had been different, but Alice
could not have changed the super-state. So the freedom here is that there
is always a state that allows Alice to choose a certain choice, although
the events of choices that happen are determined by the super-state evol-
ution. Therefore, without any unjustified assumption about some a priori
super-selection rules between the states30, Alice (and Bob!) can choose
any possible measurement setting.

With these definitions, the same argument follows exactly as before, where
we would get (as in eq. (3.8))

F0(x, y, z) = (G0(x), G0(y), G0(z)) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)},

and our notion of freedom tells us that (x, y, z) can be any triplet, and thus G0
has to follow the colouring rule for all triplets, and that leads us to the usual
contradiction. But the conclusion here is different, in this case we have

QM + Context Locality + Freedom + Determinism −→ Contradiction,

which would lead to31

QM + Context Locality −→∼ (Local Miracle) Compatibilism.

So here we can see that a philosophically popular notion of free will is at odds
with two strong pillars of modern physics; namely, Quantum Mechanics, and a
locality condition that is supported by Relativity.

29It does not necessarily have to be unique.
30That is, we imagine the situation as if there is an initial state that evolves deterministically,

there is no reason to assume that some initial conditions are better than others.
31The symbol “∼” means denying.
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3.3 The Context Locality Condition
Let us now have a closer look at this condition of context locality. As we
have seen, this condition is what brings the KS contradiction in the free will
theorem: it basically tells us that global non-contextuality must hold. In this
sense, the free will theorem is an improvement over the Kochen-Specker theorem:
even if we can escape local non-contextuality (as we discussed in section 2),
we cannot escape global non-contextuality without violating a very reasonable
locality condition.

But what if we were to violate context locality, does it matter which notion
of contextuality we use? At first glance, context locality seems insensitive to the
type of contextuality that one can introduce to violate it. But, as a matter of
fact, we can show that context locality is a combination of conceptually different
locality conditions; each of which corresponds to a certain type of contextual-
ity. Let us consider applying our ontological contextuality and environmental
contextuality to the global context.

Applying ontological contextuality would amount to a violation of what Hey-
wood and Redhead [15, 11] called ontological locality (OLOC). OLOC tells us
that local observables that are maximal on one wing (which are obviously non-
maximal on the opposite wing) are not ontologically split by ontological con-
textuality when considered as functions of different (non-commuting) maximal
observables of the joint system of the two wings. In other words, OLOC tells
us that (local) observables correspond to local beables32.

Similarly, applying environmental contextuality would lead to a violation
of environmental locality (ELOC) [15, 11]. ELOC tells us that a change in
the environment of one wing (due to a change in the measurement settings for
example) does not alter the value of observables at the opposite wing. Aside
from mentioning the environment, this seems like a tautology of our original
definition of context locality! This is true, but there is a subtlety. Violating
ELOC becomes an issue only if OLOC was valid in the first place. In other
words, if (local) observables correspond to non-local beables (i.e. if OLOC is
violated), then altering their values by changing the environment in the opposite
wing is not a locality issue anymore: they were non-local in the first place.
Therefore, context locality as we defined it is the same as ELOC only if OLOC
was tacitly assumed (as it is usually is).

Heywood and Redhead’s result in [15] shows that a deterministic supple-
mentation to QM (i.e. a deterministic hidden variable theory) must violate
either ELOC or OLOC33. In either case, this would violate context locality (or
parameter independence), albeit with conceptually different pictures: violating
OLOC means a theory of observable non-local beables, while violating ELOC
means a theory of non-local interactions between local beables.

32Note that OLOC does not deny the existence of non-local beables. In principle, we
can have non-local beables that are not observable at all (they could be hidden variables for
example). But if we deny this assumption, then OLOC becomes a condition about the locality
of beables.

33This is the connection to the free will theorem; although Heywood and Redhead were
more concerned with locality rather than determinism.
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Conclusion
In this essay, we have dealt with two interesting theorems: the Kochen-Specker
theorem that excludes the possibility of non-contextual hidden variable theories,
and the free will theorem which excludes local (contextual) deterministic hidden
variable theories. These theorems are examples of the kind of impossibility
proofs that tell us about what cannot be done rather than what should be done.
Despite of this, we have seen that analysing such results might leave us with
interesting contemplations and useful intuition.

As we have seen, forgetting about the role of the apparatus led to problems
like the KS contradiction. But what about our divided view of the world? we
seem to treat the quantum realm with no regard to the existence of gravity!
May be we run into problems because we forget the role of gravity, like we ran
into problems when we forgot the role of the apparatus in a measurement. For
example, Penrose [24] proposed that gravity plays a role in the reduction of
the QM state (collapse of the wavefunction). Furthermore, some approaches to
quantum gravity (e.g. [25, 26]) suggest that non-locality is fundamental; which
saves determinism from the constraints of the free will theorem for example.
Some even suggest (e.g. see [27, 28]) that spacetime itself is emergent from more
fundamental degrees of freedom which can have non-local relations between
them.

We can draw an interesting speculation by contemplating the following ques-
tion: can we measure the curvature of spacetime directly? This reminds us of
the same question (near the end of section 2) about the measurement of spin.
Recalling the answer, in light of our discussion of potentialities, fundamental
spacetime can be thought of as a potentiality34 of the observables OM we use
to measure it (the trajectory of a test particle for example); this is just the
relational view of spacetime! Adding this to the picture of spacetime as emer-
ging from more fundamental beables BF leads us to contemplate the connection
between those beables and the observables OM. It would be interesting to en-
tertain the idea that all observables are essentially potentialities of BF . In this
sense, quantum theory itself could be fundamentally a theory of these spacetime
beables.
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