Foundations of a Probabilistic Theory of Causal Strength: Proofs

Jan Sprenger*

November 2, 2017

Proof of Theorem 1: Suppose that for mutually exclusive $E, \mathrm{E}^{\prime} \in \mathcal{E}$, $p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}\right)=p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}^{\prime}\right)$. Then, we infer with the help of Generalized DifferenceMaking

$$
\begin{aligned}
\eta(\mathrm{C}, \mathrm{E}) & =f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}\left(\mathrm{E} \mid \mathrm{C}^{\prime}\right)\right) \\
\eta\left(\mathrm{C}, \mathrm{E} \vee \mathrm{E}^{\prime}\right) & =f\left(p^{*}\left(\mathrm{E} \vee \mathrm{E}^{\prime} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E} \vee \mathrm{E}^{\prime} \mid \mathrm{C}^{\prime}\right)\right) \\
& =f\left(p^{*}(\mathrm{E} \mid \mathrm{C})+p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E} \mid \mathrm{C}^{\prime}\right)+p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}^{\prime}\right)\right) \\
& =f\left(p^{*}(\mathrm{E} \mid \mathrm{C})+p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E} \mid \mathrm{C}^{\prime}\right)+p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}\right)\right)
\end{aligned}
$$

Applying Separability of Effects implies $\eta\left(\mathrm{C}, \mathrm{E} \vee \mathrm{E}^{\prime}\right)=\eta(\mathrm{C}, \mathrm{E})$ and leads to the equality

$$
f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}\left(\mathrm{E} \mid \mathrm{C}^{\prime}\right)\right)=f\left(p^{*}(\mathrm{E} \mid \mathrm{C})+p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}^{\prime}\right)+p^{*}\left(\mathrm{E}^{\prime} \mid \mathrm{C}\right)\right)
$$

Since we have made no assumptions about the values of these conditional probabilities, f satisfies the formula $f\left(x, x^{\prime}\right)=f\left(x+y, x^{\prime}+y\right)$ in full generality. It is then easy to see (e.g., by looking at the indifference curves of f) that there

[^0]must be a function g such that $f\left(x, x^{\prime}\right)=g\left(x-x^{\prime}\right)$. Hence,
$$
\eta(\mathrm{C}, \mathrm{E})=f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}\left(\mathrm{E} \mid \mathrm{C}^{\prime}\right)\right)=g\left(p^{*}(\mathrm{E} \mid \mathrm{C})-p^{*}\left(\mathrm{E} \mid \mathrm{C}^{\prime}\right)\right)
$$
showing the desired ordinal equivalence claim. q.e.d.
Proof of Theorem 2: By Generalized Difference-Making with $\mathrm{C}^{\prime}=\neg \mathrm{C}$ we can focus on the function $f:[0,1]^{2} \rightarrow \mathbb{R}$ such that $\eta(\mathrm{C}, \mathrm{E})=f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}(\mathrm{E} \mid \neg \mathrm{C})\right)$. We would like to derive the equality
\[

$$
\begin{equation*}
f(\alpha, \bar{\alpha}) \cdot f(\beta, \bar{\beta})=f(\alpha \beta+(1-\alpha) \bar{\beta}, \bar{\alpha} \beta+(1-\bar{\alpha}) \bar{\beta}) \tag{1}
\end{equation*}
$$

\]

for a causal strength measure that satisfies Multiplicativity. To this end, recall the single-path Bayesian network reproduced in Figure 1.

Figure 1: The Bayesian Network for causation along a single path.
We know by Multiplicativity that for $\mathrm{C} \in \mathcal{C}, \mathrm{E} \in \mathcal{E}$, and $\mathrm{X} \in \mathcal{X}$,

$$
\begin{aligned}
\eta(\mathrm{C}, \mathrm{E}) & =\eta(\mathrm{C}, \mathrm{X}) \cdot \eta(\mathrm{X}, \mathrm{E}) \\
& =f\left(p^{*}(\mathrm{X} \mid \mathrm{C}), p^{*}(\mathrm{X} \mid \neg \mathrm{C})\right) \cdot f\left(p^{*}(\mathrm{E} \mid \mathrm{X}), p^{*}(\mathrm{E} \mid \neg \mathrm{X})\right) \\
& =f\left(p^{*}(\mathrm{X} \mid \mathrm{C}), p^{*}(\mathrm{X} \mid \neg \mathrm{C}) \cdot f\left(p^{*}(\mathrm{E} \mid \mathrm{X}), p^{*}(\mathrm{E} \mid \neg \mathrm{X})\right)\right.
\end{aligned}
$$

and at the same time,

$$
\begin{aligned}
\eta(\mathrm{C}, \mathrm{E}) & =f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}(\mathrm{E} \mid \neg \mathrm{C})\right) \\
& =f\left(\sum_{ \pm X} p^{*}(\mathrm{X} \mid \mathrm{C}) p^{*}(\mathrm{E} \mid \mathrm{C}, \mathrm{X}), \sum_{ \pm \mathrm{X}} p^{*}(\mathrm{X} \mid \neg \mathrm{C}) p^{*}(\mathrm{E} \mid \neg \mathrm{C}, \mathrm{X})\right) \\
& =f\left(\sum_{ \pm \mathrm{X}} p^{*}(\mathrm{X} \mid \mathrm{C}) p^{*}(\mathrm{E} \mid \mathrm{X}), \sum_{ \pm \mathrm{X}} p^{*}(\mathrm{X} \mid \neg \mathrm{C}) p^{*}(\mathrm{E} \mid \mathrm{X})\right)
\end{aligned}
$$

Combining both equations yields

$$
\begin{aligned}
& f\left(p^{*}(\mathrm{X} \mid \mathrm{C}), p^{*}(\mathrm{X} \mid \neg \mathrm{C}) \cdot f\left(p^{*}(\mathrm{E} \mid \mathrm{X}), p^{*}(\mathrm{E} \mid \neg \mathrm{X})\right)\right. \\
= & f\left(\sum_{ \pm X} p^{*}(\mathrm{X} \mid \mathrm{C}) p^{*}(\mathrm{E} \mid \mathrm{C}, \mathrm{X}), \sum_{ \pm X} p^{*}(\mathrm{X} \mid \neg \mathrm{C}) p^{*}(\mathrm{E} \mid \neg \mathrm{C}, \mathrm{X})\right)
\end{aligned}
$$

With the variable settings

$$
\begin{array}{ll}
\alpha=p^{*}(\mathrm{X} \mid \mathrm{C}) & \beta=p^{*}(\mathrm{E} \mid \mathrm{X}) \\
\bar{\alpha}=p^{*}(\mathrm{X} \mid \neg \mathrm{C}) & \bar{\beta}=p^{*}(\mathrm{E} \mid \neg \mathrm{X})
\end{array}
$$

equation (1) follows immediately.
Second, we are going to show that for any extension of f to \mathbb{R}^{2},

$$
\begin{equation*}
f(x, y)=-f(y-x, 0) \tag{2}
\end{equation*}
$$

To this end, we first note a couple of facts about f.
Fact $1 f(\alpha, 0) f(\beta, 0)=f(\alpha \beta, 0)$. Follows immediately from Equation (1) with $\bar{\alpha}=\bar{\beta}=0$.

Fact $2 f(0,1) \cdot f(\beta, \bar{\beta})=f(\bar{\beta}, \beta)$. Follows immediately from Equation (1) with $\alpha=0, \bar{\alpha}=1$.

Fact $3 f(1,0)=1$. With $\beta=1$, Fact 1 entails that $f(\alpha, 0) f(1,0)=f(\alpha, 0)$. Hence, either $f(1,0)=1$ or $f(\alpha, 0) \equiv 0$ for all values of α. However, the latter would also imply $f \equiv 0$ and trivialize f.

Fact $4 f(0,1)=-1$. Equation (1) (with $\alpha=\beta=0, \bar{\alpha}=\bar{\beta}=1$) and Fact 3 entail that $f(0,1) \cdot f(0,1)=f(1,0)=1$. Hence, either $f(0,1)=-1$ or $f(0,1)=1$. If the latter were the case, then the monotonicity requirement in Generalized Difference-Making would be violated. Thus, $f(0,1)=-1$.

These facts will allow us to derive Equation (2). Note that (2) is trivial if $y=0$. So we can restrict ourselves to the case that $y>0$. We choose the variable
settings

$$
\begin{array}{ll}
\alpha=\frac{y-x}{y} & \beta=0 \\
\bar{\alpha}=0 & \bar{\beta}=y
\end{array}
$$

Then we obtain by means of Equation (1) and the previously proven facts

$$
\begin{aligned}
f(x, y) & =f((y-x) / y, 0) \cdot f(0, y) \\
& =f(y-x, 0) \cdot f(1 / y, 0) \cdot f(0, y) \quad \text { (Fact 1) } \\
& =f(y-x, 0) \cdot f(1 / y, 0) \cdot f(y, 0) \cdot f(0,1) \quad \text { (Fact 2) } \\
& =f(y-x, 0) \cdot f(1,0) \cdot f(0,1) \quad \text { (Fact 1) } \\
& =-f(y-x, 0) \quad \text { (Fact 3+4) }
\end{aligned}
$$

This implies

$$
\eta(\mathrm{C}, \mathrm{E})=f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}(\mathrm{E} \mid \neg \mathrm{C})\right)=-f\left((-1) \cdot\left(p^{*}(\mathrm{E} \mid \mathrm{C})-p^{*}(\mathrm{E} \mid \neg \mathrm{C})\right), 0\right)
$$

Hence, $\eta(\mathrm{C}, \mathrm{E})$ can be represented as a function of $p^{*}(\mathrm{E} \mid \mathrm{C})-p^{*}(\mathrm{E} \mid \neg \mathrm{C})$ only. From Generalized Difference-Making we infer that f must be non-decreasing in $p^{*}(\mathrm{E} \mid \mathrm{C})-p^{*}(\mathrm{E} \mid \neg \mathrm{C})$. This concludes the proof of Theorem 2. q.e.d.

Proof of Theorem 3: The proof relies on a move from the proof of Theorem 1 in Schupbach and Sprenger (2011). Consider three variables C, E_{1} and E_{2} with $E_{2} \Perp C$ and $\left(E_{2} \Perp E_{1}\right) \mid C$. Let $C \in \mathcal{C}, \mathrm{E}_{1} \in \mathcal{E}_{1}$, and $\mathrm{E}_{2} \in \mathcal{E}_{2}$ be propositions about the values of these variables. Then, No Dilution for Irrelevant Effects implies that

$$
\begin{aligned}
p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \mathrm{C}\right) & =p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right) p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right) \\
p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \neg \mathrm{C}\right) & =p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right) p^{*}\left(\mathrm{E}_{2} \mid \neg \mathrm{C}\right) \\
p^{*}\left(\mathrm{E}_{2}\right) & =p^{*}\left(\mathrm{E}_{2} \mid \neg \mathrm{C}\right)=p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right)
\end{aligned}
$$

In particular, it follows that

$$
\begin{aligned}
p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \mathrm{C}\right) & =p^{*}\left(\mathrm{E}_{2}\right) p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right) \\
p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \neg \mathrm{C}\right) & =p^{*}\left(\mathrm{E}_{2}\right) p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right)
\end{aligned}
$$

According to Generalized Difference-Making with $\mathrm{C}^{\prime}=\neg \mathrm{C}$, the causal strength measure η can be written as $\eta\left(\mathrm{C}, \mathrm{E}_{1}\right)=f\left(p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right)\right)$ for a continuous function f. From No Dilution and the above calculations we can infer that

$$
\begin{aligned}
f\left(p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right)\right) & =\eta\left(\mathrm{C}, \mathrm{E}_{1}\right) \\
& =\eta\left(\mathrm{C}, \mathrm{E}_{1} \wedge \mathrm{E}_{2}\right) \\
& =f\left(p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \neg \mathrm{C}\right)\right) \\
& =f\left(p^{*}\left(\mathrm{E}_{2}\right) p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{2}\right) p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right)\right)
\end{aligned}
$$

Since we have made no assumptions on the values of these probabilities, we can infer the general relationship

$$
\begin{equation*}
f(x, y)=f(c x, c y) \tag{3}
\end{equation*}
$$

for all $0<c \leq \min (1 / x, 1 / y)$. Without loss of generality, let $x>y$. Then, choose $c:=1 / x$. In this case, equation (3) becomes

$$
f(x, y)=f(c x, c y)=f(1, y / x)
$$

This implies that f must be a function of y / x only, that is, of the ratio $p^{*}(\mathrm{E} \mid \neg \mathrm{C}) / p^{*}(\mathrm{E} \mid \mathrm{C})$. Generalized Difference-Making then implies that all such functions must be non-increasing, concluding the proof of Theorem 3. q.e.d.

Proof of Theorem 4: We write the causal strength measure $\eta_{c g}$ as

$$
\eta_{c g}(\mathrm{C}, E)= \begin{cases}\eta^{+}(\mathrm{C}, \mathrm{E}) & \text { for positive causation } \\ \eta^{-}(\mathrm{C}, \mathrm{E}) & \text { for causal preemption }\end{cases}
$$

We know from the previous theorem that $\eta^{-}(\mathrm{C}, \mathrm{E})$ must be ordinally equivalent to $\eta_{r}(\mathrm{C}, \mathrm{E})$. Now we show that all $\eta^{+}(\mathrm{C}, \mathrm{E})$-measures are ordinally equivalent to $\eta_{g}(\mathrm{C}, \mathrm{E})=p^{*}(\neg \mathrm{E} \mid \neg \mathrm{C}) / p^{*}(\neg \mathrm{E} \mid \mathrm{C})$. Since we have already shown that η_{g} and η_{c} are ordinally equivalent, this is sufficient for proving the theorem.

Because of Generalized Difference-Making, we can represent η^{+}by a function $f(x, y)$ with $x=p^{*}(\mathrm{E} \mid \mathrm{C})$ and $y=p^{*}(\mathrm{E} \mid \neg \mathrm{C})$. Suppose that there are $x>y$ and $x^{\prime}>y^{\prime} \in[0,1]$ such that $(1-y) /(1-x)=\left(1-y^{\prime}\right) /\left(1-x^{\prime}\right)$, but $f(x, y) \neq f\left(x^{\prime}, y^{\prime}\right)$. (Otherwise η^{+}would just be a function of η_{g}, and we would be done.) In that case we can find a probability space such that $p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right)=x$, $p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right)=y, p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right)=x^{\prime}, p^{*}\left(\mathrm{E}_{2} \mid \neg \mathrm{C}\right)=y^{\prime}$ and C screens off E_{1} and E_{2} (proof omitted, but straightforward). Hence $\eta^{+}\left(\mathrm{C}, \mathrm{E}_{1}\right) \neq \eta^{+}\left(\mathrm{C}, \mathrm{E}_{2}\right)$. By Weak Causation-Prevention Symmetry, we can then infer $\eta^{-}\left(\mathrm{C}, \neg \mathrm{E}_{1}\right) \neq \eta^{-}\left(\mathrm{C}, \neg \mathrm{E}_{2}\right)$.

However, since η^{-}is ordinally equivalent to η_{r}, there is a function f such that

$$
\begin{aligned}
& \eta^{-}\left(\mathrm{C}, \neg \mathrm{E}_{1}\right)=f\left(\frac{p^{*}\left(\neg \mathrm{E}_{1} \mid \mathrm{C}\right)}{p^{*}\left(\neg \mathrm{E}_{1} \mid \neg \mathrm{C}\right)}\right)=f\left(\frac{1-x}{1-y}\right) \\
& \eta^{-}\left(\mathrm{C}, \neg \mathrm{E}_{2}\right)=f\left(\frac{p^{*}\left(\neg \mathrm{E}_{2} \mid \mathrm{C}\right)}{p^{*}\left(\neg \mathrm{E}_{2} \mid \neg \mathrm{C}\right)}\right)=f\left(\frac{1-x^{\prime}}{1-y^{\prime}}\right)
\end{aligned}
$$

By assumption,

$$
\frac{1-x}{1-y}=\left(\frac{1-y}{1-x}\right)^{-1}=\left(\frac{1-y^{\prime}}{1-x^{\prime}}\right)^{-1}=\frac{1-x^{\prime}}{1-y^{\prime}}
$$

and so we can infer $\eta^{-}\left(\mathrm{C}, \neg \mathrm{E}_{1}\right)=\eta^{-}\left(\mathrm{C}, \neg \mathrm{E}_{2}\right)$, leading to a contradiction. Hence $\eta^{+}(\mathrm{C}, \mathrm{E})$ can be represented by a non-decreasing function of $p^{*}(\neg \mathrm{E} \mid \neg \mathrm{C}) / p^{*}(\neg \mathrm{E} \mid \mathrm{C})$, completing the proof of Theorem 4. q.e.d.

Proof of Theorem 5: By Generalized Difference-Making, we have that $\eta(\mathrm{C}, \mathrm{E})=f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}(\mathrm{E} \mid \neg \mathrm{C})\right)$ for some continuous function $f:[0,1]^{2} \rightarrow \mathbb{R}$. Assume that $\eta\left(\mathrm{C}, \mathrm{E}_{1}\right)=\eta\left(\mathrm{C}, \mathrm{E}_{2}\right)=t$, that C screens off E_{1} and E_{2} and that $p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right)=p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right)=x, p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right)=p^{*}\left(\mathrm{E}_{2} \mid \neg \mathrm{C}\right)=y$, for some $x, y \in \mathbb{R}$. By
the Conjunctive Closure Principle, we can infer

$$
\eta\left(\mathrm{C}, \mathrm{E}_{1} \wedge \mathrm{E}_{2}\right)=\eta\left(\mathrm{C}, \mathrm{E}_{1}\right)=f(x, y)
$$

Moreover, we can infer

$$
\begin{aligned}
\eta\left(\mathrm{C}, \mathrm{E}_{1} \wedge \mathrm{E}_{2}\right) & =f\left(p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \neg \mathrm{C}\right)\right) \\
& =f\left(p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right) \cdot p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1} \mid \neg \mathrm{C}\right) \cdot p^{*}\left(\mathrm{E}_{2} \mid \neg \mathrm{C}\right)\right) \\
& =f\left(x^{2}, y^{2}\right)
\end{aligned}
$$

Taking both calculations together, we obtain

$$
\begin{equation*}
f\left(x^{2}, y^{2}\right)=f(x, y) \tag{4}
\end{equation*}
$$

as a structural requirement on f, since we have not made any assumptions on x and y.

Following Atkinson (2012), we now define $u=\frac{\log x}{\log y}$ and define a function g : $\mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $g(x, u):=f(x, y)$. Equation (4) then implies the requirement

$$
g\left(x^{2}, u\right)=f\left(x^{2}, y^{2}\right)=f(x, y)=g(x, u)
$$

and by iterating the same procedure, we obtain

$$
g\left(x^{2 n}, u\right)=g(x, u)
$$

for some $n \in \mathbb{N}$. Due to the continuity of f and g, we can infer that g cannot depend on its first argument. Moreover, taking the limit $n \rightarrow \infty$ yields $g(x, u)=g(0, u)$. Hence, also

$$
f(x, y)=g(0, u)=g(0, \log x / \log y)
$$

and we see that

$$
\eta(\mathrm{C}, \mathrm{E})=h\left(\frac{\log p^{*}(\mathrm{E} \mid \mathrm{C})}{\log p^{*}(\mathrm{E} \mid \neg \mathrm{C})}\right)
$$

for some continuous function $h: \mathbb{R} \rightarrow \mathbb{R}$. It remains to show that h is
non-decreasing. Generalized Difference-Making implies that $\eta(\mathrm{C}, \mathrm{E})$ is a nondecreasing function of $p^{*}(\mathrm{E} \mid \mathrm{C})$ and a non-increasing function of $p^{*}(\mathrm{E} \mid \neg \mathrm{C})$. So it must be a non-decreasing function of $\log p^{*}(\mathrm{E} \mid \mathrm{C}) / \log p^{*}(\mathrm{E} \mid \neg \mathrm{C})$, too. This implies that h is a non-decreasing function. Hence, all measures of causal strength that satisfy Generalized Difference-Making and the Conjunctive Closure Principle are ordinally equivalent to

$$
\eta_{c c}(\mathrm{C}, \mathrm{E})=\frac{\log p^{*}(\mathrm{E} \mid \mathrm{C})}{\log p^{*}(\mathrm{E} \mid \neg \mathrm{C})} . \quad \text { q.e.d. }
$$

Proof of Theorem 6: We know by assumption that any measure that satisfies Generalized Difference-Making with $\mathrm{C}^{\prime}=\Omega_{\mathrm{C}}$ is of the form

$$
\eta(\mathrm{C}, \mathrm{E})=f\left(p^{*}(\mathrm{E} \mid \mathrm{C}), p^{*}(\mathrm{E})\right)
$$

Suppose now that there are $x, y, y^{\prime} \in[0,1]$ such that $f(x, y) \neq f\left(x, y^{\prime}\right)$. In that case, we can choose propositions C, E_{1}, and E_{2} and choose a probability distribution p^{*} such that $x=p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right), y=p^{*}\left(\mathrm{E}_{1}\right)$ and $y^{\prime}=p^{*}\left(\mathrm{E}_{2}\right)$ and $\mathrm{C} \wedge \mathrm{E}_{1} \models \mathrm{E}_{2}$, and $\mathrm{C} \wedge \mathrm{E}_{1} \models \mathrm{E}_{2}$. Then, $p^{*}\left(\mathrm{E}_{1,2} \mid \mathrm{C}\right)=p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \mathrm{C}\right)$ and

$$
\begin{aligned}
\eta\left(\mathrm{C}, \mathrm{E}_{1}\right) & =f\left(p^{*}\left(\mathrm{E}_{1} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1}\right)\right)=f\left(p^{*}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1}\right)\right) \\
& =f\left(p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1}\right)\right)
\end{aligned}
$$

and by Conditional Equivalence, also

$$
\eta\left(\mathrm{C}, \mathrm{E}_{1}\right)=\eta\left(\mathrm{C}, \mathrm{E}_{2}\right)=f\left(p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{2}\right)\right)
$$

Taking both equations together leads to a contradiction with our assumption $f\left(p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{1}\right)\right) \neq f\left(p^{*}\left(\mathrm{E}_{2} \mid \mathrm{C}\right), p^{*}\left(\mathrm{E}_{2}\right)\right)$. So f cannot depend on its second argument. Hence, all causal strength measures that satisfy Generalized Difference-Making with $\mathrm{C}^{\prime}=\Omega_{\mathrm{C}}$ and Conditional Equivalence must be ordinally equivalent to $\eta_{p h}(\mathrm{C}, \mathrm{E})=p^{*}(\mathrm{E} \mid \mathrm{C})$. q.e.d.

References

Atkinson, D. (2012). Confirmation and Justification: A Commentary on Shogenji's Measure. Synthese, 184:49-61.

Schupbach, J. N. and Sprenger, J. (2011). The Logic of Explanatory Power. Philosophy of Science, 78:105-127.

[^0]: *Contact information: Department of Philosophy and Educational Sciences, and Center for Logic, Language and Cognition (LLC), Università degli Studi di Torino, Via Sant'Ottavio 20, 10124 Torino, Italy. Email: jan.sprenger@unito.it. Webpage: www.laeuferpaar.de

