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Abstract

I distinguish between two versions of the black hole information-loss
paradox. The first arises from apparent failure of unitarity on the space-
time of a completely evaporating black hole, which appears to be non-
globally-hyperbolic; this is the most commonly discussed version of the
paradox in the foundational and semipopular literature, and the case for
calling it ‘paradoxical’ is less than compelling. But the second arises from
a clash between a fully-statistical-mechanical interpretation of black hole
evaporation and the quantum-field-theoretic description used in deriva-
tions of the Hawking effect. This version of the paradox arises long before
a black hole completely evaporates, seems to be the version that has played
a central role in quantum gravity, and is genuinely paradoxical. After ex-
plicating the paradox, I discuss the implications of more recent work on
AdS/CFT duality and on the ‘Firewall paradox’, and conclude that the
paradox is if anything now sharper. The article is written at a (relatively)
introductory level and does not assume advanced knowledge of quantum
gravity.

1 Introduction

Not everyone understands Hawking’s paradox the same way[.]

Samir Mathur1

The black hole information loss paradox has been a constant source of dis-
cussion in theoretical physics since Stephen Hawking (1976) first claimed that
black hole evaporation is non-unitary and irreversible, but opinions about it
differ sharply. The mainstream view in theoretical physics — especially that
part of high-energy physics that has pursued string theory and string-theoretic
approaches to quantum gravity — is that (a) the paradox is deeply puzzling
and (b) it must ultimately be resolved so as to eliminate information loss. But

∗Dornsife College of Letters, Arts and Sciences, University of Southern California; email
dmwallac@usc.edu

1Mathur (2009, p.34)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Philsci-Archive

https://core.ac.uk/display/295731183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


prominent critics in physics (e. g. Unruh and Wald (1995, 2017), Penrose (2004))
and in philosophy (e. g. Belot, Earman, and Ruetsche (1999), Maudlin (2017))
seem frankly baffled that anyone could expect information not to be lost in
black hole evaporation, and often regard the apparent ‘paradox’ as simply the
result of confusion. (Maudlin (ibid, p.2) goes so far as to suggest that ‘no com-
pletely satisfactory non-sociological explanation’ can be given for the paradox’s
persistence!)

This sharp disagreement arises, I will argue, from an equivocation as to
what is meant by ‘the’ information loss paradox. The form most widely dis-
cussed in the popular and semi-popular literature, closest in form to Hawking’s
original discussion, and most directly engaged with by the critics, is based on a
clash between apparently-general features of quantum mechanics and the global
structure of the spacetime describing a completely-evaporating black hole. That
version of the paradox is indeed less than compelling: information loss seems
prima facie plausible, and in any case the question seems to require a full un-
derstanding of quantum gravity to answer and so may be premature.

But there is a second version of the paradox, dating back to Page (1993),
which instead rests on the conflict between a statistical-mechanical description
of black holes and the exactly-thermal nature of Hawking radiation as predicted
in quantum field theory (QFT). This version of the paradox is far more com-
pelling, inasmuch as very powerful arguments support both sides in the conflict
and yet they appear to give rise to contradictory results. The (mathematical)
evidence against information loss advanced by physicists is much more naturally
understood in terms of the second version of the paradox, and that version has
if anything been sharpened by work in recent years that strengthens both the
case for, and the case against, information loss. It remains in the truest sense
paradoxical: a compelling argument for a conclusion, a comparably-compelling
argument for that conclusion’s negation.

The structure of the paper is as follows. In section 2, I briefly summarise
important background facts in the last forty years of black hole physics: the
extent to which classical black holes can be given a thermodynamical descrip-
tion; the discovery and significance of Hawking radiation; the progress made
in establishing a statistical-mechanical underpinning for black hole thermody-
namics. In section 3 I present the two forms of the information-loss paradox,
focussing on the second and more powerful form. In sections 4–5 I review recent
developments (respectively, AdS/CFT duality and the firewall paradox) that
bear on this form of the information-loss paradox; section 6 is the conclusion.

Three notes before proceeding. Firstly, I have written this article at about
the level of mathematical rigor found in mainstream theoretical physics. I do
not attempt full mathematical rigor, which seems premature in any case given
the incomplete state of development of the theories being discussed. Secondly,
for what it’s worth my strong impression is that the version of the information-
loss paradox I focus on is also the version that high-energy physicists mostly
have in mind in their technical work on quantum gravity. However, I do not
intend this paper as a historical account and I leave to others the interesting
task of disentangling the literature on the topic. Lastly, unless otherwise noted
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I work in units where kB = c = G = ~ = 1.

2 Background

This is a rather brief overview of material I discuss, and critically assess, in much
more detail in Wallace (2017a, 2017b). I give only the key references; readers
are referred to these papers for more extensive information and references.

2.1 Black hole thermodynamics

In the 1970s it became clear that even classical black holes (that is: black
holes as described by classical general relativity, along with phenomenological
descriptions of matter fields) behaved in a great many respects as if they were
ordinary thermal systems. I review this material in depth in Wallace (2017a),
and readers are referred there for details and further references, but in summary:

• Black holes have equilibrium (that is: stationary) states characterised (in
their rest frame) only by their energy and by a small number of conserved
quantities (charge and angular momentum); ‘no-hair’ theorems (Carter
1979) establish the uniqueness of these equilibrium states, and perturba-
tions away from equilibrium are damped down quickly (Thorne, Price,
and Macdonald 1986, chs.VI-VII).

• Small-scale interactions with a black hole (such as lowering charged or
rotating matter into the hole) can be divided into ‘reversible’ and ‘irre-
versible’ in a fashion closely analogous to infinitesimal adiabatic interac-
tions with thermodynamical systems (Christodolou and Ruffini 1971). In
this analogy, black hole surface area plays the role of thermodynamic en-
tropy: an infinitesimal change is reversible iff it leaves the area invariant,
and no physically-possible intervention can decrease the area.

• Stationary black holes of charge Q, mass M and angular momentum J
satisfy the differential expression

dM =
κ

8π
dA− ΩdJ − ΦdQ (1)

where κ is the surface gravity, A the surface area, Ω the surface angular ve-
locity, and Φ the surface electric potential (Bardeen, Carter, and Hawking
1973). This expression can be derived either as an abstract mathemati-
cal statement about equilibrium black holes, or as a statement about the
small changes in Q, M , J and A induced by allowing matter to fall into
the black hole. This is exactly the expression (under either interpretation)
that would encode the First Law of Thermodynamics for a self-gravitating
body at thermal equilibrium with that charge, mass and angular momen-
tum, if it had temperature λκ/8π and entropy Aλ (for arbitrary positive
λ). Some while later, Wald (1993) showed how to extend the First Law,
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and how to define the appropriate generalisation of (entropy ∝ area), to
arbitrary diffeomorphism-invariant theories of gravity.

• Hawking’s area theorem (Hawking 1972) established that no intervention
on a black hole could decrease its area, and so extended the (entropy ∝
area) idea from infinitesimal to finite processes.

The membrane paradigm (Thorne, Price, and Macdonald 1986) which codified
further advances in classical black hole physics in the 1970s and early 1980s,
extended this thermodynamic interpretion of black holes to a local description,
where a black hole can be regarded (from the perspective of any observer who
remains outside) as a thin, viscous, charged, conducting membrane lying at the
‘stretched horizon’, just outside the true event horizon. Under the membrane
paradigm, for instance:

• The increase of black hole area when a charge is dropped onto it can be
understood as Ohmic dissipation as the charge flows through the surface;

• The return to equilibrium of the black hole under the same process can be
understood as the spread of the charge from an initially localised region
to a uniform charge distribution across the surface;

• An uncharged black hole rotating in an external magnetic field will develop
eddy currents which slow its rotation;

• Dropping a mass into a black hole induces damped perturbation in its
shape, in accordance with the Navier-Stokes equation for viscous fluids.

These results, collectively, provide an almost perfect interpretation of a black
hole as a thermodynamic system as long as heat exchanges with other systems
are disregarded. When they are considered, the analogy breaks down entirely as
far as classical physics is concerned: the only consistent temperature that can
be assigned to a black hole through considerations of thermal contact is zero,
and no classically-possible physical process can be reinterpreted as heat flow
from a black hole to another thermal system.

2.2 Hawking radiation

Hawking (1975) discovered that when quantum field theory (QFT) is applied
to a black hole spacetime, it gives rise to field states which, as seen by dis-
tant observers, correspond to thermal radiation emitted from the black hole.
Hawking radiation (which has since been rederived by many different methods;
see Wallace (2017a, section 4.2) for a review and discussion of the evidence)
can be understood as a consequence of the entanglement of the QFT vacuum
state and of any state locally similar to that state. Field modes on either side
of the event horizon are entangled, and from the point of view of an observer
who remains outside the event horizon, the effective state of a field mode just
outside the horizon can be described by tracing over the physically-inaccessible
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partner mode just inside the horizon. The resultant state is perfectly thermal
as measured by an observer just outside the horizon; because of the black hole’s
gravitational field, most of this thermal radiation falls back in and the radia-
tion seen by a distant observer differs from perfect black-body radiation by a
so-called ‘grey-body factor’ correction.

From our point of view, Hawking radiation has two key features:

1. It exactly completes the description of a black hole as a thermodynamic
system. Hawking radiation from a black hole of surface gravity κ has
temperature κ/2π, exactly in accord with the black hole temperature con-
tained within the First Law, above (with λ = 4) and it provides a method
by which black holes can be put in thermal contact with each other and
with other hot bodies (either through radiative transfer or by directly
mining the atmosphere of thermal radiation surrounding the hole).

2. Hawking radiation carries energy (as defined via Noether’s theorem ap-
plied at large distances) away from the black hole and so can be expected
to reduce its mass. Exact calculations remain impossible (they would
require a fully-understood theory of quantum gravity) but a variety of
different calculations, arguments and numerical simulations within semi-
classical gravity (see Wallace (2017a, section 4.3) for a review) all give the
expected ‘naive’ result that the rate of decrease of the black hole’s mass is
equal to the Hawking radiation flux at infinity. As such, an isolated black
hole will radiate away its mass theoretically until it vanishes entirely, in
practice at least until its mass approaches the Planck mass and the as-
sumptions of Hawking’s calculation (that full quantum-gravity effects may
be neglected) become invalid.

2.3 Black hole statistical mechanics

So: black holes behave exactly like thermodynamic systems. All other thermo-
dynamic systems we know behave that way because their thermodynamics is
underpinned by a statistical-mechanical description, so it is natural to specu-
late that black holes also have a statistical-mechanical description that underlies
their thermodynamic behaviour. In particular, the thermodynamic entropy of
a statistical-mechanical system is identified with the microcanonical entropy,
i. e. the log of the number of (mutually orthogonal) states available to it, so a
statistical-mechanical description for black holes implies that a black hole of
given mass, charge and angular momentum, and of area A, has ∼ exp(A/4G)
(mutually orthogonal) microstates available to it. This speculation was made
even before the discovery of Hawking radiation, and by now there is a large
amount of calculational evidence supporting it. I review that evidence in depth
in Wallace (2017b) (other reviews include Harlow (2016) and Hartman (2015))
but in brief, there are three sources: effective field theory, full quantum gravity,
and AdS/CFT duality.

The effective-field-theory route treats general relativity as an ordinary (albeit
non-renormalisable) quantum field theory, with the Einstein-Hilbert action as
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the leading term in an infinite series of interactions and with some unspecified
high-energy physics cutting off the divergences in the field-theoretic description
at around the Planck length. In this formalism (and temporarily reintroducing
the gravitational constant G), statistical-mechanical entropy can be calculated
using path-integral methods; as was shown by Gibbons and Hawking (1977)
only a few years after the discovery of Hawking radiation, doing so recovers
S = A/4G as the leading-order term. Subsequent work has both clarified the
conceptual basis of the calculation and extended it to include interaction terms
beyond the Einstein-Hilbert action and higher-order quantum corrections to
the leading-order result. The former exactly reproduces Wald’s generalisation
of the entropy formula; the latter have exactly the required form to renormalise
the gravitational constant, ensuring that the G in S = A/4G is the empirically-
measured, renormalised Newton constant, not the bare constant that appears in
the quantum Lagrangian. (More accurately, the divergent part of the quantum
corrections renormalises the constant; the finite part generates additional terms
in the entropy formula proportional to logM , which are negligible at classical
scales.)

The full-quantum-gravity route depends on one’s preferred theory of quan-
tum gravity (and, since we have no fully-worked-out theory of quantum gravity,
is necessarily tentative). The most precise (and also the most influential) calcu-
lations have been done in string theory, and are restricted to so-called ‘extremal’
black holes; since we will anyway have to consider such black holes later, I pause
to give a brief explanation.

Consider first a black hole with nonzero charge Q, mass M , but no angular
momentum. The appropriate black-hole solution to the field equations, the
Reissner-Nordstrom solution, only describes a black hole if |Q| ≤M (for larger
charges, there is a naked singularity). An extremal black hole satisfies |Q| = M
(and is best thought of as the limiting case of black holes closer and closer to
extremality). The surface gravity, and thus thermodynamic temperature, of
an extremal black hole, is zero; thus they do not radiate and can be thought
of as ground states. (In general, a non-extremal black hole with a substantial
charge will decay to an extremal black hole rather than evaporating entirely.)
This generalises to charged, rotating black holes, as well as black holes in higher
dimensions and with more than one sort of charge; in each case, we can describe
the black hole by its conserved charge(s) and angular momentum together with
the statement that it is extremal.

Strominger and Vafa (1996) showed that for a certain class of extremal black
hole in five dimensions, the statistical-mechanical entropy can be calculated in
string theory; the result, to leading order, exactly matches the area formula.
Subsequent calculations have both widened the class of extremal black holes
whose entropy can be found in this manner, and refined the calculations to
include higher-order corrections and to allow for small perturbations from ex-
tremality. The match to the entropy deduced by low-energy methods is exact.

(It’s tempting to conclude that (a) this is evidence that string theory is the
correct theory of quantum gravity, and/or (b) that the Strominger/Vafa result
is only significant if string theory is the correct quantum theory of gravity. Both
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conclusions are too quick. The fact that black hole entropy can be calculated in
low-energy quantum gravity — and, indeed, in QFT on a fixed background —
strongly suggests that any consistent ultraviolet completion of low-energy quan-
tum gravity will reproduce the entropy formula. The match between Strominger
and Vafa’s result, Gibbons and Hawking’s, and the semiclassical prediction, is
then evidence firstly that string theory is a consistent quantum theory of grav-
ity, and secondly that the sum-over-histories approach to low-energy quantum
gravity really is describing the low-energy regime of a consistent theory. See
Wallace (2017b) for further discussion.)

The AdS/CFT route relies on the conjectured duality (Maldacena 1998,
Gubser, Klebanov, and Polyakov 1998, Witten 1998a) between a quantum grav-
ity theory with asymptotically AdSn+1×K boundary conditions and a conformal
quantum field theory on the n-dimensional boundary of AdSn+1, where AdSn
denotes anti-de-Sitter spacetime in n spacetime dimensions and K is some com-
pact space. (Anti-de-Sitter spacetime is most perspicuously thought of here as
a sort of box, a covariant version of the ‘periodic-boundary-condition’ boxes
often used to make quantum field theories calculationally more tractable.) The
conjecture arose in string theory (indeed, arose in part through the extremal-
black-hole calculations discussed above) but can be understood, and motivated,
as a claim about general quantum-gravity theories on AdS; it cannot be proved
formally at present but can be strongly motivated both by physical arguments
and by a large number of examples of calculations of the same quantity on ei-
ther side of the duality, where completely different methods nonetheless give the
exact same answer.

The statistical mechanics of conformal field theories are conceptually under
much better control than in the quantum-gravity case, and AdS/CFT duality
allows us to calculate entropy and other thermodynamic quantities on the CFT
side of the duality and then map them back to the AdS case. The results (which
are uncontroversially statistical-mechanical in origin) reproduce the predictions
of black-hole thermodynamics; in general qualitatively (Witten 1998b, Aharony
et al 2004), but quantitatively and exactly, in those cases where quantitative
results can be obtained. (In particular, the extremal-black-hole calculations can
be reproduced (Strominger 1998) via AdS/CFT methods.)

In aggregate, these results seem to give strong support to the idea that
black hole thermodynamics will be underpinned, in full quantum gravity, by a
statistical mechanics of the same general form as that underpinning any other
thermodynamic system, and that in particular, any classical stationary black
hole has a large number of microscopic degrees of freedom, in accordance with
the statistical-mechanical definition of entropy. The exact form of these degrees
of freedom is left somewhat obscure but they appear to have to live in a thin
skin around the event horizon, both on general physical grounds (degrees of
freedom within the event horizon don’t seem well-placed to determine a system’s
thermodynamic properties) and because that seems to be where the detailed
calculations place them in those cases where they give any answer at all. A
natural way to think of this is as a quantization of the membrane paradigm:
not only thermodynamically, but statistically-mechanically, a black hole seems
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to an outside observer as a thin membrane around the black hole, which has a full
unitary description as a quantum system interacting with surrounding radiation,
which will be at the Planck temperature as measured by an observer suspended
just above its surface, and whose thermodynamical properties are explained in
terms of its microscopic degrees of freedom. In particular, in this description
Hawking radiation is just ordinary thermal radiation from the surface of the
membrane.

3 Paradoxes of information loss

‘The’ paradox of information loss encompasses a wide range of ideas, but two
main versions of the paradox can be discerned. I begin with the version most
commonly discussed in the foundational literature, which I review only briefly;
for a more detailed review see, e. g. , Wald (1994, ch.7) or Belot, Earman, and
Ruetsche (1999). It turns on the violation of unitarity in complete black hole
evaporation, and its relation to the causal structure of the evaporating black
hole spacetime.

3.1 Non-unitarity of total evaporation

Figure 1 depicts the complete process of black hole evaporation according to
the semiclassical description (that is assuming Hawking radiation via QFT on a
fixed black-hole background spacetime, and decrease of the mass of that black
hole via semiclassical back-reaction). We can distinguish three regions:

1. The pre-formation region I, which is foliated by Cauchy surfaces like ΣI .

2. The evaporation region II, which can be written as the union of II(int)
(the region inside the horizon) and II(ext) (the region outside). It is
foliated by slices like ΣII .

3. The post-evaporation region III, foliated by slices like ΣIII.

Each region, individually, is globally hyperbolic, as is the combined region I +
II. The overall spacetime is not globally hyperbolic: the point X is a naked
singularity.

If QFT on this spacetime accurately describes the black-hole evaporation
process, we would expect to be able to describe the physics in region I ∪ II
by a unitary dynamics, transforming, e.g., a pure quantum state on ΣI to one
on ΣII . The latter state, in general, would be entangled, with the reduced
states on ΣII ∩ II(int) and ΣII ∩ II(ext) being mixed, but the overall evolution
would remain unitary and retrodictable. Since the boundary between II(int)
and II(ext) is a future horizon, we would also expect a future-deterministic
evolution on I ∪ II(ext), so that the reduced state on ΣII ∩ II(ext) is uniquely
determined by the state on ΣI , but this evolution will be neither unitary nor
past-deterministic (many different initial states would lead to the same black-
hole-exterior reduced state.) Strictly, the naked singularity means that there is
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Figure 1: Spacetime of a completely-evaporating black hole (angular coordinates
suppressed)
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no well-defined evolution at all from region II to region III, but if we stipulate
some well-behaved local physics at the singularity, the evolution from II to III
is again deterministic but non-unitary. Indeed, the quantum state on Σout that
describes the spacetime immediately upon evaporation is obtained by unitarily
evolving the state on ΣI forward to just before the singularity and then tracing
out over II(int).

The end result is that the process of black hole formation and evaporation, as
described by an observer outside the black hole, is a pure-to-mixed, irreversible
transition. The same result can be seen more physically by noting that the
quantum state of the exterior in the evaporation region just consists of Hawk-
ing radiation, which is (a) perfectly thermal, and hence mixed; (b) determined
only by the bulk properties of the black hole (mass, charge, angular momen-
tum) and not by any details of its formation. On slices in region II, the full
information remains because the formation details are encoded on the state in
II(int), but that information is lost once the black hole completely evaporates.
(More carefully: that information is not present in any of the slices in region
III.)

There is a major lacuna in this argument: the final stages of black hole
evaporation occur when the black hole’s curvature is Planck-scale, and so are
well into the regime where semiclassical calculations are unreliable. (This shows
up formally in figure 1 via the naked singularity.) But it is hard to imagine
filling in the Planck-scale physics in order to save unitarity: the remaining
energy does not seem sufficient to encode all the remaining information in a
final burst of photons (to say nothing of the question of how it got from the
black-hole singularity to the evaporation point X); the persistence of the black
hole as a Planck-scale ‘remnant’ with fantastically many internal degrees of
freedom looks difficult to reconcile with other features of particle physics; the
replacement of the point-like naked singularity with a light-like ‘thunderbolt’
seems unmotivated and overkill besides; the removal of the future singularity so
that the interior of the black hole forms a ‘baby Universe’ does nothing to save
unitarity from the perspective of the external observer.

This powerful argument for non-unitary evaporation is one form of the
information-loss paradox, which we can usefully call the ‘evaporation-time para-
dox’, yet readers might wonder why it deserves to be called a paradox and not
just an argument to the interesting conclusion that information is lost. Indeed,
that is how Hawking (1976) originally described it; more recently information
loss has been advocated forcefully by Unruh and Wald (1995, 2017), Penrose
(2004, pp.840-841) and Maudlin (2017) and more nuancedly by Belot, Earman,
and Ruetsche (1999). The stripped-down version of their arguments would be:
we have a right to expect unitarity, information preservation, and retrodiction
only on globally-hyperbolic spacetimes; the evaporation spacetime manifestly is
not globally hyperbolic; so non-unitary evolution is only to be expected.

Arguments for unitarity have been given for this version of the paradox, but
frankly they are (to this author) less than compelling. The most straightforward
(mostly seen in informal discussion and semipopular work) is simply: unitarity
is part of quantum mechanics, so non-unitary evaporation is incompatible with
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quantum mechanics. But this seems to equivocate on the meaning of ‘quantum
mechanics’; of course we could just define quantum physics as incorporating
unitary dynamics, but at least some forms of QFT seem perfectly well-defined
on non-globally-hyperbolic spacetimes and to have dynamics which is locally
unitary but globally non-unitary on those spacetimes. (See the appendix of
Belot et al, ibid, for discussion; see also Deutsch (1991) for an example of the
same phenomena in a different context.) Compare: Hamiltonian versions of
classical electromagnetism are defined only for globally-hyperbolic spacetimes,
but classical electromagnetism can also be defined via its local field equations
on a much more general class of spacetime.

More interesting objections come from quantum field theory. In QFT, the
amplitude for a transition can generally be expressed as a sum over all ways
in which the transition might come about, which for a full quantum theory
of gravity ought to include processes involving formation and evaporation of
Planck-scale black holes. Furthermore, high-energy processes like this are typi-
cally not suppressed in sum-over-histories calculations; rather, their effects can
normally be absorbed into the renormalisation of the empirically-measured con-
stants. Prima facie, it looks plausible that non-unitary quantum-gravity effects
will make a large difference to low-energy physics and that this difference can-
not be normalised away, and some calculations (Banks, Susskind, and Peskin
1984; Srednicki 1993) seem to support this result. But the matter is contro-
versial (see, e. g. , Hawking (1996), Unruh and Wald (1995), or Unruh (2012)
for dissenting views) and at the least does not seem to provide decisive reasons
to reject the argument for information loss, pending a full quantum theory of
gravity in which the calculations can be done more carefully.

But while the evaporation-time paradox is the form of the information-loss
paradox generally found in popular and foundational literature, it is not the
only form. A much more compelling paradox arises when Hawking radiation
is considered not just in the light of quantum mechanics in general, but in
particular in the light of black hole statistical mechanics.

3.2 Non-thermality of unitary cooling

Following Page (1993), suppose we have some ordinary thermodynamic system
with Hilbert space H, which we want to describe using the microcanonical en-
semble. To do so we find some energy interval ∆E, narrow compared to typical
energies of the system but wide enough so that the number of energy eigenstates
between E and E + ∆E is large. Then we can define H(E) as the subspace
spanned by eigenstates of energy with eigenvalues between E and E+ ∆E, and
write the total Hilbert space as

H =
⊕
E

H(E), (2)

where the sum ranges over energies E = 0,∆E, 2∆E, . . .N∆E, . . .. The system
begins at microcanonical equilibrium at energy E0, and for expository simplic-
ity I assume its initial state is pure (and so is contained in H(E0)). It then
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cools through the emission of thermal radiation: that is, emission of quanta of
radiation in highly mixed states. I also assume that the system is large enough
that its energy remains in a narrow band as it cools, so that to high accuracy
the system’s state at any given time is contained within (that is: is a density
operator restricted to) some H(E).

The original state of the system is pure, and its dynamics are unitary, so
the total state of system-plus-radiation is pure. But if the radiation is thermal,
each emitted photon will be in a mixed state, and so must be entangled with
some other system for the total state to be pure. In thermal radiation no two
emitted quanta can be entangled, so each must be entangled with the system.
More quantitatively, if the total von Neumann entropy of the radiation quanta
emitted as the system cools from E0 to some lower energy E is S, then by
unitarity the von Neumann entropy SV N (E0, E) of the system must also be
S. But if the system has energy E ∈ (E(t), E(t) + ∆E) at time t, its (mixed)
state at t must be contained within H(E(t)), and so must have a von Neumann
entropy less than log dimH(E(t)) — which is to say that the von Neumann
entropy is bounded above by the microcanonical entropy SMC(E(t)),

SV N (E0, E(t)) ≤ SMC(E(t)). (3)

And the latter (assuming the system has positive temperature) is decreasing as
the system cools. There will come a time — the so-called Page time, typically
about half way through the cooling process — when this inequality saturates,
and after that point the radiation can no longer be exactly thermal. Instead, the
late-time thermal radiation will have to be entangled with the early-time radia-
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tion. (Page provides plausibility arguments to the effect that this turnover will
be fairly sharp: the radiating body will emit almost-exactly-thermal radiation
up to the Page time, so that the von Neumann entropy of the radiating body
rises initially until it equals the decreasing microcanonical entropy and then
the two remain equal for the rest of the decay process.) The overall process is
illustrated in Figure 2: the characteristic time dependence of the von Neumann
entropy, initially increasing and then dropping off, is known as the Page curve.
The initial purity of the system state plays no essential role here provided that
the initial state’s von Neumann entropy is much lower than its microcanonical
entropy.

According to black hole thermodynamics, black holes are ‘ordinary quantum-
mechanical systems’, and the von Neumann entropy of the matter which formed
the black hole will be extremely small compared to the black hole’s initial ther-
modynamic entropy. (And, while the stellar precursor of an astrophysical black
hole is not plausibly in a pure state, the thermodynamic entropy of such a pre-
cursor is typically negligible compared to the entropy of the black hole that
forms from it.) The Page time for a Schwarzschild black hole is approximately
half the total evaporation time, at which point it will have radiated away about
half its mass; after this time, it is not possible for the black hole’s radiation to be
thermal. Instead, it should be maximally entangled with the early-time radia-
tion (albeit for any physically plausible measurement process this entanglement
will be completely undetectable; cf Harlow and Hayden (2013)).

The problem is that Hawking radiation — according to the quantum-field-
theoretic calculations — is exactly thermal, displaying no entanglement what-
ever between early-time and late-time quanta. Indeed, if the calculation is read
literally, the successively-emitted quanta are sequentially redshifted down from
the trans-Planckian regime at the horizon; each mode of the Hawking radiation
is maximally entangled (given its overall expected energy) with a radiation mode
inside the event horizon, which has no means of escaping, and so cannot also be
entangled with other radiation modes (a principle sometimes called ‘monogamy
of entanglement’).

Call this the Page-time paradox. (This is basically the form of the paradox as
presented in, e. g. , Mathur (2009) and Polchinski (2016).) It is a clash between
the predictions of QFT and the predictions of black hole statistical mechanics
that occurs long before complete evaporation, when the black hole is still macro-
scopic in scale (i. e. , there seems no prospect of exotic quantum-gravitational
effects coming to the rescue). And while no doubt the exact results of Hawking’s
calculation need to be modified by various interaction terms and the like, the
general form of the calculation seems robust against these modifications and
there seems little prospect that these modifications will give the large violations
of thermality required to conform to statistical mechanics, at least as long as the
basic QFT framework remains intact (see Mathur (2009) for a careful argument
to this effect; see also the discussion in section 4.2 of (Wallace 2017a)).

Remnants, or thunderbolts, or baby universes, no matter how helpful they
may be in preserving unitarity, do nothing to preserve the statistical interpre-
tation of black hole entropy or any account of black hole thermodynamics as
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arising from statistical mechanics in the ordinary way, and so have no role in
resolving this version of the information-loss paradox. Indeed, I will now show
that this version of the information loss paradox can be stated even for situations
in which no evaporation occurs at all.

3.3 Information loss without evaporation

For a straightforward realisation of the paradox for non-evaporating black holes,
consider the cooling of charged black holes. Positively-charged black holes pref-
erentially radiate positively-charged particles (and vice versa), but Hawking
radiation is dominated by massless particles, so typically the ratio |Q|/M in-
creases in the decay of a charged black hole and it is possible for the inequality
to saturate (i. e. reach |Q| = M). At this point the black hole is extremal and
will not decay further.

Now consider an extremal black hole that ought, according to black hole sta-
tistical mechanics, to be in a perfectly mixed state. (Such a black hole could be
formed, for instance, by taking a suitably non-extremal black hole and allowing
it to approach extremality by decay, such that it reaches the Page time before
becoming extremal). If some (uncharged) radiation is absorbed by the black
hole, it will heat up and reradiate the absorbed energy as Hawking radiation.
According to QFT, this is a pure-to-mixed transition for physics outside the
stretched horizon, since the emitted radiation is perfectly thermal. But accord-
ing to black hole statistical mechanics, since the quantum state of the black hole
is unchanged by the process and the overall interaction is unitary, the outside-
the-horizon description should likewise be unitary and the emitted radiation
should be in a pure state. (This was an important test case in discussions of the
information loss paradox in the 1990s (cf Maldacena and Strominger (1997) and
references therein) and will be further discussed in section 4.1 where we will see
that it provides fairly direct evidence for unitary evaporation.)

For a somewhat more complicated case (due to Maldacena (2003)), consider
a mass-M black hole in a small box, in thermal equilibrium with its atmosphere
and with the walls of the box. (One way to implement this is to suppose that
the black hole exists in an asympotically AdS spacetime with effective radius
smaller than the black hole’s Schwarzschild radius; another (York 1986) is just
to impose reflecting boundary conditions on the black hole at a radius less
than 1.5× the Schwarzschild radius). According to the QFT calculations, each
emitted photon is in a perfectly thermal state and so is uncorrelated with any
other emitted photon. The sharp statement of this in QFT (which is readily
demonstrated; see Harlow (2016, section 6.9), Maldacena (2003) and references
therein) is that correlations between field operators at large time separations
should fall off exponentially: that is,

C(t) ≡ 〈Ô(t)Ô(0)〉ρ ≡ Tr(ρÔ(t)Ô(0)) ∼ e−cβt (4)

where ρ is the thermal state of the black hole atmosphere, Ô(t) is some spatially-
smeared field operator localised at time t, β = 8πM is the inverse temperature,
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and c is a dimensionless constant. Provided the operator Ô(t) is chosen to
project onto outward-going states, this should continue to be true, given a QFT
description of Hawking radiation, even given the reflecting boundary condi-
tions.2

But if black hole statistical mechanics is true, then (by the Bekenstein bound;
cf discussion in Wallace (2017a, section 4.5)) the system of black-hole-plus-box

is an ordinary quantum system with a discrete energy spectrum Ĥ |i〉 = Ei |i〉.
This puts us in the realm to which the Poincaré recurrence theorem applies and
so cannot be compatible with exponentially-decaying correlation functions. To
be more precise (here I loosely follow Harlow (2016, section 6.9))

C(t) =
∑
i,j

e−βEi

Z(β)
| 〈i|O |j〉 |2e−it(Ei−Ej). (5)

If we decompose Ô into diagonal and off-diagonal parts, Ô = ÔD + R̂, this is

C(t) = CD + CR(t) = 〈Ô
2

D〉ρ +
∑
i 6=j

e−βEi

Z(β)
| 〈i|R |j〉 |2e−it(Ei−Ej). (6)

(To even give the correlation a chance to drop off exponentially, we should
therefore choose an observable with vanishing diagonal part.) The sums here
are over ∼ eS states (where S is the entropy of the ensemble at temperature
β) and Z(β) ∼ eS−βE0 where E0 is the expected ensemble energy. So for this
sum to be convergent at small times we can expect | 〈i|R |j〉 |2 typically to be
∼ e−2S . For large times, the phase factors e−it(Ei−Ej) can effectively be treated
as random, so that CR(t), very roughly, is a sum of e2S terms of magnitude
∼ e−2S and random phase. The theory of random walks predicts that this sum
ought to be

CR(t) ∼ e−2S ×
√

e2S = e−S . (7)

So if black hole statistical mechanics is true, the correlation factor can initially
drop off exponentially, but only until it reaches a value of ∼ e−S . It will then
remain at about that level for a very long time, will occasionally fluctuate back to
large values, and eventually, by the quantum version of the Poincaré recurrence
theorem (see Wallace (2015) for a review), will return to its original large value.
All this is of course in flat contradiction with the QFT prediction of permanent
exponential decay. (The sharp version of the rather heuristic assumptions about

Ô that I have used in this argument is the eigenstate thermalization hypothesis
(Srednicki 1994).)

3.4 The strength of the Page time paradox

According to one definition (Quine 1966, ch.1), a paradox is an apparently-
impeccable argument to an impossible conclusion — such as a pair of apparently-

2I am grateful to Gordon Belot for useful discussion on this point.
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impeccable arguments whose conclusions contradict each other. By this defi-
nition, the Page time version of the information-loss paradox is a true para-
dox. The arguments for black hole statistical mechanics are compelling: quite
apart from the general reason to expect a statistical-mechanical underpinning
for any thermodynamic system, we have the precise reproduction of the entropy
formula (including subleading corrections and renormalisation effects) in low-
energy quantum gravity, the equally-precise reproduction of that formula in a
large class of extremal black holes using string-theoretic methods, and the recov-
ery of large parts of black hole thermodynamics, qualitatively and quantitatively,
from the statistical mechanics of conformal field theory and the AdS/CFT du-
ality. It is unserious to suppose that all of this is simply coincidence. And yet,
the arguments from QFT are equally compelling.

Prima facie, there are only two ways forward:

1. Accept that QFT fails as a description of the entire spacetime of an evapo-
rating black hole; retain the statistical-mechanical underpinnings of black
hole thermodynamics; try to understand why and when the QFT descrip-
tion breaks down, given that the breakdown occurs in regimes which prima
facie seem ‘nice’ and well within the applicability domain of the theory
(Polchinski 1995, Mathur 2009).

2. Retain QFT, reject black hole statistical mechanics, and find some non-
statistical-mechanical understanding of black hole thermodynamics that
nonetheless makes the compatibility of black hole and ordinary thermo-
dynamics, and the quantitative results of various statistical-mechanical
calculations of black hole entropy, non-miraculous.

Since neither is especially attractive, it’s tempting to look for a middle way:
to get some understanding of black-hole thermodynamics that holds onto its
statistical-mechanical underpinnings but permits non-unitary decay, and/or to
find a way to preserve at least most of the QFT description of the evaporation
process even while allowing for long-time entanglement between Hawking quanta
(violating (4), for the black hole at equilibrium). But results over the last twenty
years have sharpened the paradox and virtually foreclosed on the possibility of
a middle way, as AdS/CFT duality has provided direct mathematical evidence
for duality and as the firewall paradox has made stronger and more explicit the
violation of QFT in the statistical-mechanical description.

4 Evidence for unitarity from AdS/CFT

AdS/CFT duality, briefly mentioned in section 2, has become a growth industry
in theoretical physics since its initial discovery and even a cursory discussion of
its structure and the evidence for it would double the length of this paper. (I give
a brief overview from the point of view of black hole physics in (Wallace 2017b);
more detailed reviews include Aharony et al (1999), Harlow (2016), Hartman
(2015), and Kaplan (2016); for philosophical discussion see, e. g. , De Haro,
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Mayerson, and Butterfield (2016) or Teh (2013).) Here I take the existence
of the duality mostly for granted and simply discuss its implications for the
unitarity of black hole decay. Specifically, in sections 4.1–4.2 I reprise the two
‘non-evaporating’ forms of the paradox discussed in section 3.3; in section 4.3 I
give a direct argument from AdS/CFT and from Poincaré recurrence that full
evaporation is a unitary process.

4.1 Unitarity of Hawking radiation from near-extremal
black holes

As I noted in section 2.3, the statistical-mechanical entropy of certain extremal
black holes, calculated via string theory, exactly matches the predictions of
black hole thermodynamics. If such a black hole absorbs a small amount of
uncharged mass, it will be perturbed away from equilibrium and acquire a tem-
perature, and the leading-order change in entropy in this process again matches
the thermodynamic prediction (Horowitz and Strominger 1996).

More strikingly, and more relevantly for our purposes, Maldacena and Stro-
minger (1997) were able to reproduce the exact spectrum of the perturbed black
hole’s Hawking radiation. To expand: recall (section 2.1) that a radiating black
hole is not a black body when observed far from the horizon: radiation emitted
in the near-horizon regime has some probability to be scattered back across the
horizon, and that probability depends on the radiation’s angular momentum
and its energy. These grey-body factors cannot be calculated analytically for
the Schwarzschild black hole, but they can be for the near-extremal black hole
analysed by Maldacena and Strominger, giving the emission rate for photons of
energy ω as a — reasonably complicated — function of ω and the parameters
characterising the black hole. Maldacena and Strominger found this function,
and then found the equivalent function for the decay rate of the excited string
state corresponding (in Strominger and Vafa (1996)’s analysis) to the black hole,
through string perturbation theory. They match exactly, despite the completely
different calculational tools applied in the two cases (solving the wave equation
on the black hole spacetime in one case, calculating emission rates for a dilute
gas of string excitations in the other).

This provides pretty powerful support for the hypothesis that black hole
decay is a unitary process. To quote Maldacena and Strominger (emphasis in
original),

The string decay rates, extrapolated to the large black hole region,
agree precisely with the semiclassical Hawking decay rates in a wide
variety of circumstances. However, the string method not only sup-
plies the decay rates, but it also gives a set of unitary amplitudes
underlying the rates. We find it tempting to conclude that these
extrapolated amplitudes are also correct. It is hard to imagine a
mechanism which corrects the amplitudes, but somehow conspires
to leave the rates unchanged.

The robust nature of the string picture is very significant because
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it allows us to directly confront the black hole information puzzle
. . . According to Hawking information is lost as a large excited black
hole decays to extremality. On the other hand the string analysis
. . . gives a manifestly unitary answer.

In retrospect, the Maldacena-Strominger calculation can be recognised as
a form of AdS/CFT correspondence, realising the duality between the near-
horizon region just outside a near-extremal black hole (which can be approxi-
mated as AdS3×K for compact K) and two-dimensional conformal field theory
on the boundary of that spacetime. In either case the system is coupled to
degrees of freedom describing the far-from-horizon region; the CFT description
of that coupling is manifestly unitary and exactly reproduces the AdS results
for overall scattering levels. See Hartman (2015, pp.114–130) for a presentation
that makes the AdS/CFT aspect explicit. (And note that as such, the calcula-
tion relies only on AdS/CFT duality and not on any specific features of string
theory.)

4.2 Unitarity of Hawking radiation for large black holes

Radiation from near-extremal black holes is one of the two no-evaporation forms
of the information loss paradox I discussed in section 3.3. The other — Malda-
cena’s eternal black hole — can also be analysed via AdS/CFT methods. Recall
that for a black hole in a box, large enough to be in stable equilibrium with
its atmosphere, QFT calculations of Hawking radiation contradict black hole
unitarity for sufficiently large times: the former predict that long-time corre-
lation functions decay exponentially without limit, while unitarity (in a finite
box) predicts that the correlations reach a minimum value of ∼ e−S , and that
they eventually undergo Poincaré recurrence back to their original values. Since
a large AdS black hole is a ‘black hole in a box, in equilibrium with a radiation
bath’, we can use AdS/CFT duality to work out the correlation functions (the
operators whose correlations are calculated are well outside the horizon, in a
region where the translation between AdS and CFT descriptions is fairly well
understood). We get these results:

1. For comparatively short times, the exponential decay of the correlations
can be recovered on the CFT side of the correspondence (Papadodimas
and Raju 2013).

2. For very long times, the discreteness of the spectrum of the CFT Hamilto-
nian guarantees that the exponential decay ceases, and that the correlation
coefficients display the behaviour predicted by unitarity, in contradiction
with the predictions of QFT applied to the interior. (Maldacena 2003)

So the AdS/CFT correspondence, applied to large black holes, provides further
‘compelling evidence’ (Harlow 2016, p.92) that black hole decay is unitary.
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4.3 Unitarity of black hole decay via AdS/CFT

In the case of black holes in AdS space which evaporate completely, it is tempting
to conclude immediately that that decay is unitary: after all, the AdS descrip-
tion is dual to a CFT description that is manifestly unitary. But this has been
challenged as too quick (cf Unruh and Wald (2017), Maudlin (2017)), so here I
give a more explicit argument.

Specifically, suppose we have a QG theory on asymptotically AdS space
(with the usual reflecting boundary conditions normally assumed in AdS/CFT
duality), and a CFT on the boundary of that space, with Hilbert spaces HG,
HCFT respectively. We choose a foliation Σt of AdS compatible with the time
translation symmetry map on AdS (so that the boundary of that foliation defines

a foliation for the CFT, and write Ĥ for the Hamiltonian of the CFT with
respect to that foliation. Then we make the following assumptions (working in
the Heisenberg picture):

A. Perturbative QG sector: For any time t and any state of the interior de-
scribable semiclassically as an excitation ψ of the vacuum (by, say, gravi-
tons or matter particles) on Σt which nowhere is dense enough to form an
event horizon, there is a state |ψ; t〉 ∈ HG which represents that state in
the full quantum-gravity theory. Call the subspace spanned by such states
HG,P ⊂ HG.

B. CFT spectrum: The spectrum of Ĥ is discrete and bounded below, and
Ĥ is at most finitely degenerate.

C. Perturbative duality: There is a unitary map V̂ from HG,P into HCFT ,
such that

〈ψ; t|ψ′; t+ τ〉 = 〈ψ; t| V̂
†

exp(−iτĤ)V̂ |ψ; t〉 (8)

(that is, the map between the interior and boundary theories commutes
with the dynamics in at least the perturbative sector.)

(A) is a fairly minimal requirement of representational adequacy for the quantum-
gravity theory; (B) is a standard result about conformal field theories on com-
pact spaces (see, e. g. , the discussion in Harlow (2016)); (C) is a small fragment

of full AdS/CFT duality. (The map V̂ in (C) can be constructed fairly explicitly,
at least to first order in perturbation theory; see Harlow and Stanford (2011).)

Now let ψ be an excitation of the AdS vacuum corresponding to a large
amount of diffuse infalling matter at time t which will at a later time (with
very high amplitude) form a black hole. Given (A), there is a state |ψ, t〉 that
represents this excitation. Given (B), the quantum version of the Poincaré
recurrence theorem applies to the boundary CFT (see Wallace (2015) for a
review) and so for any perturbative state |ψ, t〉 we can find a time T such that
to an arbitrarily good approximation,

exp(−iT Ĥ)V̂ |ψ, t〉 ' V̂ |ψ′, t〉 . (9)
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Given (C), |ψ, t〉 ' |ψ, t+ T 〉; in other words, after the recurrence time, the bulk
theory will describe a multiparticle state containing all the information of the
pre-black-hole state, and no information has been lost. Of course, T is vastly
longer than the black hole’s decay time, but if the evolution is unitary all the
way forward to T , in particular it is unitary during the decay process.

5 The firewall paradox

AdS/CFT duality seems to have persuaded most of the high-energy physics
community (notably including Hawking (2005)) that black hole evaporation is
unitary. But the duality remains poorly understood as far as the black hole
interior is concerned, and the question remains: how is it unitary, in the face of
the clear arguments from QFT for information loss. In the last few years this
question has become more urgent, with deep problems emerging in the hitherto-
leading strategy for reconciling the exterior and interior descriptions. Section
5.1 reviews that strategy, normally called ‘black hole complementarity’; section
5.2 reviews the so-called ‘firewall paradox’ that appears to invalidate it.

5.1 Black hole complementarity and the black hole inte-
rior

At first sight, there is a conflict between black hole statistical mechanics and
QFT that is much more direct than the information-loss paradox. After all, QFT
predicts that an observer will encounter nothing special as they fall freely across
the horizon from a starting point high above the black hole, and in particular
will measure radiation that deviates only weakly from empty space. This seems
hard to reconcile with the description of that same infalling observer that will
be given by a fiducial (i. e. , hovering) observer: for that second observer, whose
observations are confined to the outside-horizon region, the quantum black hole
is represented (cf discussion in section 2.3) by a membrane just above the hori-
zon, whose local temperature is order the Planck temperature, and the infalling
observer will collide with that membrane and rapidly be thermalised by it.

The semiclassical membrane paradigm demonstrates that this is far too
quick. In that paradigm (recall) a quantity of charge dropped onto a black hole
will spread out uniformly over the horizon, with a known timescale, generating
heat as it does so through Ohmic dissipation. This description of stretched-
horizon physics is formally compatible with — indeed, is derived from — an
underlying physics in which the charge drops smoothly through the horizon and
continues towards the singularity. The point is simply that there is a mathe-
matically valid description of the physics of the black hole exterior in terms of
the stretched horizon; the metaphysical question of whether that description is
true is interesting but somewhat tangential.

Susskind, Thorlacius, and Uglum (1993) proposed extending this idea —
that interior information is encoded in information about surface perturbations
— from semiclassical physics to the full quantum theory of the black hole. Just
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as in the classical case, the proposal is that the selfsame physical process can be
described in terms of coordinates adapted to the interior of the black hole, or in
terms of the degrees of freedom of a membrane just outside the event horizon.
A sketch of this idea for the infalling observer would go as follows. The fall of
the observer from infinity onto the stretched horizon can be described equally
well with respect to stationary observers hovering above the horizon at a fixed
height, and with respect to inertially falling observers (and that description
is analysable in terms of known physics; cf Unruh and Wald (1982)). Since
the inertial description tells us that the observer does not catch fire and burn
up during this part of their journey, the stationary description must give the
same result, so that the observer’s passage through the black hole atmosphere
is uneventful despite its increasingly high temperature. (The intuitive feeling
that this can’t happen physically can be assuaged by noting that the observer
passes through the hotter part of the atmosphere at extreme relativistic speed
and so interacts with the atmosphere for a very short proper time; note that
an observer whose fall begins from quite close to the horizon and so takes a
much longer proper time to fall in will encounter highly blue-shifted Hawking
radiation right from the start of the fall, even in an inertial-frame description,
and so will be consistently described as being burned up in both descriptions.)

When the observer reaches the stretched horizon, according to black hole
statistical mechanics they will rapidly become thermalised (specifically, ther-
malisation takes time ∼M logM , as can be read off the thermodynamics of the
membrane paradigm). But ‘thermalisation’ is a coarse-grained notion: it means
that for any observable relevant to the exterior physics, the expectation value of
that observable is the same when calculated with the ‘thermalised’ state as with
the true microcanonical-equilibrium state (the projector onto the energy eigen-
subspace of the black-hole Hilbert space). This is perfectly compatible with
observables relevant to the black hole interior having expectation values that
deviate sharply from the values calculated from the microcanonical-equilibrium
state, and indeed which describe the infalling observer in accordance with gen-
eral relativity.

Susskind, Thorlacius, and Uglum (1993) called this duality of surface and
interior descriptions black hole complementarity. The name invokes the non-
commutativity of quantum-mechanical observables: just as the same physical
process can be described with respect to a basis of definite-position or definite-
momentum states and may look very different in the two descriptions, so the
horizon-crossing process can be described with respect to a basis appropriate
to exterior physics or one appropriate to the infalling observer’s situation. (Re-
grettably, “complementarity” also invokes Bohr’s somewhat obscure philosophy
of meaning — and Susskind et al explicitly refer to that philosophy — but so
far as I can see it is not essentially required in black hole statistical mechanics.)

However, the parallel with semiclassical complementarity is imperfect, pre-
cisely because of the (Page time) information loss paradox: after the Page time,
QFT continues to predict exactly thermal radiation, whereas black hole statisti-
cal mechanics requires that radiation to be entangled with early-time radiation,
and so if black hole statistical mechanics is correct then QFT must actually be
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wrong, not just a redescription of the same physics, at late times. As we shall
now see, the firewall paradox of Almheiri, Marolf, Polchinski, and Sully (2013),
based on earlier ideas by Mathur (2009), strongly suggests that this failure of
QFT is not simply some kind of long-range effect but completely invalidates the
semiclassical description of the black hole interior.

5.2 Firewalls

The firewall paradox can be stated in various more-or-less precise ways (see,
e. g. , Bousso (2013), Harlow (2016, section 7), Polchinski (2016, section 6),
Susskind (2012), as well as the original sources above), but in essence it works
like this. Consider some photon mode B (more accurately: a wavepacket con-
centrated on some such mode) describing photons emitted well after the Page
time. That mode will be in a thermal state at the appropriate-time black hole
temperature. We now have two apparently-contradictory claims:

1. According to a QFT description, B is fully entangled with some mode B̃
just inside the event horizon.

2. According to black hole statistical mechanics, B is fully entangled with
the early-time radiation emitted by the black hole.

No quantum state can be fully entangled with two different systems (sometimes
called ‘monogamy of entanglement’), so this seems close to a contradiction. We
might hope to finesse this by remembering the idea of complementarity — that
the same underlying physics can be described in radically different ways, so that
the system has one valid description where B is entangled with an interior mode,
and one where it is entangled with early-time radiation. But as Almheiri et al
point out, in principle (though not in practice; cf Harlow and Hayden 2013) an
observer could

1. Collect all the radiation emitted from the black hole up to the Page time;

2. Carry out a complicated operation on that radiation to distil a single
photon mode C that is fully entangled with B;

3. Linger close to the event horizon, and perform a joint measurement on B
and C (more precisely, on many such pairs B1, C1 . . . BN , CN ) to verify
their entanglement;

4. Jump into the black hole.

Assuming that the observer’s own local physics can be consistently described
by quantum mechanics, they can’t consistently find B to be entangled with B̃;
indeed, B + B̃ must be in a product state. This directly contradicts the QFT
assumptions underpinning Hawking radiation, and so undermines the basis of
at least some of the arguments for Hawking radiation which got black hole
statistical mechanics going in the first place. (Anecdotally it seems to be a
matter of dispute in the physics community to what extent the derivation of
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Hawking radiation is undermined by the firewall argument.) More dramatically,
complete distentanglement of QFT modes across the event horizon corresponds
to a Planck-scale wall of energy at the horizon — the ‘firewall’ — that seems
physically inexplicable and quite at odds with the general-relativistic idea of an
event horizon as a globally-defined, locally-inaccessible phenomenon.

The firewall paradox is only five years old at time of writing, and it would
be premature to try to summarise, far less assess, the wide variety of different
responses that have been offered (see Harlow (2016, section 8) for a partial
review). But it has roiled the community, disrupted what had been a fairly
solid consensus in favour of black hole complementarity, and thrown the theory
of the black hole interior wide open.

6 Conclusion

Thus we find ourselves in the enviable situation of having an inter-
esting problem with no really satisfying answer; if we are lucky this
means that we will learn something deep.

Daniel Harlow3

The black hole information paradox, understood in its most powerful form,
is a clash between the unitary description of Hawking radiation implied by
statistical-mechanical models of the black hole horizon, and the non-unitary
description given by quantum field theory. It is neither a foolish failure by
physicists to appreciate the subtleties of non-globally-hyperbolic spacetimes,
nor something harmlessly resolved by AdS/CFT duality (the latter, at most,
gives us reason to expect the ultimate resolution to be unitary). It is a deep
puzzle arising from enormously-plausible yet apparently-contradictory lines of
reasoning within quantum gravity, and at present it is completely opaque how
it is to be resolved.

This is a good thing. There are very few obvious empirical clues as to
the nature of quantum gravity; in their place, the best we have are the highly
demanding and often unexpected consistency constraints given by the internal
structure of lower-energy physics. We have learned much about the form of any
satisfactory quantum theory of gravity by trying to satisfy those constraints; as
and when we find a satisfactory resolution to the information-loss paradox, we
will have learned still more.
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