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Abstract

The technique of imaging was first introduced by Lewis (1976), in order to pro-

vide a novel account of the probability of conditional propositions. In the intervening

years, imaging has been the object of significant interest in both AI and philosophy,

and has come to be seen as a philosophically important approach to probabilistic

updating and belief revision. In this paper, we consider the possibility of generalising

imaging to deal with uncertain evidence and partial belief revision. In particular,

we introduce a new logical criterion that any update rule should satisfy, and use

it to evaluate a range of different approaches to generalising imaging to situations

involving uncertain evidence. We show that none of the currently prevalent ap-

proaches to imaging allow for such a generalisation, although a lesser known version

of imaging, introduced by Joyce (2010), can be generalised in a way that mitigates

these problems.

1 Introduction

Standard Bayesian epistemology tells us that upon learning some new piece of

evidence, E, a rational agent should update their beliefs via Bayesian conditionalisa-

tion, i.e. P1(A) = P0(A|E) should hold for any other proposition A (where P0 is the

probability distribution representing the agent’s prior belief state, and P1 represents

their belief state after learning E).1 The alternative technique of Imaging was first

introduced by Lewis in his seminal Probabilities of Conditionals and Conditional

Probabilities (Lewis, 1976). Its introduction was motivated mainly by the need for a
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new account of the probability of conditionals. In particular, Lewis’s famous trivial-

ity results are often taken to show the untenability of ‘Adam’s thesis’, which states

that for any conditional proposition A → B, we should set P (A → B) = P (B|A),

i.e. the probability of the conditional is the conditional probability of the conse-

quent given the antecedent. Lewis considered the possibility that when assessing

the probability of a conditional, we should not conditionalise on the antecedent, but

rather we should ‘image’ on it. Before we see the definition of ‘imaging on A’, we

briefly introduce some formal notation.

W will denote the set of possible worlds, and WA will denote the subset of W

that satisfies A (for any sentence A). µ will denote a ‘measure’ on the powerset

P(W ) that assigns a weight µ(X) ∈ [0, 1] to each subset X ⊆ W . We require that∑
w∈W µ({w}) = 1 and µ(X) + µ(Y ) = µ(X

⋃
Y ) whenever X

⋂
Y = ∅. We then

set P (A) =
∑
w∈WA

µ(w) (it is easy to see that P will be probabilistic). Finally,

for any sentence A and any world w, σ(A,w) is defined to be the closest possible

world to w at which A holds (where ‘closest’ is defined by a similarity relation

S : W ×W → [0, 1]).2 For now, we assume that σ(A,w) picks out a single closest

A-world, for each w. We define the result of ‘imaging on A’ as follows,

µA(w) =


µ(w) +

∑
w′∈W¬A|w=σ(A,w′)

µ(w′), if w ∈WA

0, if w ∈W¬A.

The idea is that, when we learn A, we should update our probability assignment by

transferring the probability of each ¬A-world to the closest A-world. As Lewis puts

it:3

“Intuitively, the image on A of a probability function is formed by shifting

the original probability of each world w over to σ(A,w), the closest A-

world to w. Probability is moved around, but not created or destroyed,

so the probabilities of worlds still sum to 1. Each A-world keeps whatever

probability it had originally, since if w is an A-world then σ(A,w) is w

itself, and it may also gain additional shares of probability that have been

shifted away from ¬A worlds. The ¬A worlds retain none of their original

probability and gain none. All the probability has been concentrated

on the A-worlds. And this has been accomplished with no gratuitous

movement of probability. Every share stays as close as it can to the

world where it was originally located.” (Lewis (1976): 310–311)

It’s easy to see4 that imaging and Bayesian conditionalisation can give very different

answers as to how an agent should update their epistemic state in the face of new

2Intuitively, the similarity relation measures the similarity between pairs of worlds in W .
3We have edited the formal notation in the quote so that it accords with our own.
4Lewis gives the following example. Let µ0(w1) = µ0(w2) = µ0(w3) = 1/3. Let A hold at w1 and

w2, but not at w3, and let w2 be the closest A world to w3. Then, while conditioning on A would give
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evidence. However, both approaches can claim to provide the ‘minimal’ revisions to

the original probability functions that satisfy the new constraints implied by learning

A. Thus, we read:

“Imaging P on A gives a minimal revision in this sense: unlike all other

revisions of P to make A certain, it involves no gratuitous movement of

probability from worlds to dissimilar worlds. Conditioning on A gives a

minimal revision in this different sense: unlike all other revisions of P

to make A certain, it does not distort the profile of probability ratios,

equalities and inequalities among sentences that imply A.” (Lewis (1976):

311)

Since its introduction, imaging has gone on to be used in a variety of contexts,

both technical and philosophical. For example, Joyce (2008) and Lewis (1981) use

general imaging (a variation on the ‘standard’ form of imaging that will be in-

troduced later) to formulate key aspects of causal decision theory, Cozic (2011)

proposes a solution to the Sleeping Beauty problem by replacing conditionalisation

with imaging, artificial intelligence researchers have used imaging to address fun-

damental problems in the field of information retrieval (Crestani, 1998), Leitgeb

(2016) recently applied imaging to probabilistic judgement aggregation, and there

are even empirical studies suggesting that (general) imaging is the best current for-

mal model of the way that people actually go about updating their belief states

in the face of new evidence (Baratgin & Politzer, 2011). Cumulatively, this looks

like sufficient grounds for taking imaging seriously as an approach to probabilistic

updating. However, it has been argued (see e.g. chapter 6 of Joyce (2008)) that

imaging rules are fundamentally different to the updating mechanisms of Bayesian

epistemology, in the sense that they are not genuinely ‘evidential’, i.e. they do not

preserve the antecedently known evidence. Proponents of this kind of view typi-

cally construe imaging as a method for counterfactual belief revision. While it is

impossible to conditionalise on a proposition that we know to be false (because the

corresponding conditional probability is undefined), it is possible to image on an

event that we know to be false. So imaging allows us to determine what we would

believe under the counterfactual supposition that a false proposition is true. Here,

we remain agnostic about whether or not imaging rules can only be used to model

counterfactual belief revision. Certainly, the extant philosophical applications of

imaging have gone far beyond counterfactual belief revision, and Lewis and Stal-

naker both treated imaging as a potential approach to evidential updating. But the

considerations discussed here will be of significant interest regardless of whether one

restricts the use of imaging rules to counterfactual belief revision or allows for their

use as evidential updating rules.

us the posterior distribution µ1(w1) = µ1(w2) = 1/2, imaging on A would give us µ1(w1) = 1/3 and

µ1(w2) = 2/3.
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In what follows, we will study how imaging deals with one of the basic problems

facing any probabilistic updating or belief revision rule, namely, the problem of

generalising the rule to deal with uncertain evidence. In Section 2, we introduce a

new criterion that any such generalisation should satisfy, and show that some well

known rules (Jeffrey conditionalisation and Leitgeb-Pettigrew updating) from the

literature satisfy this criterion. In Section 3, we present a range of new formal results

concerning the possibility of extending imaging to uncertain evidential contexts in a

way that satisfies the criterion. Section 4 considers the implications of these results

and concludes.

2 Updating on Valid Arguments

Let Γ ` φ be a valid argument scheme. Usually, we describe this as meaning

that there is no possible world where Γ is true and φ is false, i.e. every Γ-world is

a φ-world. Now let’s suppose that I have some prior belief state represented by the

probability distribution P0. It seems very natural to require that, upon learning the

evidence Γ, my belief in φ should go to 1. And indeed, it is a standard result (see

chapter 3 of Adams (1996)) that this is the case if one updates by conditionalisation.

However, we are more interested in the general case where our belief in Γ increases

without going to 1, i.e. where we only have the constraint that P1(Γ) ≥ P0(Γ). The

idea is that we should require, for any update rule, that in this situation P1(φ) ≥
P0(φ) is guaranteed. The motivation is fundamentally the same as in the special case

where P1(Γ) = 1, i.e. since the truth of Γ guarantees the truth of φ, learning that Γ is

more likely to be true than we previously thought should guarantee a corresponding

increase in the probability of φ being true. This gives us the following criterion:

Definition 1 (Validity Criterion (VC)) Let Γ → φ be an instance of a valid

argument scheme, and let P0 be our prior probability distribution. If R is our

update rule and we learn the evidence Γ with probability γ ≥ P0(Γ)5, then the result,

P1, of updating P0 according to R should guarantee that P1(φ) ≥ P0(φ).

We know that valid arguments lead us from true premises to true conclusions, which

means that certainty about the premises should guarantee certainty about the con-

clusion. But it seems clear that we also want to be able to use valid arguments

to support conclusions based on uncertain premises. Indeed, if this were not the

case, one could reasonably ask “What is the value of logical validity if we are in

the business of making inferences with uncertain premises?”. Given the ubiquity of

arguments based on uncertain premises in both scientific and everyday reasoning,

5Whenever Γ is a set of more than one formulae, we use P (Γ) to denote the probability of the

conjunction of all the formulae in Γ.
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this is an important question, and VC ensures that we are able to answer it satis-

factorily. We now show that VC is satisfied by two of the most important update

rules from the current literature.

2.1 VC and Jeffrey Conditionalisation

Jeffrey conditionalisation is the natural extension of standard Bayesian condi-

tionalisation to situations involving uncertain evidence. Specifically, if we learn some

new evidence E with probability e, then the posterior probability of any proposition

A after Jeffrey conditionalisation (henceforth JC) on E is defined to be

P1(A) = P0(A|E)P1(E) + P0(A|¬E)P1(¬E)

= P0(A|E) e+ P0(A|¬E) (1− e) .

It is easy to see that, in the case where e = 1, this reduces to standard condition-

alisation. JC is by far the most popular rule for updating in the face of uncertain

evidence, and we take it to be one of the strongest arguments in favour of Bayesian

conditionalisation that it generalises so naturally to uncertain contexts. The fol-

lowing result adds to the already substantial body of considerations supporting the

adoption of JC as one’s updating rule for uncertain propositional evidence. (All

absent proofs are in the Appendix.)

Proposition 1 JC satisfies VC.

2.2 VC and Leitgeb-Pettigrew Updating

Leitgeb-Pettigrew updating (LP) was first introduced in Leitgeb & Pettigrew

(2010), as the unique update rule that maximises diachronic accuracy (as measured

by the Brier score). Specifically, if we learn some new evidence E with probability

e, LP requires us to update our epistemic state in the following way, where µ1 is

the new measure obtained by applying LP to µ:

µ1(w) =

µ(w) + αE , if w ∈WE

max{µ(w)− α¬E , 0}, if w ∈W¬E ,

where αE and α¬E are the unique real numbers such that∑
w∈WE

(µ(w) + αE) = e

∑
w∈W¬E |µ(w)−α¬E>0

(µ(w)− α¬E) = 1− e.

LP has a much shorter history than JC, and is correspondingly less well known.

Its independent justification by arguments from accuracy certainly count in its
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favour, but it has already been subjected to criticism concerning the effect it has

on the likelihood ratios between propositions (see Levinstein (2012)). However, the

following result adds to the rule’s plausibility.

Proposition 2 LP satisfies VC.

3 Imaging Uncertainty

3.1 Standard Imaging

We’ve seen that the generalisation of conditionalisation to uncertain evidence

satisfies our new criterion. The challenge for the proponent of imaging as an evi-

dential update rule is to find a similar generalisation of imaging that also satisfies

VC. First, we note that there is no problem in the special case where we learn the

evidence with certainty. Standard imaging is able to distinguish between valid and

invalid arguments in the special case where we learn the premises with certainty.

But of course we are more interested in the general case where, instead of learning

the premises Γ with certainty, we get some non-maximal increase in the probability

of Γ. Before we can consider this more general case, we need a new form of imaging

that allows us to have 1 > P1(Γ) ≥ P0(Γ). This is something that will require a fairly

different approach, since standard imaging is only defined for the case where we learn

the premises with certainty. Luckily, such an approach already exists (it was first

defined in Sebastiani (1998)). In particular, there is a form of imaging known as

‘Jeffrey Imaging’ (inspired by Jeffrey conditionalisation) that allows us to update on

uncertain evidence. It’s defined below, where P ∗Γ is the new probability distribution

obtained by Jeffrey imaging (JI) on Γ, P ∗(Γ) is the new probability constraint that

reflects our new level of confidence in Γ and µΓ is the measure obtained by standard

imaging on Γ.

P ∗Γ(φ) =
∑
w∈Wφ

(µΓ(w)P ∗(Γ) + µ¬Γ(w)P ∗(¬Γ))

Phrased in terms of the measure on the possible worlds, this gives

µ∗Γ(w) = µΓ(w)P ∗(Γ) + µ¬Γ(w)P ∗(¬Γ).

Clearly, JI is to imaging what JC is to conditionalisation. In the special case

where P ∗(Γ) = 1, JI reduces back to standard imaging, which makes JI the obvious

generalisation of imaging to uncertain contexts. Furthermore, JI appears to be the

only such generalisation currently on the market, which makes its plausibility all

the more crucial for those who advocate imaging as an evidential updating rule.

Note that JI can also be used to generalise the counterfactual belief revision

method given by standard imaging. For, under the standard interpretation, imaging
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on a proposition A that we are certain is false tells us what it would be rational

to believe under the counterfactual supposition that A is true. Thus, imaging tells

us what a rational agent would believe if their degree of belief in A were different

than it actually is (i.e. if it were 1 rather than 0). But this can be generalised in

an obvious way. Rather than simply asking what the agent would believe if their

degree of belief in A were 1 rather than 0, we could likewise ask what they would

believe if their degree of belief in A were a rather than 0, where a ∈ (0, 1). This is

a philosophically rich and interesting question, which has already been the subject

of debate in the belief revision literature (see e.g. Lin & Kelly (2013)). And JI

provides a natural answer that is obtained by generalising the full counterfactual

belief revision given by standard imaging. Furthermore, it seems that VC should

still be taken as a strong normative restriction on generalised counterfactual belief

revision of this kind. For, it seems natural to require of any rational agent that, were

they to be more confident of the premises of a valid argument than they actually

are, they would also be more confident in the conclusion of that argument. Again,

the motivation is the same as before. The premises guarantee the truth of the

conclusion, and so it would seem strange to deny that, were a rational agent to

become more confident of the premises, they would also become more confident

of the conclusion. So regardless of whether one views imaging as a counterfactual

belief revision method or a full blown evidential updating rule, it seems that VC

should act as a normative constraint on any generalisation of imaging to uncertain

evidence/generalised belief revision. Unfortunately, we have the following result:

Proposition 3 JI, as defined above, doesn’t generally satisfy VC.

Proof To see this, let’s consider the example of modus ponens, i.e. Γ = {A →
B,A}, φ = B, W = {w1, w2, w3, w4} where w1 = {A,B}, w2 = {A,¬B}, w3 =

{¬A,B}, w4 = {¬A,¬B}. Here, it is clear that σ(Γ, w2) = σ(Γ, w3) = σ(Γ, w4) =

w1 (since WΓ = {w1}). However, there are two possibilities for σ(¬Γ, w1), since both

w2 and w3 satisfy ¬Γ, and they both differ from w1 by one truth value. Now, suppose

we choose the case where σ(¬Γ, w1) = w2. In this case (setting α = P ∗(Γ)−P0(Γ)),

we have that

P ∗Γ(φ) = µ∗Γ(w1) + µ∗Γ(w3)

= µΓ(w1)P ∗(Γ) + µ¬Γ(w3)P ∗(¬Γ)

= P ∗(Γ) + µ¬Γ(w3)P ∗(¬Γ)

= P ∗(Γ) + µ(w3)P ∗(¬Γ) (since σ(¬Γ, w1) = w2)

= µ(w1) + α+ µ(w3) (1− µ(w1)− α)

= µ(w1) + α+ µ(w3)− µ(w1)µ(w3)− αµ(w3).

So, since P0(φ) = µ(w1) + µ(w3), we know that

P ∗Γ(φ)− P0(φ) = α− µ(w1)µ(w3)− αµ(w3),
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which is clearly negative for large values of µ(w3) and small values of α.

So, we’ve seen that, in its current form, JI fails to satisfy our new criterion.

Now, the obvious way to fix the problem is to require, in the above example, that

σ(¬Γ, w1) = w3, since this implies that

P ∗Γ(¬φ) = µ∗Γ(w2) + µ∗Γ(w4)

= µ¬Γ(w2)P ∗(¬Γ) + µ¬Γ(w4)P ∗(¬Γ)

= µ(w2)P ∗(¬Γ) + µ(w4)P ∗(¬Γ) (since σ(¬Γ, w1) = w3)

≤ µ(w2) + µ(w4)

= P (¬φ).

But of course, the key assumption that σ(¬Γ, w1) = w3 looks ad-hoc and unjustified.

What’s more, this assumption guarantees that the argument works for any value of

α. Indeed, α could even have been negative and the probability of φ would still have

been guaranteed not to decrease. So as well as being ad-hoc, this assumption seems

to trivialise the evidential relationship between the conclusion and the premises of

valid arguments. This looks like a fundamental problem for JI.6

3.2 General Imaging

We can now consider another possible amendment to JI that one might hope

would allow it to satisfy the criterion. The technique of standard imaging has

been generalised (Gardenfors, 1982) to allow for cases where σ(Γ, w) can be a set of

worlds, instead of just a single world. Specifically, the technique of ‘general imaging’

is defined as follows. First, for any pair of worlds w,w′ and any proposition E, we

define the value TE(w′, w) ∈ [0, 1] (satisfying
∑
w′∈W TE(w,w′) = 1). Intuitively,

TE(w,w′) tells us what percentage of µ(w) will be transferred to w’ after we image

on E. In the case where w |= E, we will have TE(w,w′) = 0 for any w′ 6= w, and

TE(w,w) = 1. Similarly, we can view standard imaging as the special case where,

for any E and any w, there exists exactly one w′ such that TE(w,w′) = 1, and

TE(w,w′′) = 0 for any other w′′. But we are more interested in the general case

where there can exist w′ 6= w′′ such that TE(w,w′) > 0, TE(w,w′′) > 0. Then, we

can set

µE(w) =


µ(w) +

∑
w′∈W¬E |w∈σ(E,w′)

µ(w′)TE(w′, w), if w |= E

0, if w |= ¬E

6It should also be noted that the proof of Proposition 3 assumed very little about the semantics of the

conditional. For, it seems entirely uncontroversial, under any account of the semantics of conditionals,

that w1 is the only one of the four worlds according to which both A→ B and A hold. We also take it

to be uncontroversial that w2 violates A→ B. And this is all that is assumed in the proof.
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This is the formal definition of ‘general imaging’. Now, as with standard imaging,

we can use this definition to define a direct analogue of JC. In particular, we define

JI in exactly the same way as before,

µ∗Γ(w) = µΓ(w)P ∗(Γ) + µ¬Γ(w)P ∗(¬Γ).

But here, it is understood that µΓ denotes the result of general imaging on Γ,

rather than standard imaging. Now, we can look again at the question of whether

JI satisfies VC. Let’s start by recalling the case of modus ponens. The situation

looks more hopeful this time since we don’t need to transfer all of the probability

from w1 to exactly one of w2, w3 (we’ve already seen that either of these choices is

unsatisfactory) when we image on ¬Γ. Rather, we can now spread the probability

between w2 and w3 however we like. One natural idea here is to adopt the following

principle:

Definition 2 Worldly Indifference (WI) Let w ∈W , and let Γ be some non-empty

set of propositions such that w |= Γ. Then,

µΓ(w) = µ(w) +
∑

w′∈W |w∈σ(Γ,w′)

µ(w′)

|σ(Γ, w′)|
.

That is, we require that the weight of any non-Γ world gets distributed evenly

across all of the maximally similar Γ worlds when we image on Γ. In the current

case of modus ponens, this requires that µ¬Γ(w3) = µ(w1)/2 + µ(w3) and that

µ¬Γ(w2) = µ(w1)/2 + µ(w2), i.e. TE(w1, w2) = TE(w1, w3) = 0.5. Before we go on

to see what effect this assumption has on JI’s relation to VC, it’s worth noting that

it looks very intuitive from a philosophical perspective. At first blush, there is no

obvious reason why either w2 or w3 should gain the lion’s share of w1’s probability.

They are both equally similar worlds (from w1’s perspective) that are compatible

with the proposition that we’re imaging on (¬Γ). However, we have the following

result:

Proposition 4 Assuming WI, JI does not satisfy VC.

Now, one might want to play around with variations of WI to see if there is

some other way of distributing the probability of w1 so that VC isn’t violated. We

now present a general result about the possibility of such variations.

Theorem 1 There is no general imaging rule that allows for the satisfaction of VC

by JI.

So JI violates VC for both standard and general imaging. At this stage, JI looks

dead in the water as a strategy for extending imaging to updating in uncertain

evidential contexts or performing generalised counterfactual belief revision of the
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type described in Section 3.1. However, there is another alternative that we’ve not

yet considered. In particular, recall the assumption WI. The form of imaging defined

by this assumption has actually already been considered in the literature (Joyce

(2010) refers to it as ‘Laplacian Imaging’). Now, Laplacian imaging actually bears

a very close resemblance to LP.7 Indeed, it is easy to see that Laplacian imaging

coincides with LP when the evidence is certain and we assume that the similarity

relation is the trivial maximal relation,8 i.e. σ(Γ, w) = WΓ for any w ∈W¬Γ. Letting

w ∈WΓ, we get

µΓ(w) = µ(w) +
∑

w′∈W |w∈σ(Γ,w′)

µ(w′)

|σ(Γ, w′)|

= µ(w) +
∑

w′∈W¬Γ

µ(w′)

|WΓ|

= µ(w) +
P0(¬Γ)

|WΓ|

= µ(w) +
α

|WΓ|
.

This is exactly the same result we obtain with LP (and by definition, any w ∈W¬Γ is

given a weight of 0 by both µΓ and LP). So, under these restrictive assumptions, LP

can be seen as a generalisation of Laplace imaging to uncertain evidential contexts.

Furthermore, since we’ve already seen (Proposition 2) that LP satisfies VC, we

can claim to have succeeded in finding a generalisation of imaging to uncertain

situations that satisfies our criterion. However, a key part of the original motivation

for imaging has been sacrificed here. In particular, the original argument that Lewis

used to justify imaging was that it involved ‘no gratuitous movement of probability

from worlds to dissimilar worlds’. But this justification is no longer applicable if

we adopt the present strategy, since the present strategy essentially requires us to

surrender any meaningful notion of similarity between worlds. Of course, this is

likely to be unsatisfactory for the advocate of imaging. So we take it that LP

can be discounted as a viable candidate for generalising imaging in the desired way.

However, there is one final alternative form of imaging that we’ve not yet considered.

3.3 Proportional Imaging

Joyce (2010) introduces yet another form of imaging. In particular, working

in the framework of general imaging where σ(Γ, w) can have multiple elements, he

7This is noted in chapter 15 of Pettigrew (2016).
8To see that this assumption is necessary, consider the following example. Let WΓ = {w1, w2, w3}

and W¬Γ = {w4}. Then, if µ(w1) = µ(w2) = µ(w3) = 0.1, µ(w4) = 0.7, σ(Γ, w4) = {w1, w2} and we

learn Γ with certainty, then it’s easy to see that Laplace imaging gives us µΓ(w1) = µΓ(w2) = 0.45,

µΓ(w3) = 0.1, and µΓ(w4) = 0, whereas updating with LP gives us µ1(w1) = µ1(w2) = µ1(w3) = 1/3,

which is what Laplacian updating would give if σ(Γ, w4) = WΓ held.
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suggests that we define (where ¬w |= E)

TE(w,w′) :=


µ(w′)∑

w′′∈σ(E,w)

µ(w′′) , if w′ ∈ σ(E,w)

0 if w′ /∈ σ(E,w)

i.e. the amount of w’s probability that gets transferred to any of the closest E-

worlds after imaging on E will be proportional to the prior probability of those

worlds. Note that this approach is fundamentally different to the form of general

imaging we defined above, where we assume that TE(w,w′) is always independent of

µ(w′). We will call this new form of general imaging ‘proportional Imaging’. Joyce

gives the following justification for proportional imaging as opposed to the other

forms of general imaging,

“. . . it now seems obvious that imaging must involve the combined effects

of judgments of similarity among worlds and prior probabilities. When

the information about similarity runs out and an imager is left with a non-

trivial set of E-worlds that are most like w, she still has excellent reasons

for treating some worlds in this set differently from others.After all, she

began by regarding some worlds in the set as more likely than others,

and her evidence has not changed. Imaging should thus be Bayesianized,

so that probabilities are spread over sets of ‘most similar’ worlds in a way

that preserves the imager’s prior beliefs.” (Joyce, 2010)

Consider the following example. Ettie is wondering what’s for dinner. She knows

that she will either have rice or chips in her meal. She also knows that there are two

possible situations if she’s going to have chips: either she will have fish and chips, or

she will have tofu and chips, but fish with chips is much more likely (since tofu and

chips is a bit strange). For simplicity, let’s say there is only one possible situation

where she gets rice (where she has rice and beans for dinner), and this situation

is, in her humble opinion, equally similar to each of the two situations where she

gets chips. Now, suppose she sees her dad pealing some potatoes, so she knows that

she will be having chips for dinner, not rice. As a staunch advocate of probabilistic

imaging, she will now transfer all the prior probability stored in the rice world to the

two chip worlds. How should she do this? According to Joyce, she should transfer

the majority of the probability of the rice-world to the fish-and-chip-world, since this

is by far the more likely of the two chip worlds. Otherwise, she would risk distorting

the ratio of the probability of her getting fish and chips compared to the probability

of her getting tofu and chips.

To illustrate, suppose she has good reasons for believing that fish and chips is

twice as likely as tofu and chips, and suppose that the probability of the rice world

is 0.4, so µ(TC) = 0.2, µ(FC) = 0.4, µ(R) = 0.4. Then, according to Laplacian

imaging, the new evidence would require her to add 0.2 to each of µ(TC), µ(FC)

to get the posterior probabilities of those worlds, µ1(TC) = 0.4 and µ1(FC) = 0.6.
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But then µ1(TC) 6= µ1(FC)/2. So Ettie no longer thinks that fish and chips is

twice as likely as tofu and chips, which seems wrong, given that she hasn’t learned

anything about the comparative probabilities of these two events. Whereas if she

uses Joyce imaging, she will get

µ1(TC) = µ(TC) +
µ(R)µ(TC)

µ(TC) + µ(FC)
= 1/3

µ1(FC) = µ(FC) +
µ(R)µ(FC)

µ(TC) + µ(FC)
= 2/3,

i.e. µ1(TC) = µ1(FC)/2, i.e. Ettie has successfully updated her probabilities

without unnecessarily compromising the probability ratios of her prior beliefs. This

kind of example makes Joyce’s arguments on the previous page look very convincing.

However, one might be tempted to ask whether this ‘Bayesianisation’ of imaging

does not render the approach equivalent to standard conditionalisation. The follow-

ing example shows that this is not the case. Let WA = {w1, w2}, W¬A = {w3} and

WB = {w1, w3}. Then, if we learn the evidence A and update by conditionalisation,

our posterior probability for B will be

P1(B) = P0(B|A) =
P0(A ∧B)

P0(A)

=
µ(w1)

µ(w1) + µ(w2)
.

But now, let’s assume that we have a similarity relation such that σ(A,w3) = {w1}.
Then, according to Joyce imaging, we get

P1(B) = µA(w1)

= µ(w1) +
µ(w1)µ(w3)

µ(w1)
= µ1 + µ3 .

Clearly, the two answers are very different here, and this difference is determined

completely by the choice of similarity relation. Just as LP can be seen as the limit

case of Laplacian imaging where the similarity relation is trivial, conditionalisation

can be seen as the limit of proportional imaging when we assume an indiscriminate

similarity relation. When the similarity relation is non-trivial, we will no longer be

guaranteed to preserve probability ratios, because we will be more concerned with

ensuring that there is ‘no gratuitous movement of probability from worlds to dis-

similar worlds’. But proportional imaging (unlike Laplacian imaging, for example)

still has the advantage that, when these two desiderata are jointly satisfiable, it will

satisfy them both. Furthermore, we will now show that proportional imaging can be

generalised to deal with uncertain evidence in a way that avoids at least some of the

issues described in previous sections. Recall that both standard and general imaging

violated VC even for the simple case of modus ponens, and even once one allows
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for the world w1 to have two closest worlds. This is not the case for proportional

imaging.

Proposition 2 Let W , Γ, φ be as in the proof of Proposition 3 and suppose that

σ(¬Γ, w1) = {w2, w3}. Then assuming proportional imaging, using JI to increase

the probability of Γ will never lead to a decrease in the probability of φ.

So proportional imaging succeeds where standard and general imaging failed.

Given a suitable similarity relation (i.e. one that includes w3 amongst the closest

worlds to w1), increasing the probability of the premises of a modus ponens argument

will never lead to a decrease in the probability of the conclusion. This result is

an instance of a more general property of proportional imaging, captured by the

following result.

Theorem 3 Let Γ → φ be an instance of a logically valid argument scheme and

let W be such that for any w ∈ WΓ, there exists some w′ ∈ W¬Γ∧φ such that w′ ∈
σ(¬Γ, w). Then assuming proportional imaging, using JI to increase the probability

of Γ will never lead to a decrease in the probability of φ.

Theorem 3 guarantees that, assuming proportional imaging, JI will always satisfy

VC except for in cases where there exists a world w that satisfies the premises of a

valid argument but is such that all the closest worlds to w at which the premises are

false are also worlds at which the conclusion of the argument fails to obtain. Thus,

although JI does not satisfy the validity criterion VC in full generality, we have

at least identified the exact conditions under which the criterion can be violated.

Whereas other forms of imaging will force JI to violate VC in an unconstrained and

ubiquitous way, proportional Jeffrey imaging will only violate VC in special cases

where the similarity relation somehow overrides the evidential relationship between

the premises and conclusions of valid arguments.

4 Conclusion

In summary, we considered the problem of generalising imaging to deal with

uncertain evidential contexts and partial belief revision. We saw that the most

natural such generalisation of the best known forms of imaging from the literature

violated an intuitive logical criterion in a radical way. We then proved that a lesser

known form of imaging (proportional imaging) is better able to satisfy this criterion,

although there are still special cases in which the criterion is violated. We hope to

investigate these cases in further detail in future work. More generally, the results

presented here elucidate a number of important and hitherto neglected structural

features of imaging rules and illustrate the obstacles and possibilities facing those
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who are interested in generalising imaging to uncertain evidential contexts and/or

partial belief revision.
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A Appendix: Proofs

A.1 Proposition 1

Let Γ ` φ be a valid argument scheme, and suppose we learn Γ with probability

P ′(Γ) ≥ P (Γ), and let α = P ′(Γ)− P (Γ). Then,

P ′(φ) = P (φ|Γ)P ′(Γ) + P (φ|¬Γ)P ′(¬Γ)

=
P (φ ∧ Γ)

P (Γ)
P ′(Γ) +

P (φ ∧ ¬Γ)

P (¬Γ)
P ′(¬Γ)

= P ′(Γ) +
P (φ ∧ ¬Γ)

P (¬Γ)
P ′(¬Γ)

= P (Γ) + α+

(
P (φ ∧ ¬Γ)

P (¬Γ)

)
(P (¬Γ)− α)

= P (Γ) + α+ P (φ ∧ ¬Γ)− αP (φ ∧ ¬Γ)

P (¬Γ)
.

So,

P ′(φ)− P (φ) = P ′(φ)− P (Γ)− P (φ ∧ ¬Γ)

= P (Γ) + α+ P (φ ∧ ¬Γ)− αP (φ ∧ ¬Γ)

P (¬Γ)
− P (Γ)− P (φ ∧ ¬Γ)

= α− αP (φ ∧ ¬Γ)

P (¬Γ)

≥ α− αP (¬Γ)

P (¬Γ)

= 0.

A.2 Proposition 2

Let Γ ` φ be a valid argument scheme, and suppose we learn Γ with probability

P1(Γ) ≥ P0(Γ) Again, we set α = P1(Γ)− P0(Γ). Then, we have that

P1(φ) = P1(Γ) + P1(¬Γ ∧ φ)

= P0(Γ) + α+ P1(¬Γ ∧ φ).
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Note that α = αΓ|WΓ|, and α ≥ α¬Γ|{w ∈ W¬Γ|µ(w) − α¬Γ > 0}|. Thus, we have

that

P1(φ)− P0(φ) = P0(Γ) + α+ P1(¬Γ ∧ φ)− P0(Γ)− P0(¬Γ ∧ φ)

= α+ P1(¬Γ ∧ φ)− P0(¬Γ ∧ φ)

= α+
∑

w∈W¬Γ|µ(w)−α¬Γ>0

(µ(w)− α¬Γ − µ(w))

= α− α¬Γ|{w ∈W¬Γ∧φ|µ(w)− α¬Γ > 0}|

≥ α− α¬Γ|{w ∈W¬Γ|µ(w)− α¬Γ > 0}|

≥ 0.

A.3 Proposition 4

In particular, sticking with the modus ponens example, let’s assume the following

initial setup: µ(w1) = 0.1, µ(w2) = 0.05, µ(w3) = 0.8 and µ(w4) = 0.05 (and hence

P0(Γ) = 0.1) with the following constraints: P ∗(Γ) = 0.11 and P ∗(¬Γ) = 0.89.

Then, we have that P0(φ) = µ(w1) + µ(w3) = 0.9 and

P ∗Γ(φ) = µ∗Γ(w1) + µ∗Γ(w3)

= µΓ(w1)P ∗(Γ) + µ¬Γ(w3)P ∗(¬Γ)

= P ∗(Γ) + µ¬Γ(w3)P ∗(¬Γ)

= P ∗(Γ) + (µ(w3) + µ(w1)/2)P ∗(¬Γ)

= 0.11 + (0.85) (0.89) = 0.8665.

Hence, P0(φ) > P ∗Γ(φ).

A.4 Theorem 1

Again, we use the example of modus ponens. First off, we let µ1 := µ(w1),

µ3 := µ(w3), α := P ∗(Γ) − P0(Γ) = P ∗(Γ) − µ1 (we know this is positive, by the

assumption that P ∗(Γ) ≥ P0(Γ)), β := µ¬Γ(w3)−µ3 (again, we know this is positive,

by the definition of imaging). Then, we want to show that

P ∗(φ)− P0(φ) ≥ 0.

Now,

P ∗Γ(φ)− P0(φ) = µ∗Γ(w1) + µ∗Γ(w3)− µ1 − µ3

= µΓ(w1)P ∗(Γ) + µ¬Γ(w3)P ∗(¬Γ)− µ1 − µ3

= P ∗(Γ) + µ¬Γ(w3)P ∗(¬Γ)− µ1 − µ3

= µ1 + α+ (µ3 + β) (1− µ1 − α)− µ1 − µ3

= α+ µ3 − µ1 µ3 − αµ3 + β − β µ1 − αβ − µ3

= α (1− µ3) + β (1− µ1)− αβ − µ1 µ3.
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Let’s define the function

f(α, β, µ1, µ3) := α (1− µ3) + β (1− µ1)− αβ − µ1 µ3 .

Now, clearly, this function is decreasing in µ1 and µ3, so to violate the inequality,

let’s set µ1 + µ3 = 1. Then, we have

f(α, β, µ1, µ3) = f(α, β, µ1, 1− µ1)

= α(1− (1− µ1)) + β(1− µ1)− αβ − µ1(1− µ1)

= αµ1 + β − β µ1 − αβ − µ1 + µ2
1

= (β − µ1)(1− α− µ1).

Clearly, the term on the right is always non-negative, since α+µ1 ≤ 1 (by definition

of α). But the term on the left will always be negative except for the case in which

µ1 = β (we know that β ≤ µ1 always holds by definition of β). So the only case

in which the probability of φ doesn’t decrease here is where µ1 = β, i.e. where we

transfer all of µ1’s probability to µ3. For any other alternative to WI, we can find

values for µ1, µ3, α that violate VC.

A.5 Theorem 3

Setting ew = {w′ ∈ W |w ∈ σ(¬Γ, w′)}, where Γ ` φ is valid, the assumption

(which we will refer to as VA) says that for any w′ ∈ WΓ, there exists some w ∈
W¬Γ∧φ such that w ∈ ew′ (of course, we don’t need to worry about the case in

which every φ world is a Γ world, since in this case the simple assumption that

P1(Γ) ≥ P0(Γ) is sufficient). Next we set

S =
∑

w∈W¬Γ∧φ

∑
w′∈ew

µ(w)µ(w′)∑
w′′∈σ(¬Γ,w′)

µ(w′′)
.

We have

P1(φ) = P1(φ ∧ Γ) + P1(φ ∧ ¬Γ)

= P1(Γ) + P1(φ ∧ ¬Γ)

= P0(Γ) + α+

 ∑
w∈W¬Γ∧φ

µ¬Γ(w)

 (1− P0(Γ)− α)

= P0(Γ) + α+

 ∑
w∈W¬Γ∧φ

µ(w) + S

 (1− P0(Γ)− α)

= P0(Γ) + α+ (P0(¬Γ ∧ φ) + S) (1− P0(Γ)− α)

= P0(Γ) + α+ P0(¬Γ ∧ φ)− P0(¬Γ ∧ φ)P0(Γ)− P0(¬Γ ∧ φ)α+ S(1− P0(Γ)− α).
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So,

P1(φ)− P0(φ) = α− P0(¬Γ ∧ φ)P0(Γ)− P0(¬Γ ∧ φ)α+ S (1− P0(Γ)− α)

= α (1− P0(¬Γ ∧ φ))− P0(¬Γ ∧ φ)P0(Γ) + S (1− P0(Γ)− α).

Clearly, this function is decreasing in P0(¬Γ ∧ φ) and P0(Γ), so setting P0(Γ) +

P0(¬Γ ∧ φ) = 1, we get,

P1(φ)− P0(φ) = αP0(Γ)− P0(¬Γ ∧ φ)P0(Γ) + S(P0(¬Γ ∧ φ)− α).

We now show that S ≥ P0(Γ). First, recall that

S =
∑

w∈W¬Γ∧φ

∑
w′∈ew

µ(w)µ(w′)∑
w′′∈σ(¬Γ,w′)

µ(w′′)
.

Let w′ ∈ Wγ . Then, by VA, we know that there exists w ∈ W¬Γ∧φ such that

w′ ∈ ew, i.e. w ∈ σ(¬Γ, w′). Furthermore, by the fact that w′ ∈ ew and the

assumption that P0(Γ) + P0(¬Γ ∧ φ) = 1, we get∑
w′′∈σ(¬Γ,w′)

µ(w′′) =
∑

w′′∈σ(¬Γ∧φ,w′)

µ(w′′) .

Now, note that

µ(w′) =

∑
w′′∈σ(¬Γ∧φ,w′)

µ(w′′)µ(w′)∑
w′′∈σ(¬Γ∧φ,w′)

µ(w′′)
.

So,

P0(Γ) =

∑
w′∈WΓ

∑
w∈σ(¬Γ∧φ,w′)

µ(w)µ(w′)∑
w′′∈σ(¬Γ,w′)

µ(w′′)
.

And, by another application of VA,∑
w′∈WΓ

∑
w∈σ(¬Γ∧φ,w′)

µ(w)µ(w′) ≤
∑

w∈W¬Γ∧φ

∑
w′∈ew

µ(w)µ(w′) .

This gives us S ≥ P0(Γ), as desired. Thus,

P1(φ)− P0(φ) ≥ αP0(Γ)− P0(¬Γ ∧ φ)P0(Γ) + P0(Γ) (P0(¬Γ ∧ φ)− α)

= 0.
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