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Abstract

This paper discusses how real-life statistical analysis/inference devi-
ates from ideal environments. More specifically, there often exist models
that have equal statistical power as the actual data-generating model,
given only limited information and information processing/computation
capacity. This means that misspecification actually has two problems:
first with misspecification around the model we wish to find, and that
an actual data-generating model may never be discovered. Thus the role
information - this includes data - plays on statistical inference needs to
be considered more heavily than often done. A game defining pseudo-
equivalent models is presented in this light. This limited information
nature effectively casts a statistical analyst as a decider in decision the-
ory facing an identical problem: trying best to form credence/belief of
some events, even if it may end up not being close to objective proba-
bility. The sleeping beauty problem is used as a study case to highlight
some properties of real-life statistical inference. Bayesian inference of
prior updates can lead to wrong credence analysis when prior is assigned
to variables/events that are not (statistical identification-wise) identifi-
able. A controversial idea that Bayesianism can go around identification
problems in frequentist analysis is brought to more doubts. This necessi-
tates re-defining how Kolmogorov probability theory is applied in real-life
statistical inference, and what concepts need to be fundamental.

1 Pseudo-equivalent models and limited infor-
mation statistics framework, or simply deci-
sion theory

To inspire later discussions, I will start from Milton Friedman’s instrumentalism
[5]. To say simply, Friedmanite instrumentalism says that a model is just an
instrument to analysis, and that how realistic assumptions are do not matter,
as long as the model is shown to have statistical powers, including predictive
powers.
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The question one can ask is when Friedmanite instrumentalism is justified. In-
stead of trying to justify Friedmanite instrumentalism on broad circumstances,
one can consider, at least theoretically, validity scope of such instrumentalism.
We will see that such philosophy of instrumentalism is necessary for many statis-
tical inferences, though possibly in ways Milton Friedman himself did not think
of. The key word for justifying Friedmanite instrumentalism is by looking at
what information available or unavailable has been traced out from statistical
analysis.
To define this rigorously, we need to define what we mean when two models
are practically equivalent. The following game is proposed to define when two
models - model C and D - are pseudo-equivalent.

Definition 1.1 (Original game: Pseudo-equivalent models, Model C and Model
D). I will define when two models - model C and D - are pseudo-equivalent by
presenting a game. Person A is the sole player of the game. A is given model
D, but it is not given model C. A is additionally given some information that
is not data points from the data-generating model. Data points, or samples,
are selected by a fair coin toss, and if head came up, model C is the chosen
data-generating model, if tail came up, model D is the chosen data-generating
model. A is then given k data points generated from the chosen data-generating
model and computation time to process k data points and some other given
information. A, after given computation time, has to guess the outcome of
the coin toss (again, it only knows that tail means Model D is the chosen
data generation model). Given the information set of A, if one can prove, with
knowledge of model C, unavailable to person A, that person A’s choice effectively
is a fair coin toss, then one can see that model C and D are pseudo-equivalent
models in terms of person A’s information set.

The definition concerns much more than consideration of required number
of samples for valid analysis. Data points that are generated by the chosen data
generation model are not only information that is available - this point will be
clear, once the sleeping beauty problem is discussed in the following section -
and information that is not a sample may be valuable for statistical inference.
Also, it may be possible that even with infinite number of data points, one
may not recover the correct data-generating model. For example, let us think
of Brownian motion under classical/Newtonian physics [3]. If we know initial
conditions of each particle in the system undergoing Brownian motion, then
under classical physics, one does not have to rely on stochastic analysis to ana-
lyze the system - the system is deterministic. However, in reality, and even not
considering the fact that classical physics is not a fundamental physics theory,
we only get limited information/attributes of ensemble of particles. The fact
that we do not have initial condition information (and also trajectories starting
from initial conditions) of each particle affects the end result of our statistical
analysis. Even with infinity of data, and even if we know the number of particles
inside the system, we will never be able to recover the trajectory model of the
system. We would have to be content with the description that effectively treats
each particle as if it follows stochastic standard Brownian motion process.
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This is further complicated by the fact that in real-life analysis, we have to get
to the right model before estimating the model. In terms of the game, one may
attempt to analyze data and information to get to some model, to help Player
A win the original game. What if a correct and unique data generation model
can be derived from analyzing infinite number of samples? I have not speci-
fied how one would learn such a model, so this is just an assumption for now.
Here, required number of samples clearly matters, but if it takes too much time
to learn a correct model even when given sufficient number of samples, then
it is certainly possible that a pseudo-equivalent model exists. That is, unless
given directly by someone else about existence of Model C, Player A may fail
to consider Model C while performing statistical analysis. Recall that in the
original game, what Player A is asked whether Model D is the data generation
model or not, not whether Model C or Model D is the correct data generation
model. When given sufficient computation time, Player A may have inferred
Model C, and realize that Model C is the correct data generation model (in case
it is), but it is possible that computation time required to reach that correct
inference is so much that this is practically impossible. In this regard, Player A
may theoretically be in the position identical to predicting the outcome of a fair
coin toss before the coin toss actually occurs, even when the coin toss already
happened.
If anyone is from the world of cryptography, one may realize that the original
game is very close to the definition of pseudo-random functions [9]. What dif-
ferentiates cryptographic case from this stochastic case is that in case of the
pseudo-random function of a particular security key, if Player A is given all
possible function input-output pairs of the function then the pseudo-random
function can be derived, along with the key, if the cryptographic system is
known. In this sense, the above original game is, in one way, a more general
game, at least under suitable extensions. Also, notice that in the example of
Brownian motion, we can consider initial conditions of particles in the system
as a key consisting of security sub-keys, with classical physics considered as an
analogue of a cryptographic system. As in the example of a pseudo-random
function, if the key is known, then one can easily resurrect the trajectory of the
system.
From now on, I will refer to this entire real-life statistical inference framework
as limited information statistics framework.

1.1 Garden of forking paths: researcher degree of freedom

The key point in the above (demonstrated especially using the concept of
pseudo-equivalent models) was that what real-life statistical analyst comes to
form is more of best credence, or belief, of events given available information,
rather than estimation to objective probability of events. When the word “cre-
dence” appears, it immediately puts statistical analyst under parts of decision
theory that discuss how to rationally set beliefs of events.
Furthermore, this inherent nature necessarily invites researcher degree of free-
dom [11]. What one is interested in not only the best estimate to some model,
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but also the best data generation model. And the model is not given free - one
has to learn the model. And data and information are, tautologically, the only
ways to improve learning of the model. This creates what one would call as
Researcher degree of freedom. To one extreme, an analyst may come to col-
lect particular types of data based on the model to improve analysis, but even
without this extreme, while selecting models, inference strategies may come to
choose different significance or other statistical tests depending on data [6]. This
researcher degree of freedom is well-known to invalidate significance tests, often
misused to support (and more appropriately, reject) some hypothesis, which
includes misspecification issues as well.
Unfortunately again, as one can see in limited information statistics framework,
we do need to search for models, along with parameters of models. While
a different model-learning process would have different consequences, some of
simplest learning ones would inevitably feature iterating over different models
and ruling out models using some statistical tests picked based on data. It sim-
ply is infeasible to stick to one particular statistical test pre-chosen, when we
really do need to search for at least a semi-true model that is pseudo-equivalent
to a true data generation model.
It does seem that instead of trying to fix the P-value significance problem and
making it work as intended, it is better if we can reduce reliance on P-value sig-
nificance analysis, and increase more of information-based analysis, and what
learning algorithms we can use to process information into inference about cre-
dence of models and their parameters, and provide theoretical bounds to accu-
racy of the algorithm to some desired level, given a true model [2]. (Significance
testing is about confidence based on the given model, not the true model, and
data.) To some extent, this is what is being done in machine learning literature.
Even significance-test-wise, one can consider learning algorithms, or more cor-
rectly a meta-algorithm that selects and combines different learning algorithms
as a learning protocol that can serve as preregistration so that valid significance
analysis can be done.
To summarize, a main take-away from this section is that limited information
statistics framework, which is how real statistical analyis often operates upon,
is essentially probabilistic/credence-belief-setting parts of decision theory. As
long as decision theory is interested in forming beliefs objectively and rationally
as possible - whatever the definitions for objective and rational are for now -
it directly connects to our needs of statistical analysis and are not distinguish-
able. credence/belief analysis of decision theory = real-life statistical
analysis
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2 Sleeping Beauty Problem, and breakdown of
Kolmogorov probability theory in decision the-
ory

In the previous sections, I described how studies of statistical analysis are most
of time effectively decision theory. Thus it is not possible to isolate paradoxes
and problems in decision theory from affecting statistical analysis. For this rea-
son, it may be worth mentioning one of so-called paradoxes in decision theory:
sleeping beauty problem.
First, note that in all of our previous sections, I assumed that statistic analysis
is about discovering objective properties. Even when “valid” models used in
statistical analysis is not the actual working of reality, these models can be de-
rived from the actual working model by tracing out information and/or imposing
information processing limit caused by computation limitation (computational
complexity).
I will maintain this spirit of objectivity in the sleeping beauty problem. While
the sleeping beauty problem [4] is about assigning “credence/belief,” which is
subjective, to events, we are searching for the most objective, or more precisely
said, rational way of assigning credence.
The description of the problem goes as follows. On Sunday, a person (intervie-
wee) in the experiment is put to sleep and a coin is tossed. If head comes up
(simply referred to as “head” from now on), she is awakened only on Monday.
If tail comes up, she is awakened on both Monday and Tuesday. For any day
that she is awakened, she is interviewed regarding her assigned credence for
head/tail at the time of the interview and given some sleeping pill that erases
memories regarding interviews and induces sleep for the interviewee. P refers to
probability as usual - or more correctly credence, but I will distinguish it from
objective probability P. I will describe the typical reasoning process, regardless
of halfer or thirder positions below.
P (Monday|tail) = p1, P (Tuesday|tail) = p2.
P (Monday&tail) = p1P (tail), P (Tuesday&tail) = p2P (tail)
P (Monday&head) = 1− P (tail).
The typical reasoning process can thus be described as assumption (at least at
the end of the reasoning process) on p1 and p2 and P (tail), with the requirement
that p1 + p2 = 1. This may be too obvious but this is an important point to
notice. For any Bayesian inference founded upon Kolmogorov probability the-
ory, as long as we give a credence prior to p1, p2 and P (tail) with p1 + p2 = 1,
a such prior will be self-consistent. (The typical thirder position [4] is about
setting p1 = p2, by some variant of principle of indifference, and by the same
logic that (via Bayes rule) p1P (tail) = 1− P (tail).)
Looking from the perspective of the interviewee, this is what she does when in-
terviewed - assigning credence prior, and looking for any signal that her Bayesian
analysis may use to update her prior to posterior. There of course is no external
signal to produce her posterior - her prior dominates analysis. Typical Bayesian
analysis can be somewhat flexible with choice of priors - though some priors are
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more efficient - because it allows for asymptotic convergence by updating using
data after the prior is set. But the interviewee clearly cannot update, and thus
prior is completely dominant.
In this regard, sleeping beauty collapses to the problem about the best way a
prior may be set in typical Bayesian analysis. And in this way, as many statis-
ticians would agree that there will be no “real” answer to the problem, one may
dismiss the problem as unanswerable.
Except, is this analytical framework really the way we should see the sleeping
beauty problem? I will argue that this is not the case. In fact, the framework
described above strips away any reference to objective information one has:
P(head) = 1/2. Also, P+(head) is either 1 or 0 after the coin toss occurs, where
P+ refers to the objective probability after the coin toss occurs.
This is where we can connect to the previous sections. The sleeping beauty
problem, in the limited information statistics framework, can be described as
follows. All other people, except the interviewee has information on P+(head),
and thus the experiment actually has no stochastic element after the coin toss
occurs. But because the interviewee does not have that information on P+, to
the interviewee its stochastic model of what happens is pseudo-equivalent to ac-
tual reality. (This of course requires some caveat: the interviewee already knows
that a particular coin toss outcome was already determined. Thus, “Model C”
and “Model D” should be each coin outcome. However, it is certainly possible
to set “Model C” as reality and “Model D” as some stochastic credence model,
with minimal deviations from the original set-up of the experiment.)
Now consider the experiment identical to the sleeping beauty experiment except
that the interviewee is not assumed to have knowledge of experiment settings,
except for the occurrence of coin toss on Sunday and that she suffers from
memory loss on both Monday and Tuesday, though she remembers only Sunday
events on both Monday and Tuesday. When interviewed on either Monday or
Tuesday, everyone would agree that credence should be set 1/2 for P (head) and
P (tail). This means that the interviewee having knowledge of “head comes up
meaning waking up only on Monday” and “tail coming up meaning waking up
on both days” (let us refer to this information as Information α) must provide
more information to change credence, if the halfer position is not taken.
The Bayes update rule essentially says P (+) = P (α|−)P (−)/P (α), where +
refers to posterior, − refers to prior and α refers to Information α. As P (α)
can be easily calculated from P (−), if calculate-able either directly or indirectly
through other conditions, and is constant, it can be dropped from the discussion.

P (+) ∝ P (α|−)P (−)

At this point, it is easy to see that new information α does not give any infor-
mation on P (α|−). Does it make sense to calculate probability of information
α given that the coin toss was head? No. In fact, this is just noise information
that cannot be used to update prior. Without prior already containing some
assumption on prior probability of occurrence of Monday and Tuesday, there is
no reasonable way to calculate value of Information α for updating prior. And
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posterior will directly depend on what prior says about event Monday and Tues-
day, and this also makes no sense. This is more of analogy-to-typical-human
sense argument though presented in Bayesian framework (though this is some-
what obvious). I will present more analysis on this in Section 2.3.
However, P (α|−)/P (α) can be calculated, if one follows, for example, the thirder
solution. Thus one now realizes that something clearly went wrong: A. consen-
sus prior − is wrong, or B. the common solutions/strategies are wrong, or C.
Bayesian framework is somewhat faulty.
The A option is hard to take in. It would mean, in our life, that given some
fair coin toss happened in the past and we do not know the outcome, we should
deviate from the assumption of fair coin toss as time goes on. The options I
explore here are B and C, and I will argue that both B and C are what happen.
Since the C option shows, in an obvious way why the B option is the case, I will
explore the C option only. Specifically, I will argue that Kolmogorov axioms
necessarily break down in decision-theoretic settings, and the bound where Kol-
mogorov axioms can safely be used exists.
Consider what happens when P (head) = 1/2 and P (tail) = 1/2, as we require.

P (head) = P (head|Monday)P (Monday) = 1/2

P (tail) = P (tail|Monday)P (Monday) + P (tail|Tuesday)P (Tuesday) = 1/2

P (head|Tuesday) is obviously zero, so it is dropped from the equation. And
P (tail|Tuesday) = 1. Now this framework raises the question of P (head|Monday).
Should it be 1/2? Yes, if we trust in our prior −. Prior − had P (head) =
1/2 because on Monday, it would still consider as P−(head|Monday) = 1/2.
(P− refers to prior probability.) And by the same prior updating example,
P+(head|Monday) ∝ P−(αhm)P−(head|Monday), but Information α is noise
and should not be used to update information.
This leads to the following crisis:

1/2 = (1/2)P (Monday)

1/2 = (1/2)P (Monday) + P (Tuesday)

P (Monday) = 1, so this means that P (Tuesday) = 0! Thus this double halfer
position seems to fail, and the entire analysis in this section seems to fall apart.
Except this is not the case.
So far, it was assumed that conventional understanding of Kolmogorov proba-
bility theory (from now on simply Kolmogorov theory) “rules” over stochastic
analysis. The Bayes rule can be understood and derived from Kolmogorov
probability theory. But supremacy of Kolmogorov theory is only guaranteed for
actual stochastic processes, where possible events can be clearly identified with
“somewhat complete” (more about the qualifier soon) information and objec-
tive stochastic probability for these events exist. The settings where stochastic
inference is done almost always carry limited information and information pro-
cessing, and there is no logical reason to assume that we would have a complete
credence picture on every sub-part of the system, or we may even have a wrong
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division of the system. For experimenters, on Monday they knows that they are
on Monday (and is part of Sunday-Monday-Tuesday stochastic process, where
Monday and Tuesday random variables depend only on Sunday’s). However,
for the interviewee, the picture of the world clearly is different, as they cannot
separate Monday and Tuesday random variables from the stochastic process
and consider them separately. And this incompatibility means no guarantee of
ensuring Kolmogorov-theory-wise completeness for decision-theoretic analysis.
The above means that there is no reason to unconditionally accept event com-
pleteness of Kolmogorov theory. One may assert that event completeness never
was the case for conventional understanding of Kolmogorov theory, and this
is true. After all, probabilistic analysis can still calculate probability of some
events without probability of other events identified. What I rather mean, by
event completeness of conventional Kolmogorov theory - or limited event com-
pleteness - is that some concepts, particularly conditional probability P (X ∈
A|Y ∈ B), are often defined by recourse to P (A,B) or others. But why should
we assume that P (A,B) exist, and define P (A|B) based on P (A,B) in limited
information decision-theoretic settings?
It may be said differently as follows. Conditional probability in traditional Kol-
mogorov understanding was not a fundamental concept. It was a constructed
and derived concept, and thus the definition reflected upon that. In decision
theory, conditional probability does need to come out as a fundamental concept.
Otherwise, we will not be able to carry out consistent analysis when P (A|B) is
available, but P (A,B) is not available, as it will not even make sense to talk of
P (A|B).

2.1 Role of information and validity scope of conventional
understanding of Kolmogorov theory in decision the-
ory

It should be clear, at this point, that this paper emphasizes information in sta-
tistical analysis. This emphasis is somewhat obvious, but yet our stochastic
pedagogy, and how analysis is presented, has not kept up with this required
emphasis.
Think back on the sleeping beauty problem. The problem for the thirder solu-
tion was that it applied traditional Bayesian inference tools without realizing its
scope limits in decision-theoretic settings. And this somewhat echoes the debate
on whether Bayesian analysis/inference can “somewhat resolve” identification
issues in regressions. That P+(head) = 0, 1 while subjective probability for the
interviewee is not never is the problem - even if how reality works may be dif-
ferent from what our models indicate, these models may be pseudo-equivalent
to reality - in other words, we would have no way of knowing that difference.
In case of the sleeping beauty problem, several values such as P (Monday|tail),
P (Monday), P (Tuesday) are not identifiable, even at subjective credence level.
One may call this uncertainty Knightian uncertainty, but there is no need to do
so.
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All this, however, does not mean conventional Kolmogorov theory understand-
ing does not apply in decision theory. To use “identification” terminology, in
case events are identifiable (note that probability of these events may still not
be identifiable), conventional Kolmogorov theory may be applied safely, as long
as they do not directly involve events that are not identifiable.
As any statistical analysis can be understood as updating prior, even for frequen-
tist analysis - if prior is “objectively” defined, one can also think of statistical
analysis as updating upon separable informations. This view clearly highlights
how important understanding information clearly is important.
The question now then is whether information analysis can be done in a sys-
temic way. I believe the answer is yes, and that part of the answer involves
Bayesian network analysis, including things such as do-calculus. Whether this
assessment is justified is outside the intended scope of this paper. But a clear
strategy can be discussed: the sleeping beauty problem was resolved by es-
sentially doing permutation/“shuffling”/“re-ordering” of available information -
that is, information can be re-organized in different ways. One can check on all
possible shuffles of available information, and because shuffles are all consistent
with each other, a consistent picture can be derived from these shuffles. This
of course is an expensive operation to do, in terms of computation resources,
regardless of what happens in the future, and thus in many ways, we may have
to rely on approximations and oracles based on ordinary intuitions for real-life
statistical analysis.
As a digression, note that for the sleeping beauty problem, we also essentially
imposed the computation limit, in terms of the game in the definition of pseudo-
equivalent models (let me refer to this game as the original game, in contrast to
the sleeping beauty experiment). To recall the original game, Person A tackling
the game is given k data points and had to choose whether model D is the
data-generating model or not (this alternate model is known to be model C for
experimenters). Data points were selected by a fair coin toss, and if head came
up, model C is the chosen data-generating model, if tail came up, model D is
the chosen data-generating model. Given the information set of A, if one can
prove, with knowledge of model C, unavailable to person A, that person A’s
choice effectively is a fair coin toss, then one can see that model C and D are
pseudo-equivalent models in terms of person A’s information set. The sleeping
beauty game sets k = 0 (which is part of computational limit), and the only
information the interviewee has is how the experiment is set up and that she is
currently in the experiment.

2.2 Principle of Indifference: uniform prior when indiffer-
ent?

The thirder arguement of the sleeping beauty problem applied the following
principle of indifference [8] [7]: P (Monday|tail) = P (Tuesday|tail), as given
that the coin toss is tail, the person does not really know whether she is on
Monday or Tuesday. As she has minimal information, she may apply 50-50
chance to Monday and Tuesday, given that the coin toss result is tail.
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But is this really a correct application of principle of indifference? Consider
the following example from basic economics. Ignore decreasing marginal utility,
and consider that each unit consumption of good L and M gives utility of Z to
Consumer A. Then Consumer A is indifferent over all combinations of good L
and M as long as |L|+ |M | remains the same. If one answers that uniform prior
should be used to represent what combination will be consumed by Consumer
A, then P (Monday|tail) = P (Tuesday|tail) should also follow.
But there is difference between “what can be a good prior” and “what prior
must be chosen.” Justifying uniform prior by principle of invariance under
permutation belongs to consideration of “what can be a good prior,” not “what
prior must be chosen.” Furthermore, in light of analysis done in this section,
one can see that what seem to be a good prior may not actually be a good prior.

2.3 Some principles-or-axioms of/for information process-
ing

It was suggested in this section that some information is noise that does not
help our understanding. (The case involving new information α) In this case, I
argued that a new posterior should remain as an old prior before noise informa-
tion arrived. Some may argue that this is principle of indifference in disguise. I
will argue this is not the case, but even if this application is principle of indif-
ference, this only shows that both halfer and thirder arguments are valid under
principle of indifference, and in such a case, all we can conclude is that multiple
ways of assigning credence/belief have same objective inference power.
I will give two examples, outside strictly traditional scope of statistics, to show
that the principle used to justify maintaining an old prior even if new informa-
tion arrives is more sound and justified than use of principle of indifference. The
first example involves criminal investigation. Suppose you are trying to find an
actual criminal. You have potential candidates, all with some prior probability,
conditional on information you have. And you get some additional information.
Evaluating upon/with past information, you conclude that additional informa-
tion does not provide any contribution. In this case, you will maintain the prior,
instead of giving up, or trying to manipulate prior.
The second example involves signal processing and information theory. The con-
cept of noise in these fields are quite ingrained and is not controversial. Noise
is treated as not being contributive and we try best to throw them out. In fact,
this is what real-life statistical analysis do - refining/processing our data sets
and doing analysis on them. Not many analysts will do their analysis on pure
raw data.
Noise, of course, is dependent on contexts - here prior information, and our
purpose, which is calculating what credence for head and tail sleeping beauty
or interviewee should assign after waking up. (Notice the emphasis. Because
noise may turn out not to be noise, even with same information for other cal-
culation purposes.) Sometimes, with other new sets of information/data, what
was previously considered to be noise can turn out to be valuable information -
just as in criminal investigation (the first example).
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One can argue that information α is not noise. Just set prior distribution on how
one thinks of probability of information α and conditional probability associated
with it, and calculate posterior. But our prior credence before information α
was not questioned, and we did not have to go through setting prior distribution
of all possible arrival of information. This is just like criminal investigation. We
do not know what information will arrive - and we should not quantify over un-
known unknowns. In the sleeping beauty case I separated information to what
we already know how to process (setting prior credence for head and tail as 1/2)
and information α, which needs to be processed conditional on information we
already possess. Because Bayesian inference by Bayes rule was supposed to work
on both information and data basis - though it was proved that Bayes update
principles must be checked for validity but this for now does not matter - we
can increment information, if information is separable, as if parts of information
were unknown previously. After all, this is the basic part of learning information
(or simply learning literature overall), and should not be questionable.
What may be confusing is the fact that what was classified as noise for a partic-
ular purpose can turn out to be valuable information for other purposes while
previously valuable information may turn out to be noise for different purposes.
But all of what is presented are fairly accepted principles across fields, if not in
strictly traditional statistics - especially information theory.
The discussions in this subsection may be augmented with the following three
principles/axioms to provide clear pictures. Suppose W , Z, X, Y are some in-
formation. And suppose that W ∪Z = X∪Y , where ∪ represents combining two
information. (Some may prefer “and”, but if considering information as sets, ∪
is a better notation.) Let F be some unique function that provides objective
meaning to information. Then:

Axiom 1. F (W ∪ Z) = F (X ∪ Y )

This means that, considering X as prior information excluding information α
and Y as information α, because we got the meaning that posterior credence of
head coming up after waking up as 1/2, this should be maintained regardless of
how we decomposed information. That is, thirder arguments are not alternatives
and are simply incompatible and invalid.

Axiom 2. If some logic leaves elements of doubt, start from what one knows
for sure and derive that logic.

The above axiom is not mathematical, as this is more of a guiding prin-
ciple. This principle is somewhat unnecessary, as it was already argued that
permutation/different-decomposition of information does somewhat serve this
purpose. (On this more following in the paper.) But the principle serves use-
ful role in statistical analysis done actively by humans. In the sleeping beauty
case, what we know for sure is that we would assign credence of 1/2 regardless
of whether a sleeping beauty/interviewee is asked credence after waking up on
Monday/Tuesday or not. Because this is only information we are confident of,
we should base our analysis on this information, not some arbitrary application
of principle of indifference.
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Axiom 3. Not all information contributes. Some information may not be pro-
cessable for inferences. In this case, we maintain our previous inference, as long
as information given does not go against our previous inference.

One may call the above as principle of indifference to noise information,
but the axiom clearly is different from some variants of unrestricted principle
of indifference. Here indifference is evaluated against previous inference, not
against past and/or present unknowns.

2.4 How do we know if events are identifiable?

In the previous subsections, it was discussed that some events are not identifiable
- not just probability but events themselves. How do we know exactly whether
some events are identifiable or not?
The story is basically the same as some others: permutation of information.
Let us recall the example of setting probability on “waking up on Monday” or
simply “Monday.” An additional axiom again helps our discussion:

Axiom 4. If same information, applied with proper axioms and principles,
seems to provide conflicting information about some event E, then that event E
is not identifiable. That is, it is wrong to use the Bayes rule without restriction
for E.

Recall sleeping beauty information decomposition into information α and
other information (for now β). Updating β with α did not provide contributive
information relative to events iterated, and thus P (Monday) should remain
unassigned. Thus P (Monday) is not identifiable. The general principle is this:

Axiom 5. Objective (or optimal, if that word is preferred) credence inference
is/should be built up from permutations of information and must be consistent
with all permutations. Here it is assumed that inference from each permutation
is done via standard probability theory/inference methods, such as Bayes rule.
We then find intersection of all inference. Objective credence inference should
never be drawn out from conclusions derived from a set of permutations that is
not the whole possible permutation set.

2.5 Pseudo-equivalence when computation power is lim-
ited, and re-evaluation of Bayes rule

Recall that pseudo-equivalence is defined also by computation power. The rea-
son why computation power is important can be demonstrated by different
sub-cases, such as pseudo-random functions or RSA [10]. I will choose RSA
as a demonstrative example, as it is easier to explain this way. RSA public-
key cryptosystem essentially relies on difficulty of factoring a number that is
some product of two prime factors back into two prime factors. In this case,
for product N , it requires N numbers to check for factorization (as primality
testing [1] of a number is known to be much easier). Suppose we are allowed



Role of information and its processing in statistical analysis 13

to generate infinite data (That is, we are allowed infinite space). Then if given
infinite computation time also, pseudo-equivalence of the true model of some
information encrypted with RSA (that is, actual information) with the “false”
model of information representing some stochastic gibberish would not hold, as
we would always get back the true model. For this reason, it is crucial to define
pseudo-equivalence based on computation power also.
Section 2.3, specifically Axiom 1 discussed how one information set should be
assigned a unique meaning, and how we can learn whether events are identifi-
able or not. But these were somewhat assumed on computation power being
infinite. What if computation power is limited? Would discussions still remain
the same?
The answer, is yes. This is because, in our limited information statistics frame-
work, “a pseudo-true model” (pseudo-equivalent to a true model) is treated like
a true model. Thus, if it seems necessary to violate axioms, it actually speaks
for the need to change the assumed true model by re-learning process, based on
given new information.
At this point, it may be better to consider again Bayes rule. The above already
highlights why Bayes rule may not be the ultimate updating rule when setting
credence. We do not have a true model given, and we have to find a true model.
With new information, our previous pseudo-equivalent model may turn out not
to be a pseudo-equivalent model. (For sleeping beauty case, we did not have
this problem - after all, sleeping beauty/interviewee was given zero data point
all the time, except for structure of information and her waking up.) That is,
our prior based on some previous pseudo-equivalent model may have to change.
The magic of Bayes rule can be allowed, when conditions required for the magic
are satisfied (identifiability) and we can wait for a long period of time for us to
get sufficient data so that data dominate over the power of prior. Unfortunately,
often in our real-life statistical analysis, this is not allowed. What we often want
is that despite information limits and computational limits, we try our best to
set most objective credence to events we would like to explain. Extreme cases,
of course, are something like the sleeping beauty problem. (The general spirit
here is that without computation/processing, information has no meaning.)
As a digression, note that under the limited information statistical analysis
framework, empirical machine learning algorithms and their known powers (as-
sume they are very strong algorithms, very close to statistical powers of the
(pseudo-)true model.) for solving a particular class of problems may be under-
stood as new given information, or oracles. One particular situation may be
helpful to illustrate relationship between the framework and these oracles: be-
fore discovery of oracles, we may “objectively/rationally” calculate that finding
these oracles for some particular problem may be difficult and assign pseudo-
equivalence to some other models. However, as can happen by some chance,
these oracles may be discovered. These oracles then become a new pseudo-
equivalent model for a particular problem. This of course requires thorough
theoretical analysis of why for a particular problem a particular learner is pow-
erful and how one shows “new” pseudo-equivalence.
In practice, though, empirical pseudo-equivalence will almost be defined by the
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most powerful learner we so far know for a particular class of problems. This is
because it is practically somewhat infeasible to check pseudo-equivalence based
on a true model (even at the training level), as we do have many gaps in our un-
derstanding of computational powers so far. In this regard, outburst of empirical
machine learning algorithms/papers may be understood more approvingly.

3 Conclusion

In all of the discussions in the paper, an alternate decision could have always
been made. Recall the sleeping beauty problem. Because P+(head) = 0, 1, one
could simply conclude that any credence/belief of the interviewee is either mean-
ingful or meaningless, and that all these discussions are meaningless. Similarly,
for pseudo-equivalent models, one may conclude that because we may never be
able to infer a true model, statistical analysis is meaningless.
While there is substance in this pessimistic viewpoint, they are misguided. As
cryptography was mentioned: pseudo-random functions are not actually random
functions, but in reality, they effectively work as random functions, except for
those that know secure keys that label those pseudo-random functions. Thus,
as in Friedmanite instrumentalism, a model that is not descriptively realistic
may actually turn out to have some validity. But Friedmanite instrumentalism
must be considered in terms of what information is traced out to justify an
alternative model. Considering information traced out as part of assumption,
then realism of assumptions does matter, in terms of information. For example,
if a model requires dropping out too much information, then the model should
simply be rejected in favor of better more information-reflective models in case
information is available.
The main take-aways of this paper are: that we use a misspecified model to
analyze reality does not always mean garbage statistical analysis more than we
expect fundamentally. By the concept of pseudo-equivalent models, one can see
that two models may effectively be equivalent in terms of information limit and
computation power assigned to process such information. We always face lim-
ited information and processing/computation capacity for statistical analysis,
and thus real-life statistical analysis likely may be studying a model that is not
an actual data-generating model, and we may never see a sign of misspecifica-
tion. Computational processing limit, exemplified by function 2n computation
steps for n data points, with online updating algorithm unavailable or infeasible,
makes valid model inference almost impossible, even if informational limits are
not really severe. Thus, statistical analysts are not really different from deciders
in decision theory who have to form credence/belief over events, but try their
best to get close to accurate description of reality as far as they see things. If
decision theory matters for statistical analysis, then its puzzles and paradoxes
matter for statistical analysis/inference. The sleeping beauty problem example
is studied in this spirit. A fundamental point is raised: that prior in Bayesian
inference has to be chosen carefully, and that Bayes rule is valid only up to
its scope. This necessitates re-evaluating how Kolmogorov probability theory is
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to be applied in decision-theoretic settings. That is, Bayesian inference has to
be done after event/parameter identification problem is clearly understood, in
terms of available information.
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